Skip Navigation
Search

Peer-Reviewed Journal Papers

  1. Tuna, R., Yi, W., Crespo Cruz, E., Romero, JP., Ren, Y., Guan, J., Li, Y., Deng, Y., Bluestein, D., Liu, Z.L., Sheriff, J. (2024) Platelet Biorheology and Mechanobiology in Thrombosis and Hemostasis: Perspectives from Multiscale Computation. International Journal of Molecular Sciences, 25, 4800. DOI: 10.3390/ijms25094800.
  2. Reza, S., Kovarovic, B., Bluestein, D. (2024) Assessing Post-TAVR Cardiac Conduction Abnormalities Risk Using a Digital Twin of a Beating Heart. medRxiv [Preprint], 2024.03.28.24305028. DOI: 10.1101/2024.03.28.24305028. *Note: This is a pre-print
  3. Morany, A., Bardon, R.G., Lavon, K., Hamdan, A., Bluestein, D., Haj-Ali,  R. (2024) Analysis of fibrocalcific aortic valve stenosis: computational pre-and-post TAVR haemodynamics behaviours. Royal Society Open Science, 11, 230905. DOI: 10.1098/rsos.230905.
  4. Oks, D., Reza, S., Vázquez, M., Houzeaux, G., Kovarovic, B., Samaniego, C., Bluestein, D. (2024) Effect of Sinotubular Junction Size on TAVR Leaflet Thrombosis: A Fluid-structure Interaction Analysis. Annals of Biomedical Engineering, 52, 719-733. DOI: 10.1007/s10439-023-03419-3.
  5. Baylous, K., Helbock, R., Kovarovic, B., Anam, S., Slepian, M.J., Bluestein, D. (2024) In Silico Fatigue Optimization of TAVR Stent Designs with Physiological Motion in a Beating Heart Model. Computer Methods and Programs in Biomedicine, 243, 107886. DOI: 10.1016/j.cmpb.2023.107886
  6. Palomares, D.E., Tran, P.L., Jerman, C., Momayez, M., Deymier, P., Sheriff, J., Bluestein, D., Parthasarathy, S., Slepian, M.J. (2023) Vibro-Acoustic Platelet Activation: An Additive Mechanism of Prothrombosis with Applicability to Snoring and Obstructive Sleep Apnea. Bioengineering10, 1414. DOI: 10.3390/bioengineering10121414.
  7. Roka-Moiia, Y., Ammann, K.R., Miller-Gutierrez, S., Sheriff, J., Bluestein, D., Italiano, J.E., Flaumenhaft, R.C. & Slepian, M.J. (2023). Shear-Mediated Platelet Microparticles Demonstrate Phenotypic Heterogeneity as to Morphology, Receptor Distribution, and Hemostatic Function. International Journal of Molecular Sciences, 24, 7386. DOI: 10.3390/ijms24087386.
  8. Wang, P., Sheriff, J., Zhang, P., Deng, Y. & Bluestein, D. (2023). A Multiscale Model for Shear-Mediated Platelet Adhesion Dynamics: Correlating In Silico with In Vitro Results. Annals of Biomedical Engineering, 51, 1094-1105. DOI: 10.1007/s10439-023-03193-2.
  9. Kovarovic, B., Rotman, O.M., Parikh, P.B., Slepian, M.J. & Bluestein, D. (2023). Mild Paravalvular Leak May Pose an Increased Thrombogenic Risk in Transcatheter Aortic Valve Replacement (TAVR) Patients-Insights from Patient Specific In Vitro and In Silico Studies. Bioengineering, 10, 188. DOI: 10.3390/bioengineering10020188.
  10. Morany, A., Lavon, K., Gomez Bardon, R., Kovarovic, B., Hamdan, A., Bluestein, D. & Haj-Ali, R. (2023). Fluid–structure interaction modeling of compliant aortic valves using the lattice Boltzmann CFD and FEM methods. Biomech Model Mechanobiol, 22, 837-850. DOI: 10.1007/s10237-022-01684-0.
  11. Morany, A., Lavon, K., Halevi, R., Haj-Ali, N., Bluestein, D., Raanani, E., Hamdan, A. & Haj-Ali, R. (2022). Fragmentation of Different Calcification Growth Patterns in Bicuspid Valves During Balloon Valvuloplasty Procedure. Ann Biomed Eng, 51, 1014-1027. DOI: 10.1007/s10439-022-03115-8.
  12. Helbock, R., Anam, S., Kovarovic, B., Slepian, M.J., Hamdan, A., Haj-Ali, R. & Bluestein, D. (2023). Designing a Novel Asymmetric Transcatheter Aortic Valve for Stenotic Bicuspid Aortic Valves Using Patient-Specific Computational Modeling. Ann Biomed Eng, 51, 58-70. DOI: 10.1007/s10439-022-03039-3.
  13. Keshavarz-Motamed, Z., Del Alamo, J.C., Bluestein, D., Edelman, E.R. & Wentzel, J.J. (2022). Editorial: Novel methods to advance diagnostic and treatment value of medical imaging for cardiovascular disease. Front Bioeng Biotechnol, 10:987326. DOI: 10.3389/fbioe.2022.987326.
  14. Bluestein, D., Dewey Jr., C.F., Elad, D., Gharib, M., Kamm, R.D., Lieber, B.B., Margulies, S.S., Slepian, M.J., Tarbell, J. & Weinbaum, S. (2022). In Memoriam: Shmuel Einav, 1942–2022. J Biomech Eng, 144, 080101. DOI: 10.1115/1.4054797.
  15. Anam A, Kovarovic JB, Ghosh RP, Bianchi M, Hamdan A, Haj-Ali R, Bluestein D (2022) Validating in-silico and in-vitro Patient-specific Structural and Flow Models with Transcatheter Bicuspid Aortic Valve Replacement Procedure. Cardiovascular Engineering and Technology, 13, 840-856. DOI: 10.1007/s13239-022-00620-8.
  16. Kovarovic BJ, Helbock R, Baylous K, Rotman OM, Slepian MJ, Bluestein D (2022) Visions of TAVR Future: Development and Optimization of a Second Generation Novel Polymeric TAVR. J Biomech Eng.https://doi.org/10.1115/1.4054149.
  17. Reza S, Bianchi M, Kovarovic BJ, Anam S, Slepian MJ, Hamdan A, Haj-Ali R, Bluestein D (2022) A computational framework for post-TAVR cardiac conduction abnormality (CCA) risk assessment in patient-specific anatomy. Artificial Organshttps://doi.org/10.1111/aor.14189
  18. Anam A, Kovarovic JB, Ghosh RP, Bianchi M, Hamdan A, Haj-Ali R, Bluestein D (2021) Assessment of Paravalvular Leak Severity and Thrombogenic Potential in Transcatheter Bicuspid Aortic Valve Replacements using Patient-specific Computational Modeling. Journal of Cardiovascular Translational Researchhttps://doi.org/10.1007/s12265-021-10191-z
  19. Sweedo A, Wise LM, Roka-Moiia Y, Arce FT, Saavedra SS, Sheriff J, Bluestein D, Slepian MJ., Purdy JG (2021) Shear-Mediated Platelet Activation is Accompanied by Unique Alterations in Platelet Release of Lipids. Cellular and Molecular Bioengineering,DOI: 1101/2021.01.08.425446
  20. Lavon, K., Morany, A., Halevi, R.Hamdan, A., Raanani, E., Bluestein, D., Haj-Ali, R. (2021) Progressive Calcification in Bicuspid Valves: A Coupled Hemodynamics and Multiscale Structural Computations. Ann Biomed Eng, 49, 3310–3322,  https://doi.org/10.1007/s10439-021-02877-x
  21. Slepian MJ, Italiano JE, Bluestein D., Sheriff J, Roka-Moiia Y (2021) Evolving perspectives on mechanical circulatory support biocompatibility and interfaces (Editorial) Annals of Cardiothoracic Surgeryhttps://doi.org/10.21037/acs-2020-cfmcs-247
  22. Sheriff, J., Wang, P., Zhang, P., Zhang, Z., Deng, Y., Bluestein, D. (2021) In VitroMeasurements of Shear-Mediated Platelet Adhesion Kinematics as Analyzed through Machine Learning. Annals of Biomedical Engineering, 49, 3452-3464https://doi.org/10.1007/s10439-021-02790-3.
  23. Roka-Moiia Y, Ammann KR, Miller-Gutierrez S, Sweedo A, Palomares DE, Italiano JE, Sheriff J, Bluestein D, Slepian MJ. (2021) Shear-Mediated Platelet Activation in the Free Flow II: Evolving Mechanobiological Mechanisms Reveal an Identifiable Signature of Activation and a Bi-Directional Platelet Dyscrasia with Thrombotic and Bleeding Features. Biomechanicshttps://doi.org/10.1016/j.jbiomech.2021.110415.
  24. Zhang Z, Zhang P, Wang P, Sheriff J, Bluestein D, Deng, Y (2021) Rapid Analysis of Streaming Platelet Images by Semi-unsupervised Learning.Computerized Medical Imaging and Graphics, 89, 101895. https://doi.org/10.1016/j.compmedimag.2021.101895
  25. Gupta, P., Zhang, P., Sheriff, J, Bluestein D., Deng Y (2021) A multiscale model for multiple platelet aggregation in shear flow. Biomechanics and Modeling in Mechanobiology, 20, 1013-1030. https://doi.org/10.1007/s10237-021-01428-6.
  26. Roka-Moiia Y, Miller-Gutierrez S, Palomares DE, Italiano JE, Sheriff J, Bluestein D, Slepian MJ. (2021) Platelet Dysfunction during Mechanical Circulatory Support: Elevated Shear Stress Exposure Promotes Downregulation of αIIbβ3and GPIb via Microparticle Shedding Decreasing Platelet Aggregability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021;41:1319–1336.https://www.ahajournals.org/doi/10.1161/ATVBAHA.120.315583.
  27. Slepian MJ, Italiano JE, Bluestein D, Sheriff J, Roka-Moiia Y (2021) It's a System and Outcomes Depend Upon Where, When and at What Scale You Look! Evolving Perspectives on MCS Biocompatibility and Interfaces. Annals of Cardiothoracic Surgery
  28. Zhang, P., Sheriff J, Einav S, Slepian, M.J., Deng, Y., Bluestein, D (2021) A Predictive Multiscale Model for Simulating Flow-Induced Platelet Activation: Correlating In Silico Results with In Vitro Results. Biomechanics17 (2021) 1102752. https://doi.org/10.1016/j.jbiomech.2021.110275.
  29. Han G, Zhang P, Bluestein D, Cong G, Deng Y(2021) Artificial Intelligence for Accelerating Time Integrations in Multiscale Modeling.  Physics , 427(2021)110053. https://doi.org/10.1016/j.jcp.2020.110053
  30. Kovarovic BJ, Rotman OM, Parikh P. Slepian MJ, Bluestein D (2020) Patient‐specific in vitro testing for evaluating TAVR clinical performance‒ a complementary approach to current ISO standard testing. Artificial Organs , 2021;45:E41–E52. https://doi.org/10.1111/aor.13841
  31. Morany A, Lavon K, Bluestein D, Hamdan A, Haj-Ali R (2020) Structural Responses of Integrated Parametric Aortic Valve in an Electro-Mechanical Full Heart Model. Annals of Biomedical Engineering , https://doi.org/10.1007/s10439-020-02575-0.
  32. Emendi M, Sturla F, Ghosh RP, Bianchi M, Piatti F, Pluchinotta FR, Giese D, Lombardi M, Redaelli A, Bluestein D (2020) Patient-specific bicuspid aortic valve biomechanics: a magnetic resonance imaging integrated fluid-structure interaction approach. Annals of Biomedical Engineering ,49, pages 627–641https://doi.org/10.1007/s10439-020-02571-4.
  33. Sheriff J, Malone LE, Avila C, Zigomalas A, Bluestein D, Bahou WF (2020) Shear-Induced Platelet Activation is Sensitive to Age and Calcium Availability: A Comparison of Adult and Cord Blood. Cellular and Molecular Bioengineering  13, 575–590.https://doi.org/10.1007/s12195-020-00628-x.
  34. Roka-Moiia Y, Palomares DE, Italiano JE, Sheriff J, Bluestein D, Slepian MJ. (2020) Platelet Activation Via Shear Stress Exposure Induces A Differing Pattern Of Biomarkers Of Activation Versus Biochemical Agonists. Thrombosis and Haemostasis 120:776-792. DOI https://doi.org/10.1055/s-0040-1709524.
  35. Ghosh RP, Marom G, Bianchi M, D'souza K, Zietak W,Bluestein D (2020) Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid-structure interaction analysis. Biomechanics and Modeling in Mechanobiology https://doi.org/10.1007/s10237-020-01304-9.
  36. Li M, Walk R, Roka-Moiia Y, Sheriff J, Bluestein D, Barth EJ, Slepian MJ (2020) Circulatory Loop Design and Components Introduce Artifacts Impacting In-Vitro Evaluation of Ventricular Assist Device Thrombogenicity: A Call for Caution. Artificial Organs https://doi.org/10.1111/aor.13626
  37. Ngo ATP, Sheriff J, Rocheleau AD, Bucher M, Jones KR, Sepp A-LI, Malone LE, Zigomalas A, Maloyan A, Bahou WF, Bluestein D, McCarty OJT, Haley KM. (2020) Assessment of Neonatal, Cord, and Adult Platelet Granule Trafficking and Secretion. Thrombosis and Haemostasis . 2020. 31, 68-78. . DOI: 1080/09537104.2019.1573314.
  38. Lavon K, Marom G, Bianchi M, Halevi R, Hamdan A, Morany A, Raanani E, Bluestein D, Haj-Ali R (2019) Biomechanical Modeling of Transcatheter Aortic Valve Replacement in a Stenotic Bicuspid Aortic Valve: Deployments and Paravalvular Leakage. Medical & Biological Engineering & Computing (IF 602). https://doi.org/10.1007/s11517-019-02012-y.
  39. Gupta P, Zhang P, Sheriff J, Bluestein D, Deng Y (2019) A Multiscale Model for Recruitment Aggregation of Platelets by Correlating with In Vitro Results. Cellular and Molecular Bioengineering 12(4), 327-343. https://doi.org/10.1007/s12195-019-00583-2
  40. Apostoli A, Bianchi V, Bono N, Dimasi A, Ammann KR, Moiia YR, Montisci A, Sheriff J, Bluestein D, Fiore GB, Pappalardo F, Candiani G, Redaelli A, Slepian MJ, Consolo F (2019) Endothelial Cell Cytokine-Activation Promotes Prothrombotic Activity of Shear-Activated Platelets in the Setting of Ventricular Assist Device Support. The Journal of Heart and Lung Transplantation Volume 38, Issue 6, Pages 658–667, https://doi.org/10.1016/j.healun.2019.02.009.
  41. Chiu, W-C, Tran PL, Khalpey Z, Lee E, Woo Y-R, Slepian MJ, Bluestein D (2019) Device Thrombogenicity Emulation: An In Silico Predictor of In Vitro and In Vivo Ventricular Assist Device Thrombogenicity.Nature Scientific Reports  9, Article number: 9-2946, https://doi.org/10.1038/s41598-019-39897-6
  42. Rotman OM, Kovarovic B, Bianchi M, Slepian MJ, Bluestein D (2019) In-Vitro Durability and Stability Testing of a Novel Polymeric TAVR Valve, ASAIO J ,DOI:1097/MAT.0000000000000980
  43. Bianchi M, Marom, G, Ghosh RP, Rotman, OM, Parikh, P, Gruberg, L, Bluestein D (2018) Patient-Specific Simulation of Transcatheter Aortic Valve Replacement: Impact of Deployment Options on Paravalvular Leakage.Biomechanics and Modeling in Mechanobiology , April 2019, Volume 18, Issue 2, pp 435–451, https://doi.org/10.1007/s10237-018-1094-8.
  44. Rotman OM, Bianchi M, Ghosh R, Kovarovic B, Bluestein D (2018) Principles of TAVR Valve Design, Modelling, and Testing. Expert Review of Medical Devices , 2018 Nov;15(11):771-791, DOI:1080/17434440.2018.1536427
  45. Selmi M, Chiu W-C, Chivukula VK, Melisurgo G, Beckman JA, Mahr C, Aliseda A, Votta E, Redaelli A, Slepian MJ, Bluestein D, Pppalarado F, Consolo F (2018) Blood Damage in Left Ventricular Assist Devices (LVADs): Pump Thrombosis or LVAD System Thrombosis?, International Journal of Artificial Organs https://doi.org/10.1177/0391398818806162,.
  46. Rotman OM, Kovarovic B, Chiu W-C, Bianchi M, Marom G, Slepian MJ, Bluestein D (2019) Novel Polymeric Valve for Transcatheter Aortic Valve Replacement Applications – In Vitro Hemodynamic Study. Annals of Biomedical Engineering , Volume 47, Issue 1, pp 113–125, https://doi.org/10.1007/s10439-018-02119-7(Annals of Biomedical Engineering Best Paper Award for 2020)
  47. Ghosh RP, Marom G, Rotman OM, Slepian MJ, Prabhakar S, Horner M, Bluestein D (2018) Comparative Fluid-Structure Interaction Analysis of Polymeric Transcatheter and Surgical Aortic Valves’ Hemodynamics and Structural Mechanics. J Biomech Eng doi:10.1115/1.4040600.
  48. Marom G, Eswaran SK, Rapoza RJ, Hossainy SFA, Slepian MJ, Bluestein D (2018) Design effect of metallic (durable) and polymeric (resorbable) stents on blood flow and platelet activation. Artificial Organs . Vol. 42 (12) 1148-1156 https://doi.org/10.1111/aor.13276
  49. Rotman OM, Kovarovic B, Sadasivan C, Gruberg L, Lieber B, Bluestein D (2018) Realistic Vascular Replicator for TAVR Procedures. Cardiovascular Engineering and Technology , Vol 9 (3), pp 339–350. DOI: https://doi.org/10.1007/s13239-018-0356-z
  50. Buck AK, Goebel SG, Goodin MS, Wright NJ, Groszek JJ, Moyer J, Singh S, Bluestein D, Fissell WH, Roy S (2018) Platelet Stress Accumulation Analysis to Predict Thrombogenicity of a Bioartificial Kidney. Biomechanics https://doi.org/10.1016/j.jbiomech.2018.01.014
  51. Valerio L.; Sheriff, J; Tran PL; Brengle W; Redaelli A; Fiorea, GB.; Pappalardoe F; Bluestein, D.; Slepian MJ (2018) Routine Clinical Anti-Platelet Agents Have Limited Efficacy in Modulating Hypershear-Mediated Platelet Activation Associated with Mechanical Circulatory Support. Thrombosis Research (F 3.944). doi:10.1016/j.thromres.2017.12.001
  52. Consolo F, Sheriff J, Gorla S, Magri N, Bluestein D, Pappalardo F, Fiore GB, Slepian MJ, and Redaelli A (2017) High Frequency Components of Hydrodynamic Shear Stress Profiles Are A Major Determinant of Shear Mediated Platelet Activation In Therapeutic Blood Recirculating Devices. Nature Scientific Reports . 7, Article number: 4994 doi:10.1038/s41598-017-05130-5
  53. Dimasi, A, Rasponi, M, Consolo, F, Fiore, GB., Bluestein, D, Slepian, MJ. and Redaelli, A (2017): Microfludic platforms for the evaluation of anti-platelet agent efficacy under hyper-shear conditions associated with ventricular assist devices. J Medical Engineering & Physics , Vol. 48, Supp C, 31-38 DOI: https://doi.org/10.1016/j.medengphy.2017.08.005
  54. Bluestein, D (2017) Utilizing Computational Fluid Dynamics (CFD) in Cardiovascular Engineering and Medicine – What You Need to Know? Its Translation to the Clinic/Bedside. Invited Editorial.Artificial Organs , 41, No. 2, 117-121. doi:  1111/aor.12914
  55. Gao, c.., Zhang, P., Slepian, Marom, G., Deng, Y., Bluestein, D. (2017) Reducing the Effects of Compressibility in DPD-based Blood Flow Simulations through Severe Stenotic Microchannels. Physics ,335 (2017) 812–827, `http://dx.doi.org/10.1016/j.jcp.2017.01.062.
  56. Chiu, W-C, Alemu, Y, McLarty, AJ, Einav, S, Slepian, MJ, Bluestein, D (2017) Ventricular Assist Device Implantation Configurations Impact Overall Mechanical Circulatory Support System Thrombogenic Potential. ASAIO J , 63(3), 285-292.
  57. Zhang, P., Zhang, L., Slepian, M.J., Deng, Y., Bluestein, D. (2017) A Multiscale Biomechanical Model of Platelets: Correlating with In-Vitro Results.Biomechanics , 50, 26-33. DOI: 10.1016/j.jbiomech.2016.11.019
  58. Einav, S.; Bluestein, D.; and Rotman, O. M. Special issue on "Biofluid mechanics of multitude pathways: From cellular to organ".Biomechanics , 50: 1-2. 2017.
  59. Slepian MJ, Sheriff J, Hutchinson M, Tran P , Bajaj, N., Garcia, J.G.N., Saaverda S. S., Bluestein, D. (2017) Shear-Mediated Platelet Activation in the Free Flow: Perspectives on the Emerging Spectrum of Cell Mechanobiological Mechanisms Mediating Cardiovascular Implant Thrombosis Biomechanics . 50, 20-25. DOI: http://dx.doi.org/10.1016/j.jbiomech.2016.11.016
  60. Bianchi M, Marom G, Ghosh R, Fernandez HA, Taylor JR, Slepian MJ, Bluestein D (2016) Effect of balloon-expandable transcatheter aortic valve replacement positioning: a patient-specific numerical model. Artificial Organs , 40: E292–E304. doi:10.1111/aor.12806
  61. Leung, S-L, Lu, Y., Bluestein, D., Slepian, M. J. (2016) Dielectrophoresis-Mediated Electrodeformation as a Means of Determining Individual Platelet Stiffness. Annals of Biomedical Engineering .44(4), 903-913. DOI: 10.1007/s10439-015-1383-7
  62. Zhang, P., Zhang, N., Gao, C., Zhang, L, Gao, Y, Deng, Y., Bluestein, D (2016) Scalability Test of Multiscale Fluid-Platelet Model for Three Top Supercomputers, Computer Physics Communications 204 (2016): 132-140. http://dx.doi.org/10.1016/j.cpc.2016.03.019
  63. Consolo F, Dimasi A, Rasponi M, Valerio L, Pappalardo F, Bluestein D, Slepian MJ, Fiore GB, and Redaelli A (2016) Microfluidic approaches for the assessment of thrombotic blood cell trauma in mechanical circulatory support devices: a focus on thrombotic risk in mechanical circulatory support devices.Int J Artif Organs . 39(4), 184-193 DOI 10.5301/ijao.5000485
  64. Valerio L, Tran, PL., Sheriff, Brengle W, Ghosh R, Chiu W-C, Redaelli, A, Fiore GB, Pietropaolo F, Bluestein, D, Slepian, MJ (2016) Aspirin Has Limited Ability to Modulate Shear-Mediated Platelet Activation Associated with Elevated Shear Stress of Ventricular Assist Devices. Thrombosis Research ,140, 110-117. http://dx.doi.org/10.1016/j.thromres.2016.01.026.
  65. Halevi R., Hamdan A., Marom G., Lavon K., BenZekry S., Raanani E., Bluestein D., Haj-Ali R. (2016) Fluid structure interaction modeling of calcific aortic valve disease using a patient specific three dimensional calcification scan. Medical & Biological Engineering & Computing (IF 602)54(11):1683-94, DOI 10.1007/s11517-016-1458-0.
  66. Marom, G and Bluestein D (2016) Lagrangian methods for blood damage estimation in cardiovascular devices - How numerical implementation affects the results.Expert Review of Medical Devices 13(2), 113-122.. DOI: 10.1586/17434440.2016.1133283
  67. Dimasi, A, Rasponi, M, Sheriff, J. Chiu, W.-C, Bluestein, D, Tran, PL, Slepian, MJ and A. Redaelli (2015) Microfluidic Emulation of Mechanical Circulatory Support Device Shear-Mediated Platelet Activation. Biomedical Microdevices ,17(6), 1-11.
  68. Sheriff J, Claiborne TE, Tran P, Kothadia R, George S, Kato Y, Pinchuk L, Slepian MJ, and Bluestein D (2015) Physical Characterization and Platelet Interactions Under Shear Flows of a Novel Thermoset Polyisobutylene-Based Co-Polymer. ACS Applied Materials and Interfaces7(39), 22058-22066. DOI: 10.1021/acsami.5b07254.
  69. Tran, PL., Pietropaolo MG, Lorenzo V, William B, Raymond K. W, Toshinobu Ki, Zain I. K, Redaelli, A, Sheriff, J, Bluestein, D, Slepian, MJ (2016) "Hemolysate-mediated platelet aggregation: an additional risk mechanism contributing to thrombosis of continuous flow ventricular assist devices." Perfusion, 31(5):401-8, doi: 0267659115615206.
  70. Piatti, F., Sturla, .F, Marom, G., Sheriff, J., Claiborne, T.E., Slepian, M.J., Redaelli, A, Bluestein, D. (2015) Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach. Biomechanics 48(13), 3641-3649. doi:10.1016/j.jbiomech.2015.08.009
  71. Sheriff J, Tran PL, Hutchinson M, DeCook T, Slepian MJ, Bluestein, D, Jesty J (2015) Repetitive Hypershear Activates and Sensitizes Platelets in a Dose-Dependent Manner. Artificial Organs40(6), 586-595. doi:10.1111/aor.12602.
  72. Mega, M, Marom, G, Halevi, R, Hamdan, A, Bluestein, D, Haj-Ali, R (2015) Imaging Analysis of Collagen Fiber Networks in Cusps of Porcine Aortic Valves: Effect of their Local Distribution and Alignment on Valve Functionality. Computer Methods in Biomechanics and Biomedical Engineering.19(9), 1002-1008.
  73. Zhang, P., Zhang, N., Deng, Y., Bluestein, D (2015) A Multiple Time Stepping Algorithm for Efficient Multiscale Modeling of Platelets Flowing in Blood Plasma,  Physics, Vol. 284, pp. 668-686.
  74. Merkle, V.; Martin, D.; Hutchinson, M.; Tran, P.; Behrens, A.; Hossainy, S.; Bluestein, D.; Wu, X.; Slepian, M. (2015) Hemocompatibility of Polyvinyl Alcohol-Gelatin Core-Shell Electrospun Nanofibers: A Novel Scaffold for Modulating Platelet Deposition and Activation. Applied Materials & Interfaces, 7(15), 8302-8312
  75. Xenos, M. Karakitsos, D., Labropoulos, N., Tassiopoulos, A, Bilfinger, D., Bluestein, D. (2015) Comparative Study of Flow in Right-Sided and Left-Sided Aortas - Numerical Simulations in Patient Based Models. Computer Methods in Biomechanics and Biomedical Engineering. 18(4): 414-25
  76. Pothapragada, P. Zhang, J. Sheriff, M. Livelli, M. J. Slepian, Y. Deng and D. Bluestein (2015) A phenomenological particle‐based platelet model for simulating filopodia formation during early activation.International journal for numerical methods in biomedical engineering 31(3). DOI: 10.1002/cnm.2672
  77. Xenos, M., Labropoulos, N., Rambhia, S., Alemu, Y., Einav, S. Tassiopoulos, A., Sakalihasan, N., Bluestein, D. (2015) Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid–Structure Interaction Method. Annals of Biomedical Engineering.  43(1), 139-153. DOI: 10.1007/s10439-014-1224-0
  78. Bluestein, D. and Slepian, M.J. (2014) Sticking with Synthetic Tissue Sealants. New England J. Medicine, 370; 16:1556-1559
  79. Marom, G., Chiu, W-C., Crosby, J.R., DeCook, K.J., Prabhakar, S., Horner, M., Slepian, M.J., Bluestein, D. (2014) "Numerical Model of Full-Cardiac Cycle Hemodynamics in a Total Artificial Heart and the Effect of Its Size on Platelet Activation." Journal of Cardiovascular Translational Research. 7(9): 788-796. doi: 1007/s12265-014-9596-y
  80. Raptis A, Xenos M, Dimasc S, Giannoukasd A, Labropoulose N, Bluestein D, Matsagkasa M (2014) Effect of macroscale formation of intraluminal thrombus on blood flow in abdominal aortic aneurysms. Computer Methods in Biomechanics and Biomedical Engineering, 1-9. DOI: 1080/10255842.2014.989389
  81. Sheriff, J., Girdhar, G., Chiu, W-C., Jesty, J., Slepian, M.J., Bluestein, D. (2014) "Comparative efficacy of in vitro and in vivo metabolized aspirin in the DeBakey ventricular assist device."  Thrombolysis 37(4): 499-506.
  82. Zhang, P., Gao, C., Zhang, N., Slepian, M.J., Deng, Y., Bluestein, D. (2014) "Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics." Cellular and Molecular Bioengineering 7(4): 552-574.
  83. Chiu, W., Girdhar, G., Xenos, M., Alemu, Y., Soares, J.S., Lynch, B., Einav, S.,Slepian, M., Bluestein, D. (2014) Thromboresistance Comparison of the HeartMate II Ventricular Assist Device (VAD) with the Device Thrombogenicity Emulation (DTE)-Optimized HeartAssist 5 VAD.  Engr, Vol. 136 / 021014-1-9, DOI:10.1115/1.4026254.
  84. Pelosi, A., Sheriff, J., Stevanella, M., Fiore, G.B., Bluestein, D.,Redaelli, A. (2014) Computational evaluation of the thrombogenic potential of a hollow-fiber oxygenator with integrated heat exchanger during extracorporeal circulation.  Modeling in Mechanobiology, 13:349–361. DOI: 10.1007/s10237-012-0445
  85. Chiu, W., Slepian, M., Bluestein, D. (2014) Thrombus Formation Patterns in the HeartMate II VAD- Clinical Observations Can Be Predicted by Numerical Simulations. ASAIO J,60(2):237-240, DOI:10.1097/MAT.0000000000000034.
  86. Bluestein, Soares, JS, Zhang, P., Gao, C., Pothapragada, Zhang, Na, Slepian. MJ, and Y. Deng (2014) Multiscale Modeling of Flow Induced Thrombogenicity with Dissipative Particle Dynamics (DPD) and Molecular Dynamics (MD). ASME J. Medical Devices. 7(4):024502-024502-2, DOI:10.1115/FMD2013-16176.
  87. Soares, J., Sheriff, J., Bluestein, D. (2014) A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories.  and Modeling in Mechanobiology,12:1127–1141, 10.1007/s10237-013-0469-0.
  88. Zhang, P. Zhang, W. Kang, D. Bluestein and Y. Deng (2014) Parameterizing the Morse potential for Coarse-Grained Modeling of Blood Plasma,  Comput. Physics, Vol. 257, Part A, Pages 726–736. DOI: 10.1016/j.jcp.2013.09.040.
  89. Soares, J.S., Gao, C., Alemu, Y., Slepian, M., Bluestein, D. (2013) Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach. Annals of Biomedical Engineering. 41(11), pp 2318-2333, DOI: 10.1007/s10439-013-0829-z.
  90. Sheriff, J., Girdhar, G., Chiu, W.C., Jesty, J., Slepian, M.J., Bluestein, D. (2014) “Reduction in Shear-Induced Platelet Activation in the MicroMed DeBakey Ventricular Assist Device Post-Aspirin Therapy: An In Vitro Study.” Thrombosis and Thrombolysis. 37:499–506, DOI 10.1007/s11239-013-0997-6.
  91. Liang, X. Xenos, M., Alemu, Y., Rambhia, S.J., Lavi, I., Kornowski, R., Gruberg, L., Einav, S., Bluestein, D. (2013) Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid-structure interaction studies. J Coronary Artery Disease, 24(2):75-87.
  92. Claiborne, T.E., Sheriff, J.Kuetting, M., Steinseifer, U., Slepian, M.J., Bluestein, D. (2013) In Vitro Evaluation of a Novel Hemodynamically Optimized Trileaflet Polymeric Prosthetic Heart Valve.  Engr,Special Issue "Biomechanical Engineering- Year in Review", 135(2):021019, 1-8.
  93. Sheriff, J., Soares, J., Xenos, M., Jesty, J., Bluestein, D. (2013) Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading Conditions Relevant to Devices. Annals of Biomedical Engineering, Vol. 41, No. 6, pp. 1279–1296, DOI: 10.1007/s10439-013-0758-x.
  94. Bluestein, D.,Girdhar, G, Einav, S., Slepian, M.J. (2013) Device thrombogenicity emulation: a novel methodology for optimizing the thromboresistance of cardiovascular devices. J. Biomechanics., 46, 338–344http://dx.doi.org/10.1016/j.jbiomech.2012.11.033.
  95. Claiborne, T.E., Xenos, M., Sheriff, J., Chiu, W.C., Peter, D., Soares, J., Alemu, Y., Gupta, S., Judex, S., Slepian, M.J., Bluestein, D. (2013) Optimization of a Novel Trileaflet Polymeric Prosthetic Heart Valve using Device Thrombogenicity Emulation (DTE) Methodology. ASAIO J., 59(3):275-83, DOI: 10.1097/MAT.0b013e31828e4d80
  96. Slepian, M.J., Girdhar, G., Alemu, Y., Soares, J., Smith, R., Einav, S., Bluestein, D. (2013) The SynCardiaTMTotal Artificial Heart: Review of In Vivo, In Vitro, and Computational Modeling Studies. Biomechanics, 46, 266–275. http://dx.doi.org/10.1016/j.jbiomech.2012.11.032
  97. Elad, D. and Bluestein, D. (2013) Biofluid Mechanics: Innovations and Challenges. J. Biomechanics. 46 (2013) 207, http://dx.doi.org/10.1016/j.jbiomech.2012.11.034
  98. Girdhar, G., Xenos, M., Alemu, Y., Lynch, B., Jesty, J., Einav, S., Slepian, M.J., Bluestein, D. (2012) Device Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance. PLoS One (24), March 2012, Vol. 7(3) e32463, doi: 10.1371/journal.pone.0032463
  99. Rowley JW, Finn AV, French PA, Jennings LK, Bluestein D, Gross PL, Freedman JE, Steinhubl SR, Zimmerman GA, Becker RC, Dauerman HL, Smyth SS; (2012) Platelet Colloquium Participants. Cardiovascular devices and platelet interactions: understanding the role of injury, flow, and cellular responses. Circulation: Cardiovascular Interventions, 5: 296-304, doi: 10.1161/​111.965426.
  100. Claiborne, T.E., Slepian, M.J., Bluestein, D. (2012) Polymeric Trileaflet Prosthetic Heart Valves: Evolution and Path to Clinical Reality. Expert Review of Medical Devices, 9(6), 577-594, doi:10.1586/erd.12.51.
  101. Feng, R., Xenos, M., Girdhar, G., Davenport, J., Deng, Y., Bluestein, D. (2012) Viscous Flow Simulation in a Stenosis Model Using Discrete Particle Dynamics: A Comparison Between DPD and CFD. Biomechanics and Modeling in Mechanobiology. Vol. 11(1-2), 119-129, DOI: 10.1007/s10237-011-0297-z.
  102. Rambhia, S.H., Liang, X. Xenos, M. Alemu, Y., Maldonado, N., Kelly, A., Chakraborti,S., Weinbaum, S., Cardoso, S., Einav, S., Bluestein, D. (2012) Microcalcifications Increase Coronary Vulnerable Plaque Rupture Potential: A Patient Based Micro-CT Fluid-Structure Interaction Study. Annals of Biomedical Engineering. Vol. 40 (7), 1443-1454, DOI: 10.1007/s10439-012-0511-x.
  103. Peter, D., Alemu., Y., Xenos, M., Weisberg, O., Avneri, Y., Eshkol, M., Oren, T., Elazar, M., Assaf, Y., Bluestein, D. (2012) Fluid Structure Interaction (FSI) with Contact Surface Methodology for Evaluation of Endovascular Carotid Implants for Drug-Resistant Hypertension Treatment.  Engr, Apr;134(4):041001-10.
  104. Claiborne T.E., Girdhar G., Gallocher-Lowe S., Sheriff J., Kato Y.P., Pinchuk L., Schoephoerster R.T., Jesty J., Bluestein D. (2011) Thrombogenic Potential of Innovia Polymer Valves versus Carpentier-Edwards Perimount Magna Aortic Bioprosthetic Valves. ASAIO J, 57(1), pp. 26-31. DOI: 10.1097/MAT.0b013e3181fcbd86
  105. Alemu, Y., Girdhar, G., Xenos, M., Sheriff, J., Jesty, J., Einav, S., Bluestein, D. (2010) Design Optimization of a Mechanical Heart Valve for Reducing Valve Thrombogenicity – a Case Study with ATS valve. ASAIO J., 56(5):389-396, DOI: 10.1097/MAT.0b013e3181e65bf9.
  106. Xenos, M., Girdhar, G., Alemu, Y., Jesty, J., Slepian, M.J., Einav, S., Bluestein, D. (2010) Device Thrombogenicity Emulator (DTE) − Design optimization Methodology for Cardiovascular Devices: A Study in Two Bileaflet MHV Designs. Biomechanics, 43(12), pp. 2400-2409, DOI: 10.1016/j.jbiomech.2010.04.020.
  107. Einav S, Bluestein D, Gharib MM. (2010) Fifth International Biofluid Mechanics Symposium: position papers and key challenges: Pasadena, March 28-30, 2008. Annals of Biomedical Engineering, 2010 Mar;38(3):1162-3.
  108. Xenos, M. Alemu, Y., Zamfir, D., Einav, S., Ricotta, J.J., Labropoulos, N., Tassiopoulos, A., Bluestein, D. (2010) The Effect of Angulation in Abdominal Aortic Aneurysms: Parametric Study With FSI Simulations Medical & Biological Engineering & Computing (IF 602), 48:1175–1190. DOI: 10.1007/s11517-010-0714-y.
  109. Sheriff, J., Bluestein, D., Girdhar, G., Jesty, J. (2010) Brief Exposure to High Shear Stress Sensitizes Platelets to Subsequent Low-Shear Conditions. Annals of Biomedical Engineering, Vol. 38, No. 4, pp. 1442-1450.
  110. Bluestein, D., Chandran, K.B. Manning, K.B. (2010) Towards Non-thrombogenic Performance of Blood Recirculating Devices. Annals of Biomedical Engineering, Vol. 38, No. 3, pp. 1236–1256.
  111. Xenos, M., Rambhia, S.H., Alemu, Y., Einav, S., Ricotta, J.J., Labropoulos, N., Tassiopoulos, A., Ricotta, J. J., Bluestein, D. (2010) Patient Based Abdominal Aortic Aneurysm Rupture Risk Prediction with Fluid Structure Interaction Modeling, Annals of Biomedical Engineering, Vol. 38, No. 11, pp. 3323–3337, DOI: 10.1007/s10439-010-0094-3.
  112. Yamaguchi, T., Ishikawa T. Imai, Y., Matsuki, N., Xenos, M., Deng, Y., Bluestein, D. (2010) Particle Based Methods for Multiscale Modeling of Blood Flow in the Circulation and in Devices– Challenges and Future Directions. Annals of Biomedical Engineering,Vol 38(3), pp. 1225-1235.
  113. Xenos M, Rambhia S, Alemu Y, Einav S, Ricotta JJ, Labropoulos N, Tassiopoulos A, Bluestein D. (2010) Patient based abdominal aortic aneurysm rupture risk prediction combining clinical visualizing modalities with fluid structure interaction numerical simulations (04). IEEE Eng Med Biol Soc. 2010:5173-6.
  114. Claiborne, T. E., Bluestein, D., Schoephoerster, R.T. (2009) Development and evaluation of a novel artificial catheter deliverable prosthetic heart valve and method for in vitro testing,  Artificial Organs, 32(5):262-71
  115. Morbiducci, U., Ponzini, R., Nobili, M., Massai, D., Monteviecchi, F.M., Bluestein, D., Redaelli, A. (2009) Blood damage safety of prosthetic heart valves. Shear induced platelet activation and local flow dynamics: a fluid–structure interaction approach. Biomechanics, 42 (12): 1952-1960.
  116. Rissland, P., Alemu, Y., Einav, S., Ricotta, J., Bluestein, D. (2009) Abdominal Aortic Aneurysm Risk of Rupture- Patient Specific FSI simulations Using Anisotropic Model.  Engr, 131, 031001 (March 2009) (10 pages)
  117. Bluestein, D., Dumont, K., De Beule, M., Ricotta, J., Impellizzeri, P., Verhegghe, B., Verdonck, P. (2009) The Effect of Intraluminal Thrombus in Abdominal Aortic Aneurysm on Risk of Rupture - a Patient Specific Modeling Approach. Computer Methods Biomech. Biomed. Eng., 12(1):73-81.
  118. Xenos, M., Rambhia, S., Alemu, Y., Einav, S., Ricotta, J., Labropoulos, N., Apostolos, T., Bluestein, D. (2009) Mimics Based Image Reconstruction Augments Diagnosis and Management of Vascular Pathologies: A Study of ruptured Abdominal Aortic Aneurysms. Mimics Innovation Awards 2009, http://uc.materialise.com/mimics/mia2009
  119. Ricotta, J.J., Pagan, J., Xenos, M., Alemu, Y., Einav, S., Bluestein, D. (2008) Cardiovascular disease management: the need for better diagnostics by personalized computer models. Medical & Biological Engineering & Computing, 46(11):1059-68.
  120. Girdhar, G. and Bluestein, D. (2008) Biological Effects of Dynamic Shear Stress in Cardiovascular Pathologies and Devices. Expert Review of Medical Devices, 5(2), 167-181.
  121. Girdhar, G., Xu, S., Jesty, J., Bluestein, D. (2008) In-vitro model of platelet-endothelial activation due to cigarette smoke under cardiovascular circulation conditions. Annals of Biomedical Engineering,36, No. 7, pp. 1142–1151.
  122. Bluestein D., Alemu, Y., Avrahami, I., Dumont K., Gharib, M., Ricotta J., Einav, S. (2008) Influence of microcalcifications on Vulnerable Plaque Mechanics using FSI modeling. Biomech., 41(5), 1111-1118.
  123. Nobili, M., Sheriff, J.F., Morbiducci, U., Redaelli, A., Bluestein, D. (2008) Platelet Activation Due to Hemodynamic Shear Stresses: Damage Accumulation Model and Comparison to in vitro Measurements. ASAIO J, 54(1), pp. 64-72.
  124. Girdhar, G., Sulan, X., Bluestein, D., Jesty, J. (2008) Low-nicotine cigarettes substantially increase platelet activation in smokers. Nicotine and Tobacco Research, 10(12), pp. 1-8.
  125. Alemu, Y. and Bluestein, D. (2007) Flow induced platelet activation and damage accumulation in a mechanical heart valve – numerical studies. Artificial Organs, 31(9):677–688.
  126. Alemu, Y. and Bluestein, D. (2007) Flow induced platelet activation and damage accumulation in a mechanical heart valve – numerical studies. Artificial Organs, 31(9):677–688.
  127. Dumont, K., Vierendeels, J., van Nooten, G., Verdonck, P., Bluestein, D. (2007) Comparison of the Hemodynamic and Thrombogenic Performance of Two Bileaflet Mechanical Heart Valves using a CFD/FSI model.  Engr, 129; 558-565.
  128. Raz, S., Alemu, Y., Einav, S., Bluestein, D. (2007) Flow Induced Platelet Activation in Models of Arterial Stenosis. Annals of Biomedical Engineering,35, No. 4, pp. 493–504.
  129. Yin, W., Krukenkamp, I.B., Saltman, A.E., Gaudette, G., Suresh, K., Bernal, O., Jesty, J., Bluestein, D. (2006) The Thrombogenic Performance of a St. Jude Bileaflet MHV in a Sheep Model.  ASAIO J,52(1), 28-33.
  130. Bluestein, D. (2006) Towards Optimization of the Thrombogenic Potential of Blood Recirculating Cardiovascular Devices Using Modeling Approaches. Expert Review of Medical Devices, 3(3), 267-270.
  131. Zhou, M. Ladeinde, F., Bluestein, D. (2006) The flow of a power-law fluid in the near-wake of a flat plate. Physics of Fluids, 18, 088102-1-4.
  132. Schulz-Heik, K., Ramachandran, J., Bluestein, D., and Jesty, J. (2005) The extent of platelet activation under shear depends on platelet count: differential expression of anionic phospholipid and factor Va. Pathophysiology of Haemostasis and Thrombosis,34, No. 6, 255-262.
  133. Yin, W., Gallocher, S., Pinchuk, L., Schoephoerster, R.T., Jesty, J., Bluestein, D. (2005) Flow Induced Platelet Activation in a St. Jude MHV, a Trileaflet Polymeric Heart Valve and a St. Jude Tissue Valve. Artificial Organs. 29(10):826–831.
  134. Bluestein, D., Moore. J.E. (2005) Biofluids Educational Issues: An Emerging Field Aims to Define Its Next Generation. Annals of Biomedical Engineering,33, No. 12: 1674 – 1680.
  135. Dumont, K., Impellizeri, P., Ricotta, J., Alemu, Y., Bluestein, D. (2005) Assessment of fluid wall shear stress and vessel wall stress in an 'ideal' atherosclerotic plaque model. Computer Methods Biomech. Biomed. Eng., 8.S1. 91-2
  136. Yin, W., Alemu, Y., Jesty, J., Affeld, K., Bluestein, D. (2004) Flow Induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves in a Left Ventricular Assist Device. Annals of Biomedical Engineering, 32, No. 8, 1058-1066.
  137. Bluestein, D., Yin, W., Affeld, K., Jesty, J., (2004) Flow-Induced Platelet Activation in a Mechanical Heart Valve. Heart Valve Dis, Vol. 13, No. 3, 501-508.
  138. Bluestein, D. (2004) Research Approaches for Studying Flow Induced Thromboembolic Complications in Blood Recirculating Devices. Expert Review of Medical Devices, 1(1), 65-80.
  139. Rubenstein, D., Jesty; J., Bluestein; D (2004) The Effects of Mainstream and Sidestream Cigarette Smoke Extracts and Nicotine on Platelet Activation under Static and Dynamic Flow Conditions. Circulation,109:78-83.
  140. Ramachandran, J., Rubenstein, D., Bluestein, D., Jesty, J. (2004) Activation of platelets exposed to shear stress in the presence of smoke extracts of low-nicotine and zero-nicotine cigarettes: the protective effect of nicotine. Nicotine and Tobacco Research, 6(5), 835–841.
  141. Bluestein D, Li, Y, and Krukenkamp, IB. (2003) Erratum to Free Emboli Formation in the Wake of Bi-Leaflet Mechanical Heart Valves and the Effects of Implantation Techniques. Biomechanics, 36 1065-1066.
  142. Jesty, J., Yin, W., Perrotta, P., Bluestein, D. (2003) Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets, 14, 11–17.
  143. Adam J. Singer, Erik S. Mittra, Danny Bluestein, Judd E. Hollander (2002) Simulated wound irrigation impact pressures. Journal of Trauma, Critical Care, and Emergency Medicine, 3(1) 9-16.
  144. Bluestein D, Li, Y, and Krukenkamp, IB. (2002) Free Emboli Formation in the Wake of Bi-Leaflet Mechanical Heart Valves and the Effects of Implantation Techniques. Biomechanics, 35(12) 1533-1540.
  145. Bluestein D., Rambod, E. and Gharib, M. (2000) Vortex shedding as a mechanism for free emboli formation in mechanical heart valves.  Engr, Vol. 122, pp. 125-134.
  146. Bluestein, D. (2000) Stent-induced thromboembolism. Annals of Biomedical Engineering, Vol. 28:3. 346-348.
  147. Jesty, J. and Bluestein, D. (1999) The Use of Acetylated Prothrombin as a Substrate in the Measurement of the Procoagulant Activity of Platelets: Elimination of the Feedback Activation of Platelets by Thrombin. Analytical Biochemistry,272, No. 1, pp. 64-70.
  148. Bluestein, D., Gutierrez, C., Londono, M. and Schoephoerster, R.T. (1999) Vortex shedding in arterial stenosis and its relevance to mural platelet deposition. Annals of Biomedical Engineering, Vol. 27:6, pp. 763-773.
  149. Bluestein, D., Niu, L., Schoephoerster, R.T. and Dewanjee, M.K. (1997) Fluid mechanics of flow through a stenosis: relationship to the development of mural thrombus. Annals of Biomedical Engineering, Vol. 25, No. 2, pp. 344-356.
  150. Bluestein, D., Niu, L., Schoephoerster, R.T., and Dewanjee, M.K. (1996) Steady flow in an aneurysm model: Correlation between numerical simulation and blood platelet deposition.  Engr, Vol. 118, No.3, pp. 280-286.
  151. Bluestein, D. and Einav, S. (1995) The Effect of Varying Degrees of Stenosis on the Characteristics of Turbulent Pulsatile Flow Through Heart Valves. Biomechanics, Vol. 28, No. 8, pp. 915-924.
  152. Bluestein, D., Einav, S. and Hwang, N.H.C. (1994): A Squeeze Flow Phenomenon at the Closing of a Bileaflet Mechanical Heart Valve. Biomechanics, Vol. 27, No. 11, pp. 1369-1378.
  153. Bluestein, D., Viscarra, H., Niu, L. and Schoephoerster, R.T. (1994) Fluid Mechanics of Arterial Stenosis and Aneurysm: Relationship to Blood Platelet Deposition on the Wall. CSCE Eng. Mech, vol. IV, pp. 115-120.
  154. Bluestein, D. and Einav, S. (1994): Transition to Turbulence in Pulsatile Flow Through Heart Valves- A Modified Stability Approach.  Engr, Vol. 116, No. 4, pp. 477-487.
  155. Bluestein, D. and Einav, S. (1994): A Modified Stability Diagram of Pulsatile Flow Through Heart Valves Based on Improved Spectral Estimates of LDA Data. Laser Anemometry Advances and Applications, 191, pp. 125-133.
  156. Bluestein, D. and Einav, S. (1993): Spectral Estimation and Analysis of LDA Data in Pulsatile Flow Through Heart Valves. Experiments in Fluids, Vol. 15, pp. 341-353.
  157. Bluestein D., Menon, S., Wu, Z.J., S., Haubold, A., Armitage, T.L. and Hwang, N.H.C. (1993): The Closing Behavior of a New Bileaflet Mechanical Heart Valve. ASAIO J. l, Vol. 39 (3), pp. 398-402.
  158. Bluestein, D., Einav, S. and Hwang, N.H.C. (1992) Stability of Flow Through Heart Valves: A Comparison Between the Traditional Approach and a Novel Approach. ASME Adv. Bioeng, Vol. 22, pp. 427-431.