Background

- Stop-nasal sequences are illegal in Korean; stop is nasalized.
 - e.g., Kukmul → kun+jmul ‘soup’
- Nasalization may also occur in English stop-nasal sequences.
 - e.g., jacknife → dʒenaijpi
- But, in English voiced stop-nasal sequences Korean L2 learners were more likely to epenthesize a vowel, even though voicing is not contrastive in Korean.
 - e.g., magnet → maginet
- Hwang 2010
 - Insertion of vowels after voiced stops is an effect of misperception—since in Korean voiced stops occur only intervocally as an allophone of voiceless obstruents.
- Categorization and discrimination of items on continua from no vowel to a full vowel

Perception Grammar

Boersma and Hamann’s (2009) model

- **Cue constraints**
 - *[burst]C(r)/ = an auditory release burst should not be perceived as a phonological consonant in coda
 - *[C(r)/] = no auditory cue should be perceived as a phonological vowel i
 - *[j]V = silence should not be perceived as nasal

 \[
 \begin{array}{ccc}
 \text{Language} & \text{English} & \text{Korean} \\
 \text{Stop} & \text{Bar} & \text{Nasal} \\
 \end{array}
 \]

- **Structural Constraints**
 - SYLCON = no rising sonority over syllable boundary

 \[
 \text{a.}\, \text{[pʰikʰɨnik]}\rightarrow\text{[pʰikʰɨnik]}\]
 \[
 \text{b.}\, \text{[pʰikʰɨnik]}\rightarrow\text{[pʰikʰɨnik]}\]

 \[
 \text{c.}\, \text{[pʰikʰɨnik]}\rightarrow\text{[pʰikʰɨnik]}\]

 \[
 \text{However, this analysis}
 \]

 \[
 \text{(1) is not supported by the experimental results that voiced stop-nasal sequences were significantly more likely to be perceived with an illusory vowel than were voiceless stop-nasal sequences.}
 \]

 \[
 \text{(2) predicts that English words that violate SYLCON should be adapted with an inserted vowel, which is not the case:}
 \]

 \[
 \text{e.g. online [oilən] [onənən] [onənən]} \]

 Stanley [stʰɛnɪ] [stʰɛnɾɪ] [stʰɛnɾɪ]

 Hamlet [ɛmɨlit] [ɛmɨlit] [ɛmɨlit]

 (data from the National Academy of the Korean Language 2001)

Revised analysis

(1) What determines perceptual vowel insertion in large part is the release burst of the consonant, regardless of context (that is, whether the consonant appears pre-consonantly or word finally).

(2) The reason why ‘picnic’ is mapped to [pʰikʰɨnic] could also be simply that variation exists in the auditory forms available to listeners.

<table>
<thead>
<tr>
<th>Dominant</th>
<th>Less Dominant</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Pacman</td>
<td>/pʰikʰɨmn/ (282000)</td>
</tr>
<tr>
<td>jacknife</td>
<td>/səkʰinai/p(183500)</td>
</tr>
<tr>
<td>sickness</td>
<td>/sɨtʰɛnl̪i/ (2150000)</td>
</tr>
<tr>
<td>Chapman</td>
<td>/ʃəpməni/ (4100)</td>
</tr>
<tr>
<td>b.</td>
<td>/sɪnkln/ (11900)</td>
</tr>
<tr>
<td>picnic</td>
<td>/pʰikʰɨnk/ (681000)</td>
</tr>
</tbody>
</table>

(3) Cue constraint that prohibits voiced coda

- *[]V = voice should not be perceived as a phonological consonant in coda (adapted from Boersma and Hamann 2009)

 \[
 \begin{array}{ccc}
 \text{Language} & \text{English} & \text{Korean} \\
 \text{Stop} & \text{Bar} & \text{Nasal} \\
 \end{array}
 \]

(4) This constraint is used to account for vowel insertion only in word final position in B&H’s analysis.

Native Language Filter in Perception

(1) Contrastive feature based model (Brown, 1998):

- Perception is mediated by contrastive phonological features in NL.

(2) Acoustic cue interpretation model (Boersma & Hamann, 2009)

- All acoustic cues are available to listeners, but the interpretation of these cues is guided by the NL perception grammar, which may induce greater attention to particular cues.

- How does ‘voicing effect’ work in the perception grammar?

- Revised analysis

- Perceptual vowel insertion in large part is the release burst of the consonant, regardless of context (that is, whether the consonant appears pre-consonantly or word finally).

- The reason why ‘picnic’ is mapped to [pʰikʰɨnic] could also be simply that variation exists in the auditory forms available to listeners.

- This constraint is used to account for vowel insertion only in word final position in B&H’s analysis. But I argue that this constraint is sufficient to explain the pattern of vowel insertion between stop-nasal sequences as well as after a word-final stop.