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What is Ookami

❏ Testbed providing researcher access to 176 A64FX nodes (48 cores each)

❏ 32 GB high-bandwidth memory

❏ 512 GB SSD

❏ Ookami also includes:

❏ 1 node with dual socket AMD Milan (64 cores) with 512 GB memory

❏ 2 nodes with dual socket Thunder X2 (64 cores) each with 256 GB memory

❏ 1 node with dual socket Intel Skylake Processors (36 cores) with 192 GB memory

❏ 2 nodes with dual socket NVIDIA Grace superchips (144 cores)
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Accessing the System

ssh -X NetID@login.ookami.stonybrook.edu

❏ Approve DUO prompt

❏ This will bring you to login1 or login2

❏ Both are ThunderX2 - aarch64

Ookami
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See FAQ entry

mailto:NetID@login.ookami.stonybrook.edu
https://www.stonybrook.edu/commcms/ookami/support/faq/logging-into-ookami.php


Getting an A64FX node

❏ For compiling / debugging you can use the debug nodes

(those are not exclusive; multiple users can use them at the same time)

❏ ssh fj-debug1 (A64FX - aarch64) or

❏ ssh fj-debug2 (A64FX - aarch64)

❏ Or start a slurm job (see section ‘Job Scheduling’ slide 9)
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File System

❏ Home directory: /lustre/home/NetID

❏ Scratch directory: /lustre/scratch/NetID

❏ Optional project directory: /lustre/projects/group-name

See FAQ entry
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https://www.stonybrook.edu/commcms/ookami/support/faq/ookami_storage_options


Modules
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Modules

❏ module avail lists modules on the login nodes for all architectures on

Ookami.

❏ aarch64

❏ x86_64

❏ x86_64-GPU (note that Ookami currently does not have GPUs)

❏ On all other nodes, only modules for the specific architecture of the current 

node are listed
8



Modules

❏ To see all modules (also for other architectures) use
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Modules

❏ module load modulename will load a module

❏ module list shows all modules you have currently loaded

❏ module purge will remove all loaded modules
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See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/what_are_modules


Job Scheduling
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Job Scheduling

❏ SLURM is used for job scheduling

❏ man sbatch opens the manual

❏ Jobs can be either

❏ Interactive: You will have an interactive terminal session directly on a 

compute node

❏ Submitted via a run script: Job will run based on the commands in the script
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SLURM Partitions

Partition Time Limit Min Nodes Max Nodes CPU Architecture

short 4 hours 1 32 A64FX

medium 12 hours 8 40 A64FX

large 8 hours 24 80 A64FX

long 2 days 1 8 A64FX

extended 7 days 1 2 A64FX

milan-64core 1 day 1 1 AMD Milan

skylake-36core 1 day 1 1 Intel Skylake

13See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/queues_on_ookami


Example: Interactive Job

❏ Interactive job

srun -N 1 -n 48 -t 00:10:00 -p short --pty bash

Will get you to a compute node so you can interactively run jobs 

(e.g. for compiling, debugging)

See FAQ entry

Number of nodes 

Tasks per node 

Time

Partition
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https://www.stonybrook.edu/commcms/ookami/support/faq/interactive_slurm_session.php


Example: Job Script

#SBATCH --job-name=examplejob 

#SBATCH --output=examplejob.log 

#SBATCH --ntasks-per-node=24 

#SBATCH -N 1

#SBATCH --time=00:10:00

#SBATCH -p short 

module load CPE/21.03

module load cray-mvapich2_nogpu_sve/2.3.5

mpicc /lustre/projects/global/samples/HelloWorld/mpi_hello.c -o mpi_hello 

srun ./mpi_hello

Sbatch jobs inherit the launch environment 

Execute with sbatch file.slurm

Number of nodes 

Tasks per node 

Time

Partition

15See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/example-slurm-script


Useful SLURM Commands

Command Effect

man sbatch list all available options

squeue lists all jobs running and waiting

squeue -u <NetID> lists all jobs of a user

scancel <Job ID> cancel a job

sinfo -s list all partitions
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Compilers
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Available Compilers

❏ GNU

❏ Arm

❏ Cray

❏ NVIDIA

❏ Intel (for Intel Skylake)

❏ AOCC (for AMD Milan)
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Compiler Recommendations

❏ We recommend to use

❏ Cray

❏ Arm

❏ Use GNU only when you have trouble porting or for comparison.

In most cases it will not give you good performance!
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Arm

❏ Five versions available

❏ 21, 21.1, 22.0, 22.0.2, 22.1, 23.04.1, 23.10, 24.04

❏ module load arm-modules/<version number>

Language Compiler Name

C armclang

C++ armclang++

Fortran armflang
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See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-arm-compilers


Cray

❏ Three versions available
❏ 10.0.1, 10.0.2, 10.0.3, 15.0.1

Note that the modules are called 20.10, 21.03, 21.10, 22.03, 22.10 and 23.02 due to an 

inconsistency in the naming convention (see next slide)

❏ Separate compilers for SVE / non-SVE instructions
❏ CPE / CPE-nosve modules

❏ Loading these modules adds /opt/cray/pe/modulefiles to your path, which 

contains all the Cray-specific modules

❏ Cray-specific modules now show in module avail

See FAQ entry
21

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-cray-compilers


Cray

❏ Version 10.0.1

❏ module load CPE/20.10

❏ Version 10.0.2

❏ module load CPE/21.03

Language Compiler Name

C cc

C++ CC

Fortran ftn

See FAQ entry
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❏ Version 10.0.3 (Load either)
❏ module load CPE/21.10

❏ module load CPE/22.03

❏ module load CPE/22.10

❏ Version 15.0.1
❏ module load CPE/23.02

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-cray-compilers


GNU

❏ Several versions available

❏ 7.5.0, 8.5.0, 9.4.0, 10.2.0, 10.3.0, 11.1.0, 11.2.0, 11.3.0, 12.1.0, 12.2.0,

13.1.0, 13.2.0

❏ Note that SVE is just supported starting from version 10

❏ module load gcc/<version number>

Language Compiler Name

C gcc

C++ g++

Fortran gfortran
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See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-gcc-compilers


MPI
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MPI

❏ Two installed implementations
❏ OpenMPI, MVAPICH

❏ Each compiler has its own MPI pairing -- so load the proper module!
❏ i.e., use the Cray-compiled MPI with the Cray compiler

❏ You can override this if you really know what you’re doing :)

❏ Loading the MPI module will also load the corresponding compiler

❏ For Cray, load the compiler first, and then MPI (separate commands)
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MPI Modules

Compiler OpenMPI modules MVAPICH modules

GCC openmpi/gcc<version>/<version> mvapich2/gcc<version>/<version>

ARM openmpi/arm<version>/<version> mvapich2/arm<version>/<version>

Cray Not currently available cray-mvapich2_nogpu_sve/<version> (SVE)

cray-mvapich2_nogpu/<version> (non-SVE)

NOTE: Cray cc uses a gcc-compiled MPI, let us know if 

there are any problems. Cray CC and ftn use a

Cray-compiled MPI and work fine.
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MPI Compilers

Language Compiler Name (Non-Fujitsu)

C mpicc

C++ mpiCC/mpicxx/mpic++

Fortran mpifort (mpif77/mpif90)
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Job submission with MPI

❏ OpenMPI
❏ Use mpiexec

❏ MVAPICH
❏ Does not have mpiexec/mpirun commands, need to use srun

❏ May have to add the --mpi=pmi2 option

❏ Always check whether your job is running as expected!
❏ Make sure your job is properly distributing your program across nodes, and not just running a 

copy of your program on each node!

❏ Check this (interactively) first on a smaller test problem before submitting a large job

28



Vectorization
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Vectorization

Vectorization is the process of converting an algorithm from operating on a single 

value at a time to operating on a set of values (vector) at one time.
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Vectorization

❏ Examples for issues that could impact vectorization

❏ Loop dependencies

for(i=0; i<end; i++)

a[i] = a[i-1] + b[i-1];

❏ Indirect memory access (if idx[i] is a permutation of i, a pragma can be used to force the compiler to 
vectorize)

for(i=0; i<end; i++) 

a[idx[i]] = b[i] + c[i];

❏ Non straight line code (if value of function not known at compile time)

for(i=0; i< CalcEnd(); i++) 

if(DoJump())

i += CalcJump();

a[i] = b[i] + c[i];
31



Vectorization Flags
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Cray Arm GNU

Mode
Pre-23 

CPE

CPE 23 and later: 

(not applicable for 

Fortran)

Optimization -O3 -O3 -O3 or -Ofast -O3 or -Ofast

Vectorization -h vector3
Automatic (if -O3 or

-O2 flag is set)
-mcpu=a64fx -armpl -mcpu=a64fx

Vectorization 

report
-h msgs -Rpass=loop-vectorize -Rpass=loop-vectorize -fopt-info-vec

Report on 

missed 

optimization

-h negmsgs
-Rpass-analysis=loop-v 

ectorize

-Rpass-analysis=loop- 

vectorize

-fopt-info-vec-misse 

d

OpenMP -h omp -fopenmp -fopenmp -fopenmp

Debugging -G 2 -ggdb -ggdb -ggdb

Large memory -h pic -mcmodel=large -mcmodel=large -mcmodel=large

Module CPE/version CPE/23.02(or newer) arm-modules/ version gcc/version

See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/Vectorization_Flags


Vectorization Performance
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See FAQ entry

❏ Certain compiler vectorization are more optimal than others leading to performance differences.
❏ Be sure to look into what can / can’t be vectorized!

❏ Vectorization experiment shown below

Note that this article contains results of the Fujitsu 

compiler, which is not available on Ookami anymore

https://www.stonybrook.edu/commcms/ookami/support/faq/Vectorization_Example.php


Profilers
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Profilers

❏ TAU

❏ module load tau/2

❏ CrayPAT: works only with Cray’s compilers
❏ Instrument a compiled binary and execute that to read performance metrics
❏ Set up the cray programming environment, then load perftools-base/21.12.0

❏ See man pat_build

❏ Linaro FORGE suite
❏ module load linaro/forge/<version>

❏ gprof (GNU profiler): does NOT work with Cray’s compilers
❏ Requires the “-pg” flag to be used during compilation and linking

❏ 2-step process: Run the application as-is, then use gprof to collect metrics

See FAQ entry
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https://www.stonybrook.edu/commcms/ookami/support/faq/profilers


Non A64FX nodes
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Using the Milan and Skylake nodes

❏ You can use those nodes using slurm

❏ The Partitions are

❏ milan-64core

❏ skylake-36core

❏ Note that there is only one of each of those nodes
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Using the NVIDIA Grace Superchips

❏ There are two nodes (fj-grace1 and fjgrace2)

❏ When on Ookami the nodes can be accessed via ssh:

❏ ssh fj-grace1 or

❏ ssh fj-grace2

❏ Note that the nodes are shared between users and not allocated exclusively to one person

❏ The following compilers work on these nodes

❏ gcc/13.2.0

❏ Nvidia nvhpc

❏ LLVM

❏ Arm See FAQ entry
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https://www.stonybrook.edu/commcms/ookami/support/faq/NVIDIA%20Grace%20CPUs


What else
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What else

❏ Get in contact!

❏ Slack channel

❏ Book on demand office hours with an expert

❏ Submit a ticket https://iacs.supportsystem.com/

❏ Check the FAQ on our website https://www.stonybrook.edu/ookami/
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https://docs.google.com/forms/d/e/1FAIpQLSfD4ypKIOw1XkvLHGWNaPK2kDXxTvxGGpLo2TXz1PiuJzQjBQ/viewform?usp=dialog
https://iacs.supportsystem.com/
https://www.stonybrook.edu/ookami/


Key Takeaways
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Key Takeaways

❏ Don’t expect to get good performance immediately on A64FX!

❏ Test the different compilers. There can be huge performance differences.

❏ Don’t start with the GNU compiler, just because you are used to it. It will in most cases not 

give the best performance!

❏ Check if your code is vectorized

❏ Choose the appropriate MPI

❏ Make sure you are on the right node

❏ Get in contact with the Ookami team. We are happy to support you!

42


	Slide 1: Getting Started Guide
	Slide 2: Content
	Slide 3: What is Ookami
	Slide 4: Accessing the System
	Slide 5: Getting an A64FX node
	Slide 6: File System
	Slide 7: Modules
	Slide 8: Modules
	Slide 9: Modules
	Slide 10: Modules
	Slide 11: Job Scheduling
	Slide 12: Job Scheduling
	Slide 13: SLURM Partitions
	Slide 14: Example: Interactive Job
	Slide 15: Example: Job Script
	Slide 16: Useful SLURM Commands
	Slide 17: Compilers
	Slide 18: Available Compilers
	Slide 19: Compiler Recommendations
	Slide 20: ❏ Five versions available
	Slide 21: Cray
	Slide 22: Cray
	Slide 23: ❏ Several versions available
	Slide 24
	Slide 25: ❏ Two installed implementations ❏ OpenMPI, MVAPICH
	Slide 26: MPI Modules
	Slide 27: MPI Compilers
	Slide 28: Job submission with MPI
	Slide 29: Vectorization
	Slide 30: Vectorization
	Slide 31: Vectorization
	Slide 32: Vectorization Flags
	Slide 33: Vectorization Performance
	Slide 34: Profilers
	Slide 35: Profilers
	Slide 36: Non A64FX nodes
	Slide 37: Using the Milan and Skylake nodes
	Slide 38: Using the NVIDIA Grace Superchips
	Slide 39: What else
	Slide 40: What else
	Slide 41: Key Takeaways
	Slide 42: Key Takeaways

