
1/2025

https://www.stonybrook.edu/ookami/

Getting Started Guide

http://www.stonybrook.edu/ookami/


Content

1.

2.

3.

4.

5.

6.

7.

What is Ookami? 

Logging in

Getting A64FX nodes 

File System

Modules

Job scheduling 

Compilers

a. Recommendations for A64FX

b. Arm

c. Cray

d. GNU

8. MPI

a. Modules

b. Compilers

c. Job Submission

9. Vectorization

a. Flags

10. Profilers

11. Non A64FX nodes

12. What else?

2

13. Key Takeaways



What is Ookami

❏ Testbed providing researcher access to 176 A64FX nodes (48 cores each)

❏ 32 GB high-bandwidth memory

❏ 512 GB SSD

❏ Ookami also includes:

❏ 1 node with dual socket AMD Milan (64 cores) with 512 GB memory

❏ 2 nodes with dual socket Thunder X2 (64 cores) each with 256 GB memory

❏ 1 node with dual socket Intel Skylake Processors (36 cores) with 192 GB memory

❏ 2 nodes with dual socket NVIDIA Grace superchips (144 cores)

3



Accessing the System

ssh -X NetID@login.ookami.stonybrook.edu

❏ Approve DUO prompt

❏ This will bring you to login1 or login2

❏ Both are ThunderX2 - aarch64

Ookami

4

See FAQ entry

mailto:NetID@login.ookami.stonybrook.edu
https://www.stonybrook.edu/commcms/ookami/support/faq/logging-into-ookami.php


Getting an A64FX node

❏ For compiling / debugging you can use the debug nodes

(those are not exclusive; multiple users can use them at the same time)

❏ ssh fj-debug1 (A64FX - aarch64) or

❏ ssh fj-debug2 (A64FX - aarch64)

❏ Or start a slurm job (see section ‘Job Scheduling’ slide 9)

5



File System

❏ Home directory: /lustre/home/NetID

❏ Scratch directory: /lustre/scratch/NetID

❏ Optional project directory: /lustre/projects/group-name

See FAQ entry
6

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami_storage_options


Modules

7



Modules

❏ module avail lists modules on the login nodes for all architectures on

Ookami.

❏ aarch64

❏ x86_64

❏ x86_64-GPU (note that Ookami currently does not have GPUs)

❏ On all other nodes, only modules for the specific architecture of the current 

node are listed
8



Modules

❏ To see all modules (also for other architectures) use

9



Modules

❏ module load modulename will load a module

❏ module list shows all modules you have currently loaded

❏ module purge will remove all loaded modules

10

See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/what_are_modules


Job Scheduling

11



Job Scheduling

❏ SLURM is used for job scheduling

❏ man sbatch opens the manual

❏ Jobs can be either

❏ Interactive: You will have an interactive terminal session directly on a 

compute node

❏ Submitted via a run script: Job will run based on the commands in the script

12



SLURM Partitions

Partition Time Limit Min Nodes Max Nodes CPU Architecture

short 4 hours 1 32 A64FX

medium 12 hours 8 40 A64FX

large 8 hours 24 80 A64FX

long 2 days 1 8 A64FX

extended 7 days 1 2 A64FX

milan-64core 1 day 1 1 AMD Milan

skylake-36core 1 day 1 1 Intel Skylake

13See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/queues_on_ookami


Example: Interactive Job

❏ Interactive job

srun -N 1 -n 48 -t 00:10:00 -p short --pty bash

Will get you to a compute node so you can interactively run jobs 

(e.g. for compiling, debugging)

See FAQ entry

Number of nodes 

Tasks per node 

Time

Partition

14

https://www.stonybrook.edu/commcms/ookami/support/faq/interactive_slurm_session.php


Example: Job Script

#SBATCH --job-name=examplejob 

#SBATCH --output=examplejob.log 

#SBATCH --ntasks-per-node=24 

#SBATCH -N 1

#SBATCH --time=00:10:00

#SBATCH -p short 

module load CPE/21.03

module load cray-mvapich2_nogpu_sve/2.3.5

mpicc /lustre/projects/global/samples/HelloWorld/mpi_hello.c -o mpi_hello 

srun ./mpi_hello

Sbatch jobs inherit the launch environment 

Execute with sbatch file.slurm

Number of nodes 

Tasks per node 

Time

Partition

15See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/example-slurm-script


Useful SLURM Commands

Command Effect

man sbatch list all available options

squeue lists all jobs running and waiting

squeue -u <NetID> lists all jobs of a user

scancel <Job ID> cancel a job

sinfo -s list all partitions

16



Compilers

17



Available Compilers

❏ GNU

❏ Arm

❏ Cray

❏ NVIDIA

❏ Intel (for Intel Skylake)

❏ AOCC (for AMD Milan)

18



Compiler Recommendations

❏ We recommend to use

❏ Cray

❏ Arm

❏ Use GNU only when you have trouble porting or for comparison.

In most cases it will not give you good performance!

19



Arm

❏ Five versions available

❏ 21, 21.1, 22.0, 22.0.2, 22.1, 23.04.1, 23.10, 24.04

❏ module load arm-modules/<version number>

Language Compiler Name

C armclang

C++ armclang++

Fortran armflang

20
See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-arm-compilers


Cray

❏ Three versions available
❏ 10.0.1, 10.0.2, 10.0.3, 15.0.1

Note that the modules are called 20.10, 21.03, 21.10, 22.03, 22.10 and 23.02 due to an 

inconsistency in the naming convention (see next slide)

❏ Separate compilers for SVE / non-SVE instructions
❏ CPE / CPE-nosve modules

❏ Loading these modules adds /opt/cray/pe/modulefiles to your path, which 

contains all the Cray-specific modules

❏ Cray-specific modules now show in module avail

See FAQ entry
21

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-cray-compilers


Cray

❏ Version 10.0.1

❏ module load CPE/20.10

❏ Version 10.0.2

❏ module load CPE/21.03

Language Compiler Name

C cc

C++ CC

Fortran ftn

See FAQ entry
22

❏ Version 10.0.3 (Load either)
❏ module load CPE/21.10

❏ module load CPE/22.03

❏ module load CPE/22.10

❏ Version 15.0.1
❏ module load CPE/23.02

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-cray-compilers


GNU

❏ Several versions available

❏ 7.5.0, 8.5.0, 9.4.0, 10.2.0, 10.3.0, 11.1.0, 11.2.0, 11.3.0, 12.1.0, 12.2.0,

13.1.0, 13.2.0

❏ Note that SVE is just supported starting from version 10

❏ module load gcc/<version number>

Language Compiler Name

C gcc

C++ g++

Fortran gfortran

23
See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-gcc-compilers


MPI

24



MPI

❏ Two installed implementations
❏ OpenMPI, MVAPICH

❏ Each compiler has its own MPI pairing -- so load the proper module!
❏ i.e., use the Cray-compiled MPI with the Cray compiler

❏ You can override this if you really know what you’re doing :)

❏ Loading the MPI module will also load the corresponding compiler

❏ For Cray, load the compiler first, and then MPI (separate commands)

25



MPI Modules

Compiler OpenMPI modules MVAPICH modules

GCC openmpi/gcc<version>/<version> mvapich2/gcc<version>/<version>

ARM openmpi/arm<version>/<version> mvapich2/arm<version>/<version>

Cray Not currently available cray-mvapich2_nogpu_sve/<version> (SVE)

cray-mvapich2_nogpu/<version> (non-SVE)

NOTE: Cray cc uses a gcc-compiled MPI, let us know if 

there are any problems. Cray CC and ftn use a

Cray-compiled MPI and work fine.

26



MPI Compilers

Language Compiler Name (Non-Fujitsu)

C mpicc

C++ mpiCC/mpicxx/mpic++

Fortran mpifort (mpif77/mpif90)

27



Job submission with MPI

❏ OpenMPI
❏ Use mpiexec

❏ MVAPICH
❏ Does not have mpiexec/mpirun commands, need to use srun

❏ May have to add the --mpi=pmi2 option

❏ Always check whether your job is running as expected!
❏ Make sure your job is properly distributing your program across nodes, and not just running a 

copy of your program on each node!

❏ Check this (interactively) first on a smaller test problem before submitting a large job

28



Vectorization

29



Vectorization

Vectorization is the process of converting an algorithm from operating on a single 

value at a time to operating on a set of values (vector) at one time.

30



Vectorization

❏ Examples for issues that could impact vectorization

❏ Loop dependencies

for(i=0; i<end; i++)

a[i] = a[i-1] + b[i-1];

❏ Indirect memory access (if idx[i] is a permutation of i, a pragma can be used to force the compiler to 
vectorize)

for(i=0; i<end; i++) 

a[idx[i]] = b[i] + c[i];

❏ Non straight line code (if value of function not known at compile time)

for(i=0; i< CalcEnd(); i++) 

if(DoJump())

i += CalcJump();

a[i] = b[i] + c[i];
31



Vectorization Flags

32

Cray Arm GNU

Mode
Pre-23 

CPE

CPE 23 and later: 

(not applicable for 

Fortran)

Optimization -O3 -O3 -O3 or -Ofast -O3 or -Ofast

Vectorization -h vector3
Automatic (if -O3 or

-O2 flag is set)
-mcpu=a64fx -armpl -mcpu=a64fx

Vectorization 

report
-h msgs -Rpass=loop-vectorize -Rpass=loop-vectorize -fopt-info-vec

Report on 

missed 

optimization

-h negmsgs
-Rpass-analysis=loop-v 

ectorize

-Rpass-analysis=loop- 

vectorize

-fopt-info-vec-misse 

d

OpenMP -h omp -fopenmp -fopenmp -fopenmp

Debugging -G 2 -ggdb -ggdb -ggdb

Large memory -h pic -mcmodel=large -mcmodel=large -mcmodel=large

Module CPE/version CPE/23.02(or newer) arm-modules/ version gcc/version

See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/Vectorization_Flags


Vectorization Performance

33

See FAQ entry

❏ Certain compiler vectorization are more optimal than others leading to performance differences.
❏ Be sure to look into what can / can’t be vectorized!

❏ Vectorization experiment shown below

Note that this article contains results of the Fujitsu 

compiler, which is not available on Ookami anymore

https://www.stonybrook.edu/commcms/ookami/support/faq/Vectorization_Example.php


Profilers

34



Profilers

❏ TAU

❏ module load tau/2

❏ CrayPAT: works only with Cray’s compilers
❏ Instrument a compiled binary and execute that to read performance metrics
❏ Set up the cray programming environment, then load perftools-base/21.12.0

❏ See man pat_build

❏ Linaro FORGE suite
❏ module load linaro/forge/<version>

❏ gprof (GNU profiler): does NOT work with Cray’s compilers
❏ Requires the “-pg” flag to be used during compilation and linking

❏ 2-step process: Run the application as-is, then use gprof to collect metrics

See FAQ entry

35

https://www.stonybrook.edu/commcms/ookami/support/faq/profilers


Non A64FX nodes

36



Using the Milan and Skylake nodes

❏ You can use those nodes using slurm

❏ The Partitions are

❏ milan-64core

❏ skylake-36core

❏ Note that there is only one of each of those nodes

37



Using the NVIDIA Grace Superchips

❏ There are two nodes (fj-grace1 and fjgrace2)

❏ When on Ookami the nodes can be accessed via ssh:

❏ ssh fj-grace1 or

❏ ssh fj-grace2

❏ Note that the nodes are shared between users and not allocated exclusively to one person

❏ The following compilers work on these nodes

❏ gcc/13.2.0

❏ Nvidia nvhpc

❏ LLVM

❏ Arm See FAQ entry

38

https://www.stonybrook.edu/commcms/ookami/support/faq/NVIDIA%20Grace%20CPUs


What else

39



What else

❏ Get in contact!

❏ Slack channel

❏ Book on demand office hours with an expert

❏ Submit a ticket https://iacs.supportsystem.com/

❏ Check the FAQ on our website https://www.stonybrook.edu/ookami/

40

https://docs.google.com/forms/d/e/1FAIpQLSfD4ypKIOw1XkvLHGWNaPK2kDXxTvxGGpLo2TXz1PiuJzQjBQ/viewform?usp=dialog
https://iacs.supportsystem.com/
https://www.stonybrook.edu/ookami/


Key Takeaways

41



Key Takeaways

❏ Don’t expect to get good performance immediately on A64FX!

❏ Test the different compilers. There can be huge performance differences.

❏ Don’t start with the GNU compiler, just because you are used to it. It will in most cases not 

give the best performance!

❏ Check if your code is vectorized

❏ Choose the appropriate MPI

❏ Make sure you are on the right node

❏ Get in contact with the Ookami team. We are happy to support you!

42


	Slide 1: Getting Started Guide
	Slide 2: Content
	Slide 3: What is Ookami
	Slide 4: Accessing the System
	Slide 5: Getting an A64FX node
	Slide 6: File System
	Slide 7: Modules
	Slide 8: Modules
	Slide 9: Modules
	Slide 10: Modules
	Slide 11: Job Scheduling
	Slide 12: Job Scheduling
	Slide 13: SLURM Partitions
	Slide 14: Example: Interactive Job
	Slide 15: Example: Job Script
	Slide 16: Useful SLURM Commands
	Slide 17: Compilers
	Slide 18: Available Compilers
	Slide 19: Compiler Recommendations
	Slide 20: ❏ Five versions available
	Slide 21: Cray
	Slide 22: Cray
	Slide 23: ❏ Several versions available
	Slide 24
	Slide 25: ❏ Two installed implementations ❏ OpenMPI, MVAPICH
	Slide 26: MPI Modules
	Slide 27: MPI Compilers
	Slide 28: Job submission with MPI
	Slide 29: Vectorization
	Slide 30: Vectorization
	Slide 31: Vectorization
	Slide 32: Vectorization Flags
	Slide 33: Vectorization Performance
	Slide 34: Profilers
	Slide 35: Profilers
	Slide 36: Non A64FX nodes
	Slide 37: Using the Milan and Skylake nodes
	Slide 38: Using the NVIDIA Grace Superchips
	Slide 39: What else
	Slide 40: What else
	Slide 41: Key Takeaways
	Slide 42: Key Takeaways

