
Performance engineering on
A64FX with SVE intrinsics

(Early experience on Ookami)

Robert J. Harrison
NSF OAC 1942140

Contact: robert.harrison@stonybrook.edu

What is Ookami?
● Test bed for NSF and US researchers
● First deployment of the Fujitsu A64FX Post-K

processor outside of Japan
○ ARM64 + SVE (scalable vector extensions)

● Possibly revolutionary new path to exascale
emphasizing scientific productivity,
performance, and energy efficiency

● New processor & very high-bandwidth
memory promise performance of GPUs with
programmability of CPUs Ookami (狼) means wolf in Japanese --- an

homage both to the origin of the processor and
the Stony Brook seawolf mascot.

2

Fugaku #1 Fastest computer in the world
First machine to be fastest in all 5
major benchmarks
https://bit.ly/33RLmBK

● Green-500 benchmark (11/19)
https://bit.ly/382Ls9Y

● Top-500 benchmark (6/20)
https://bit.ly/2RWivXo
○ 415 PFLOP/s in double precision

– nearly 3x Summit!!
● HPCG benchmark (6/20)

https://bit.ly/2RVwDQX
● HPL-AI benchmark (6/20)

https://bit.ly/308DbzZ
● Graph-500 benchmark (6/20)

https://bit.ly/3mUoJVY 3

• 432 racks
• 158,976 nodes
• 7,630,848 cores
• 440 PF/s dp (880 sp; 1,760 hp)
• 32 Gbyte memory per node
• 1 Tbyte/s memory bandwidth/node
• Tofu-2 interconnect

https://bit.ly/33RLmBK
https://bit.ly/382Ls9Y
https://bit.ly/2RWivXo
https://bit.ly/2RVwDQX
https://bit.ly/308DbzZ
https://bit.ly/3mUoJVY

https://aurora.alcf.anl.gov/

• 1.5+ EF in double precision; AMD EPYC CPU + AMD Radeon Instinct GPU

• 1.0+ EF in double precision; Intel Xeon + Intel Xe GPU + Intel Optane

https://www.olcf.ornl.gov/frontier/

4

Mitsuhisa Sato, “Overview of the Post-K processor,”
http://www.jicfus.jp/jp/wp-content/uploads/2018/11/msato-190109.pdf
“Fujistu high-performance CPU for the Post-K computer”
https://www.fujitsu.com/global/documents/solutions/business-technology/tc/catalog/20180821hotchips30.pdf

Europe and Japan are on a different
path

● ARM + SVE
− https://www.montblanc-project.eu
− https://www.r-ccs.riken.jp/en/postk/project/outline
− ARM – 21B units/year sold vs. ~400M for x86
− Scalable vector extensions – SIMD designed to increase ease of

obtaining high performance for HPC and data apps

● A64FX – successful co-design by RIKEN-Kobe+Fujitsu
− A technology path – not a one-off

5

tl;dr
“Programmability of a CPU, performance of a GPU”
Satoshi Matsuoka

● Blazing fast memory
● Easily accessed performance
● New technology path to exascale

6

Ookami configuration

Node
Processor A64FX
#Cores 48
Peak DP 2.76 TOP/s
Peak INT8 22.08 TOP/s
Memory 32GB@1TB/s
System
#Nodes 176
Peak DP 486 TOP/s
Peak INT8 3886 TOP/s
Memory 5.6 TB
Disk 0.8 PB Lustre
Comms IB HDR-100 7

A64FX at a glance

● ARM V8 64-bit
● 512-bit SVE
● 48 compute cores

● 4 NUMA regions
● 32 (4x8) GB HBM @ 1 TB/s
● PCIe 3 (+ Tofu-3) network

Taken by RJH at SC19

8

A64FX NUMA node architecture

CMG – core memory group http://www.jicfus.jp/jp/wp-content/uploads/2018/11/msato-190109.pdf

Diagram is of the “1000” chip.
We have the “700” chip which
does not have assistant cores or
the Tofu interface.

9

http://www.jicfus.jp/jp/wp-content/uploads/2018/11/msato-190109.pdf

A64FX Core memory group

http://www.jicfus.jp/jp/wp-content/uploads/2018/11/msato-190109.pdf
10

http://www.jicfus.jp/jp/wp-content/uploads/2018/11/msato-190109.pdf

Scalable Vector Extensions (SVE)
● SVE enables Vector Length Agnostic (VLA) programming

○ VLA enables portability, scalability, and optimization
○ The actual vector length is set by the CPU architect

■ Any multiple of 128 bits up to 2048 bits
■ May be dynamically reduced by the OS or hypervisor

● Predicate-centric architecture
○ Predicates are central, not an afterthought
○ Support complex nested conditions and loops.
○ Predicate generation also sets condition flags.
○ Reduces vector loop management overhead.

● SVE was designed for HPC and can vectorize complex structures
○ Gather-load and scatter-store; horizontal reductions
○ SVE begins to tackle traditional barriers to auto-vectorization

■ Software-managed speculative vectorization allows uncounted loops to be vectorized.
■ In-vector serialised inner loop permits outer loop vectorization in spite of dependencies.

● Support from open source and commercial tools

11

12

Naive SVE intrinsics version of unit stride DAXPY
void daxpy_1_1(int64_t n, double da,
 double *dx, double *dy) {
 int64_t i = 0;
 svbool_t pg = svwhilelt_b64(i, n); // [1]
 do {
 svfloat64_t dx_vec = dx_vec svld1(pg, &dx[i]); // [2]
 svfloat64_t dy_vec = svld1(pg, &dy[i]); // [2]
 svst1(pg, &dy[i], svmla_x(pg, dy_vec, dx_vec, da)); //[3]
 i += svcntd(); // [4]
 pg = svwhilelt_b64(i, n); // [1]
 } while (svptest_any(svptrue_b64(), pg)); // [5]
}

[1] - Initialize a predicate register to control the loop
[2] - Load some values into an SVE vector, guarded by the loop predicate.
[3] - Perform a floating-point multiply-add operation, and store result.
[4] - Increment i by the number of double-precision lanes in the vector.
[5] - ptest returns true if any lane of the (updated) predicate is active.
https://developer.arm.com/documentation/100891/0612/coding-considerations/using-sve-intrinsics-directly-in-your-c-code

● Per-lane predication
○ Operations work on individual

lanes under control of a predicate
register.

● Predicate-driven loop control and
management

○ Eliminate scalar loop heads and
tails by processing partial vectors.

● Vector partitioning &
software-managed speculation

○ First Faulting Load instructions
allow memory accesses to cross
into invalid pages.

13

Single thread DAXPY with
thread bound to core

● Multiple implementations
○ Compiled naive loop
○ VLA no unrolling (1U)
○ 512-bit fixed width with 1,2,4,6

and 8-way unrolling
● Compiled naive kernel attains near

full main memory B/W
● SVE intrinsics+unroll crucial for

in-cache performance
○ Fixed-width SVE faster than VLA

● gcc 11 for SVE intrinsics
● armclang 21

○ Older ARMPL seemed to be
compiled but new version is fast

○ armclang generates SVE, but
inferior to GCC for intrinsics

DAXPY single thread

14

SVE DAXPY fixed 512 bit width (no unrolling)
(Illustrative code does not do loop tail since
this just replicates the body with an updated
predicate).

1. Define predicate true for all lanes.
2. Replicate a across SIMD vector
3. Load x[i], y[i]
4. y[i] += a*x[i]
5. Store y[i]

Almost 1:1 correspondence with AVX512

void daxpy_1_1_512(int64_t n, double a,
 const double * __restrict__ x,
 double * __restrict__ y)
{
 typedef svfloat64_t vec
 __attribute__((arm_sve_vector_bits(512)));
 typedef svbool_t pred
 __attribute__((arm_sve_vector_bits(512)));

 pred everything=svptrue_b64(); // [1]
 vec avec = svdup_n_f64(a); // [2]
 for (int i=0; i<n; i+=8,x+=8,y+=8) {
 vec xvec = svld1_f64(everything,x); // [3]
 vec yvec = svld1_f64(everything,y); // [3]
 yvec = svmad_f64_x(everything,avec,xvec,yvec); //[4]
 svstnt1_f64(everything,y,yvec); // [5]
 }
}

15

Multi-threaded DAXPY with
threads bound to cores and
either spread/close
(data size 0.5GByte/thread)

● Compiled kernel per thread
● ~0.5 Gbyte data per thread allocated on

thread’s stack
● Threads bound to cores
● Spread/Close allocation
● ARM 21 and GCC 11
● Close binding working as expected with

both compilers
● Spread binding seems to be broken

○ GCC beyond 24 threads seems to
revert to close binding

○ ARM compiler seems to not bind at
all

DAXPY multi-thread using OpenMP

● Each CMG delivers about 210GB/s --- 840GB/s total
○ Only attainable with strict attention to data locality
○ About 6 threads/CMG can saturate bandwidth

16

Ditto using pthreads

17

Performance model gives perfect agreement
● Each thread is moving the same

amount of data
● So the most highly-occupied CMG

limits performance
● Take expt. data from close binding with

threads1-12.

Can see that
● CMG memory bandwidth is perfectly

scalable with respect for locality

DAXPY --- comparison with Intel Skylake single thread
● In-cache bandwidth differences

○ Clockspeed - 3.7GHz vs 1.8 GHz
○ Instruction issue

■ Skylake: 2 loads+1 store
■ A64FX: 2 loads or 1 store

● Additional cache levels visible
● Asymptotic 1 thread bandwidth

○ Skylake: 21.1 Gbyte/s
○ A64FX: 53.0 Gbyte/s (2.5x)

● Asymptotic 1 thread bytes/flop
○ Skylake: 0.17
○ A64FX: 0.92 (5.4x)

● Asymptotic 1 socket bandwidth
○ Skylake: 145* Gbytes/s
○ A64FX: 840 Gbytes/s (5.8x)

● Asymptotic 1 socket bytes/flop
○ Skylake: ~0.06 (24 cores@3GHz)
○ A64FX: 0.30 (~5x)

*https://community.intel.com/t5/Software-Tuning-Performance/Stream-benchmark-on-Skylake-SP-Xeon-results-too-low/td-p/1171787

18

Matrix-transpose times matrix kernel motivation from
discontinuous spectral element code (MADNESS)

19

● Transformation of all indices in a tensor is efficiently mapped to mTxm kernel
○ Implicit index fusion automatically handles cyclic permutation of indices

● k is order of the polynomial (circa 6 to 10); 1 to 6 dimensions
● In 3D, resultant matrix operations either (k,k2)T*(k,k) or (2k,4k2)T*(2k,2k)

○ Most BLAS libraries are not optimized for these small, highly-rectangular matrices
○ On Intel, recent MKL and small-mxm libraries are fast

MADNESS matrix transpose times matrix kernel

● Optimized for small, non-square matrices on single core
○ Code generation using intrinsics (SVE, Neon, AVX2, AVX512) plus auto-tuning
○ On SVE uses fixed 512-bit SIMD based upon feedback from RIKEN team

● Best A64FX performance
○ 53.24 GFLOP/s = 92.4% of single core peak (57.6 GFLOP/s)
○ ni=15, nj=40, nk=124 --- all 3 matrices fit in L1

● Some optimizations still missing
○ Full unrolling of small matrix operations with modular arithmetic for register allocation

20

Algorithm
Tile i loop into cache

Tile j loop into registers (multiple of SIMD width)
Tile i into registers

Zero Cij registers
For all k

Load bkj for j in tile
For i in tile fully unrolled

Load Aki and duplicate across register
Cij += Aki * Bkj

Store Cji

21

Config file input to mTxm code generator
SVE

REGISTER_TYPE="vec"
REGISTER_WIDTH = 8
NUMBER_OF_REGISTERS = 32
MAX_JTILE = 56
MAX_ITILE = 30

TARGET_ITILE = 6
TARGET_JTILE = 32

CACHE_SIZE = 8192

def zero(register):
 print("%s=svdup_n_f64(0.0); " % register,end="")

def fma(a,b,c):
 print("%s=svmad_f64_x(everything,%s,%s,%s); "%(c,a,b,c),end="")

def load(register,ptr,is_incomplete):
 if is_incomplete:
 print("%s=svld1_f64(mask,%s); " % (register,ptr),end="")
 else:
 print("%s=svld1_f64(everything,%s); " % (register,ptr),end="")

def store(register,ptr,is_incomplete):
 etc. 22

AVX2

REGISTER_TYPE="__m256d"
REGISTER_WIDTH = 4
NUMBER_OF_REGISTERS = 16
MAX_JTILE = 20
MAX_ITILE = 16

TARGET_ITILE = 3
TARGET_JTILE = 16

CACHE_SIZE = 8192 # empirical optimization

def zero(register):
 print("%s=_mm256_setzero_pd(); " % register,end="")

def fma(a,b,c):
 print("%s=_mm256_fmadd_pd(%s,%s,%s); "%(c,a,b,c),end="")

def load(register,ptr,is_incomplete):
 if is_incomplete:
 print("%s=_mm256_maskload_pd(%s,mask); " % (register,ptr),end="")
 else:
 print("%s=_mm256_loadu_pd(%s); " % (register,ptr),end="")

def store(register,ptr,is_incomplete):
 etc.

Single core small matrix transpose times matrix

A64FX
1.8 GHz

A64FX
1.8 GHz

Skylake
3.7 GHz

Skylake
3.7 GHz

23

Scilib 10.0.1;
armpl 20.3

Single core small matrix transpose times matrix - II

● Speed difference relative to Skylake mainly arises from 2x difference
in clock speed

○ 32 d.p. FLOP/cycle from both A64FX (SVE512) and Skylake (AVX512)
○ Same L1 cache load bandwidths relative to clock speed
○ Memory architecture beyond L1 cache differs but that is not crucial for MxM

● Observe similar ramp up in mTxm performance on both processors
○ Limited by the same algorithm and same code generator

24

Compiler vectorization
● ARM modified LLVM, recent GNU

and Cray compilers all generate SVE
○ Mainline LLVM does not yet
○ All can vectorize with similar performance

loops involving arithmetic and “if” tests
○ One main difference is math functions

● Reciprocal/square root
○ Cray uses Newton iteration whereas GNU

and older ARM compiler use RECIP/SQRT
instructions that are v. slow on A64FX

● GNU compiler vectorizes other functions via
libmvec (glibc) which does not yet support SVE
and there seems to be a deeper issue for a
platform having both VLA (SVE) and fixed
(NEON) SIMD.

25

Evaluation of the exponential function on A64FX
● The performance of many scientific kernels are limited by evaluation of math

functions
● Initial investigation for double-precision exponential

○ GCC 10.2.0 - 32 cycles (correctly rounded)
○ ARM 20.3 - 6 cycles
○ CRAY 10.0.1 - 4.2 cycles
○ Intel Skylake icc 19.* - 1.6 cycles

● How fast can we go on A64FX?
○ Can we close the gap to Skylake?

26

Approximation of the exponential function
● For trigonometric and exponential functions common algorithms work by

○ reducing the argument to a standard small range,
○ using a series expansion to evaluate the function over that range, and
○ scaling the result back to the target value.

● Given x find integer m and value r s.t. |r|<½ log2 and x = m log2 + r
● Then, exp(x) = 2m exp(r)
● Exponentiating r can be done using a series expansion, with 13 terms being

required to obtain the required accuracy in double-precision arithmetic.
● Multiplication by 2m is accomplished by adding m to the binary exponent.
● Unless extended precision is used or some fix up is performed, the last bit(s)

will not be correctly rounded. (1-4 ULPs common error in vector math lib)

27

SVE instruction FEPEXA - A=Acceleration

The double-precision variant copies the low 52 bits of an entry

from a hard-wired table of 64-bit coefficients, indexed by the

low 6 bits of each element of the source vector, and prepends to

that the next 11 bits of the source element (src<16:6>), setting

the sign bit to zero.

Uh?

28

How does FEPEXA accelerate?
● FEPXA accelerates exponentiation by reducing the number of terms in the

series expansion to 5 by reducing the range of r by a factor of 64.
● Write x = (m+i/64) log 2 + r, integer m and 0<=i<64,

with value |r|<log2 / 128
● Then, exp(x) = 2m+i/64 exp(r)
● FEPXA computes 2m+i/64.

○ It takes 17 bits as input, interpreting the lower 6 bits as i and the upper 11 bits as m.
○ Well almost --- since the binary exponent in an IEEE-754 double-precision number is stored

offset by 1023, FEPXA actually wants m+1023 as input.
○ Why 17 bits? Recall that 64=26, and 11 bits are used to store the exponent of a

double-precision number.

29

Reference C implementation
double myexp(double x) {

 static const double fac = 0.0108304246962491454596442518978; // log(2)/64

 static const double rfac = 92.3324826168936580710351795840; // 1/fac

 static const double a0 = 1.0;

 static const double a1 = 1.0;

 static const double a2 = 0.5;

 static const double a3 = 0.166666666666645339082562230955;

 static const double a4 = 0.0416666972130599706546300218462;

 static const double a5 = 0.00833333915169364528960093698321;

 int k = std::round(x*rfac);

 double r = x - k*fac;

 int m = floor(k/64.0);

 int i = k - m*64;

 return std::exp2(m+i/64.0)*(a0 + r*(a1 + r*(a2 + r*(a3 + r*(a4 + r*a5)))));

} 30

Horner form has minimal op count but
Estrin form has more parallelism

SVE macros
#include <arm_sve.h>
#include <cmath>

// SIMD vector types
#define F64 svfloat64_t
#define I64 svint64_t
#define U64 svuint64_t
#define MASK svbool_t

// Mask values depending on vector length
#define EVERYTHING svptrue_b64()

// FP ceil, floor, round operations
#define CEIL(mask,v) svrintp_x(mask,v)
#define ROUND(mask,v) svrinta_x(mask,v)
#define FLOOR(mask,v) svrintm_x(mask,v)

// FP convert to integer
#define INT(mask,v) svcvt_s64_x(mask, v)
#define UINT(mask,v) svcvt_u64_x(mask, v)

// Integer convert to FP
#define FLOAT(mask,v) svcvt_f64_x(mask, v)

31

// Integer shift to right rounding to -infinity
// i.e., int(floor(value/2**shift))
// shift can be immediate value or vector of values
#define ASR(mask,v,shift) svasr_x(pg,v,shift)

// Duplicate scalar across all elements in vector
#define IDUP(value) svdup_s64(value)
#define FDUP(value) svdup_f64(value)

// Load and store
#define LOAD(mask,ptr) svld1(mask, ptr)
#define STORE(mask,ptr,vec) svstnt1(mask, ptr,
vec);

// result = a*b + c
#define FMA(mask,a,b,c) svmad_f64_x(mask,a,b,c)
#define IMA(mask,a,b,c) svmad_s64_x(mask,a,b,c)

// result = a*b
#define MUL(mask,a,b) svmul_x(mask,a,b)

Macro to initialize constants
#define INITIALIZE \
 static const double fac = -0.0108304246962491454596442518978;\
 static const double rfac = 92.3324826168936580710351795840;\
 static const double a0 = 1.00000000000000000109448766559;\
 static const double a1 = 1.00000000000000000054724376115;\
 static const double a2 = 0.499999999999328180895493906552;\
 static const double a3 = 0.166666666666517373549704816583;\
 static const double a4 = 0.0416667277594639384346492115235;\
 static const double a5 = 0.00833334351546532331159118269769;\
 F64 vfac = FDUP(fac);\
 F64 vrfac = FDUP(rfac);\
 F64 va0 = FDUP(a0);\
 F64 va1 = FDUP(a1);\
 F64 va2 = FDUP(a2);\
 F64 va3 = FDUP(a3);\
 F64 va4 = FDUP(a4);\
 F64 va5 = FDUP(a5);\
 I64 v1023 = IDUP((int64_t(1023)<<6))

32

Macro for loop body
define BODY \

 F64 vx = LOAD(pg, xvec+j); \

 F64 vdk = ROUND(pg, MUL(pg, vx, vrfac)); \

 I64 vk = INT(pg, vdk); \

 F64 vr = FMA(pg,vdk,vfac,vx); \

 F64 vr2 = MUL(pg,vr,vr); \

 F64 vr45 = FMA(pg,va5,vr,va4); \

 F64 vr23 = FMA(pg,va3,vr,va2); \

 F64 vr01 = FMA(pg,va1,vr,va0); \

 F64 vr2345 = FMA(pg,vr45,vr2,vr23); \

 F64 vr012345 = FMA(pg,vr2345,vr2,vr01); \

 vk = svadd_x(pg, vk, v1023); \

 F64 vexpa = svexpa_f64(svreinterpret_u64(vk)); \

 STORE(pg, yvec+j, MUL(pg,vexpa,vr012345))
33

VLA code
void vexp_varloop(int64_t n, const double* __restrict__ xvec,

 double* __restrict__ yvec) {

 INITIALIZE;

 int64_t j;

 MASK pg;

 for (j=0, pg=svwhilelt_b64(j, n);

 svptest_any(svptrue_b64(),pg);

 j+=svcntd(), pg=svwhilelt_b64(j,n)) {

 BODY;

 }

}

34

2.2 cycles/element

512-bit fixed-width code
void vexp_varloop(int64_t n, const double* __restrict__ xvec,

 double* __restrict__ yvec) {

 INITIALIZE;

 int64_t rem = n&7l;

 int64_t n8 = n-rem;

 MASK pg = EVERYTHING;

 for (int64_t j=0; j<n8; j+=8) {BODY;}

 if (rem) {

 int64_t j = n8;

 MASK pg = svwhilelt_b64(j, n);

 BODY;

 }

} 35

2.0 cycles/element which corresponds to
about 1.5 cycles less per iteration

2-way unrolling yields 1.9 cycles/element
to be compared with 1.6 on Skylake

Missing ingredients
● About 6 ulp precision - mostly good enough; better is possible
● Not been tested at the edges of permissible input values
● Some additional masking necessary to ensure out of range large positive

values are evaluated to be either NaN or infinity.
● Processing denormalized numbers is very expensive on A64FX, so large

negative arguments perhaps should be evaluated directly as zero.
● Some more optimizations are possible

○ Unrolling the Estrin form twice gave only a modest speedup from 2.0 to 1.9 cycles/element.
○ Unrolling the Horner form twice runs at 2.0 cycles/element

● Sleef is a high-quality, portable, vectorized math library that supports SVE
○ https://sleef.org/

36

https://sleef.org/

Summary
● Many aspects of A64FX performance fully accessible from compiled code

○ Pick the right compiler
○ Vectorizable code
○ Multithreaded code with attention to memory layout and thread binding
○ But there are still gaps from all compilers and especially math/linear algebra libraries

● SVE intrinsics still valuable for
○ Accessing peak performance more consistently
○ For gaps in compiler/library performance

● SVE instrinsics
○ In VLA easier to code than AVX intrinsics and fully portable across all SVE implementations
○ On A64FX VLA is not quite optimal, but the gap is only circa 1-2 cycles/iteration

https://www.stonybrook.edu/ookami/
37

https://www.stonybrook.edu/ookami/

