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Ookami Cluster

New, experimental supercomputer here at Stony Brook University!

Same A64FX processors as Fugaku, world’s fastest supercomputer

First open system outside of Japan with this architecture

Green

Introduction



Ookami Cluster
A64FX Main Features

1024 GB/s  = 1 TB/s per node

But only 32GB RAM per node

Smaller but faster

SVE registers for vectorization

NUMA Node

- 4 groups of 12 cores (CMG)

- 13 on Fugaku

- Communication time faster 

between cores in a CMG

1.8 GHz (2.0 GHz on Fugaku)

Power efficient

In lieu of Fugaku’s TofuD interconnect 



Founded in 1997 as part of the DOE’s ASCI
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FLASH
A bit of history

flash.uchicago.edu
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DDT Model

Vortex-wall 
interaction

• Thermonuclear flashes
• Galaxy cluster mergers
• Combustion, detonation
• High powered laser experiment design
• Plasmas
• Cosmic ray transport and acceleration
• Fluid-structure interaction
• Whole-blood simulations
• Cardiovascular device design

Omega 
Experiment

Thermonuclear Plume

FLASH
Multi-scale, Multi-physics applications



• Modular, extensible, highly parallelizable software system. 

• Physics modules exploit mock inheritance to be easily combined, 
added, and edited to create unique problems. 
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FLASH

Physics

Gravity

Constant

Poisson

PointMass

Burn

Parametric

Nuclear

…

Grid

GridMain

paramesh

AMReX 
coming soon

Boundary

OneRow

Flash2HSE

Solver

Multigrid

Multipole

HYPRE

I/O

hdf5

direct

pnetcdf

…

FLASH
How it works



Paramesh Adaptive Grid

7

1. Set refinement criteria  
a. (in the video, density limit)

2. Calculate dt, the timestep

3. Perform grid calculations -- solve 
equations for  hydro, gravity, magnetism, 
etc., 
a. Communicate between blocks when 

needed

4. If necessary, refine the grid and 
redistribute blocks

5. Repeat 2-4 until maximum simulation time 
is reached

Grid refinement -- the basics

https://docs.google.com/file/d/1iQ4P_i9DwLAt-6xNEAXPur5p-tHUdnWE/preview
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FLASH
PARAMESH Adaptive Grid

Block-structured AMR uses a Morton space-filling curve 
to distribute blocks to processor elements



Paramesh Adaptive Grid
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https://docs.google.com/file/d/1iQ4P_i9DwLAt-6xNEAXPur5p-tHUdnWE/preview


Type Ia Supernovae

Exploring the progenitor system
New class of white dwarf progenitors – hybrid CONe models!

Exploring the triggering mechanism
Previous studies have looked at detonations. What can pure deflagrations do?

Exploring Ookami
What is the best compiler, MPI, memory distribution? How can we use SVE 
instructions to produce a speedup?

Goal
3D suite of simulations -- new science, tremendous computing power 10

Our application
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Ookami

Progress has 
been made…

Go team!



Ookami
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Memory -- Maxblocks

Lesson Learned: A64fx processors have a lot less memory to work with! Make 
sure your problem fits in the proper memory (swap, stack, global, etc.), which 
is less than the total 32GB per node.

For our 2D supernova problem, default settings from machines with Intel processors 
allowed up to 10,000 blocks per processor.

We had to find a new value that could fit within memory -- maximum of 3000 blocks 
per processor allowed us to use all of the processors on a node, and we chose to run 
with 2500 to be safe.



Ookami
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Memory - Making it Fit

Need balance

Blocks per 
processor

Used processors 
per node

Communication 
time

Computation 
time



Ookami
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Compiler + MPI test

Run 2D supernova problem for 4s simulation time on 240 cores (5 nodes, 48 cores/node)

Lesson Learned: When choosing a 
compiler, also choose the matching 
compiled MPI implementation



Ookami

15

Compiler + MPI test

Lesson Learned: When choosing a compiler, also choose the matching compiled 
MPI implementation

Each MPI is compiled with specific flags and generates header files unique to the 
compiler used. These may or may not be compatible with different brands of compiler.

So to be safe, we use a Cray-compiled MPI with the Cray compiler, an ARM-compiled MPI 
with the ARM compiler, and a GCC-compiled MPI with the GCC compiler.



Ookami
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Memory - MVAPICH adventures

MVAPICH: MPI Implementation developed and distributed by The Ohio State University, through the 
lab of Dr. Dhabaleswar K. Panda.

● MVAPICH + Cray Compilers: Expresses explicit “concern” over homogeneity of a computer cluster and 
permitted entries in Infiniband cache

○ Can tune environment variables (MV2_HOMOGENEOUS_CLUSTER, MV2_NDREG_ENTRIES(_MAX)) 
to obtain better performance

● MVAPICH + ARM and GNU Compilers: environment variable warnings do not show up
● Generally gives marginally better runtimes compared to OpenMPI (more on this later)



Ookami
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Compiler + MPI test



Ookami
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Compiler + MPI test

Compiler MPI Flags Runtime (h)
Cray SVE 10.0.1 MVAPICH 2.3.5 -O3 -h vector3 2.08 

Cray 10.0.3 MVAPICH 2.3.4 -O3 -h vector3 2.52

ARM 21 OpenMPI 4.0.5 -O3 -armpl -mcpu=a64fx 6.27

ARM 21 MVAPICH 2.3.5 -O3 -armpl -mcpu=a64fx 6.06

GCC 10 OpenMPI 4.0.5 -O3 -mcpu=a64fx 2.44

GCC 10 OpenMPI 4.0.5 -O3 2.38

GCC 10 MVAPICH 2.3.5 -O3 -mcpu=a64fx 2.37

GCC 10 MVAPICH 2.3.5 -O3 2.32 

Fujitsu 4.4.0a
(run on Fugaku)

Fujitsu-OpenMPI -KSVE,A64FX,ARMV8_3_A 2.71



Ookami
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Compiler + MPI test

Takeaways:
• MVAPICH is slightly faster than Open-MPI

• ARM compiler is reeeeally slow ☹
○ Lesson Learned: Different compilers and MPI implementations are 

better for different problems, so test them all!

• Adding SVE instructions doesn’t make much difference
○ Lesson Learned: SVE might not work right away if your code isn’t 

specifically made for it



Cluster SeaWulf Ookami

Processor 328 Intel Xeon E5-2683v3 processors
● Several queues

○ 2 CPUs per node, with 
24/28/40 cores per node

174 A64FX processors 
● 48 cores per node

○ NUMA node; processors are in 
groups of 12

Processor Speed 2.0 GHz 1.8 GHz

Memory 128 GB DDR4
--16GB reserved for system

32 GB HBM2

Run time Compile with GCC 9.2.0 + MVAPICH 
2.3.4, run on 140 cores: 1.50 hours

Fastest run on Ookami so far is 2.08h with 240 
cores, Cray 10.0.1 SVE compiler + MVAPICH 2.3.5

Ookami
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Comparison with SeaWulf

vs



Ookami
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Scaling Study
Run 2D supernova problem for 4s simulation time with GCC 10, MVAPICH 2.3.5, -O3 (no SVE)



Ookami
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Scaling Study

Takeaways:
• Computationally, not communication, bounded
• This may be different in 3D

Communication time

Computation time



Ookami
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Basic Profiling
Supernova problem 
uses many different 
modules… 

Where does it spend 
its time?



Ookami
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Basic Profiling

Lesson Learned: When looking for speedups in a complicated simulation, break it 
into smaller test problems and optimize those individually



Ookami

25

Sedov Explosion - 3D

● Sedov: A simulation of the Euler inviscid hydrodynamic equations
○ Only uses the hydrodynamics module
○ VERY resource heavy… especially in 3D.

● Drastic increase in memory per block:
○ 3,000 blocks can fit on a processor for 2D simulations… barely 300 for 3D simulations 

on Ookami

● Currently a work in progress!



Ookami

26

Sedov Explosion - 3D

● Sedov: A simulation of the Euler inviscid hydrodynamic equations
○ Only uses the hydrodynamics module
○ VERY resource heavy… especially in 3D.

● Attempting to run on 5 A64FX node/240 PE’s requires a drastic drop in block count:
○ 3,000 for 2D simulations… barely 300 for 3D simulations on Ookami
○ Massive memory issue requires careful setups for each of the Cray, ARM and GNU 

compilers (compiler flags, MPI support)

● Currently a work in progress with the Ookami cluster @ Stony Brook University and the 
Fugaku supercomputer in Kobe, Japan with GNU, ARM, Cray (Ookami), and Fujitsu 
(Fugaku) compilers 



Ookami
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SVE

Different compilers/compiler flags turn this option on and off
Other flags print out what was and wasn’t vectorized
● GCC 10, ARM

-O3 -mcpu=a64fx
● Cray

Load the specific SVE compiler (Cray 10.0.1 (with SVE) → -O3 -h vector3)

SVE instructions use the z registers – you can check your executable
objdump -d executable | grep 'z[0-9]'



Ookami
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SVE

How can we introduce SVE into this?

• Profile the code to see where speedups can be introduced

• Note that GCC compiler cannot vectorize some math functions, use Cray compiler instead

• Old code FLASH 1 was vectorized… we’re now on FLASH 4 and all that was removed

• Compare the old with the new and find places for vectorization



In Summary...
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There is much to be done, but we have learned a lot along the way!

Lessons Learned: 

1. A64fx processors have a lot less memory to work with! Make sure your problem fits 
in the proper memory (swap, stack, global, etc.), which is less than the total 32GB per 
node

2. When choosing a compiler, also choose the matching compiled MPI implementation

3. Different compilers and MPI implementations are better for different problems, so test 
them all!

4. SVE might not work right away if your code isn’t specifically made for it

5. When looking for speedups in a complicated simulation, break it into smaller test 
problems and optimize those individually
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