
Lessons Learned
An In-Depth Look at Running FLASH on Ookami

Presented by Catherine Feldman, and Benjamin Michalowicz, and Alan Calder
Institute for Advanced Computational Science, Stony Brook University

Ookami Cluster

New, experimental supercomputer here at Stony Brook University!

Same A64FX processors as Fugaku, world’s fastest supercomputer

First open system outside of Japan with this architecture

Green

Introduction

Ookami Cluster
A64FX Main Features

1024 GB/s = 1 TB/s per node

But only 32GB RAM per node

Smaller but faster

SVE registers for vectorization

NUMA Node

- 4 groups of 12 cores (CMG)

- 13 on Fugaku

- Communication time faster

between cores in a CMG

1.8 GHz (2.0 GHz on Fugaku)

Power efficient

In lieu of Fugaku’s TofuD interconnect

Founded in 1997 as part of the DOE’s ASCI

4

FLASH
A bit of history

flash.uchicago.edu

5

DDT Model

Vortex-wall
interaction

• Thermonuclear flashes
• Galaxy cluster mergers
• Combustion, detonation
• High powered laser experiment design
• Plasmas
• Cosmic ray transport and acceleration
• Fluid-structure interaction
• Whole-blood simulations
• Cardiovascular device design

Omega
Experiment

Thermonuclear Plume

FLASH
Multi-scale, Multi-physics applications

• Modular, extensible, highly parallelizable software system.

• Physics modules exploit mock inheritance to be easily combined,
added, and edited to create unique problems.

6

FLASH

Physics

Gravity

Constant

Poisson

PointMass

Burn

Parametric

Nuclear

…

Grid

GridMain

paramesh

AMReX
coming soon

Boundary

OneRow

Flash2HSE

Solver

Multigrid

Multipole

HYPRE

I/O

hdf5

direct

pnetcdf

…

FLASH
How it works

Paramesh Adaptive Grid

7

1. Set refinement criteria
a. (in the video, density limit)

2. Calculate dt, the timestep

3. Perform grid calculations -- solve
equations for hydro, gravity, magnetism,
etc.,
a. Communicate between blocks when

needed

4. If necessary, refine the grid and
redistribute blocks

5. Repeat 2-4 until maximum simulation time
is reached

Grid refinement -- the basics

https://docs.google.com/file/d/1iQ4P_i9DwLAt-6xNEAXPur5p-tHUdnWE/preview

8

FLASH
PARAMESH Adaptive Grid

Block-structured AMR uses a Morton space-filling curve
to distribute blocks to processor elements

Paramesh Adaptive Grid

9

https://docs.google.com/file/d/1iQ4P_i9DwLAt-6xNEAXPur5p-tHUdnWE/preview

Type Ia Supernovae

Exploring the progenitor system
New class of white dwarf progenitors – hybrid CONe models!

Exploring the triggering mechanism
Previous studies have looked at detonations. What can pure deflagrations do?

Exploring Ookami
What is the best compiler, MPI, memory distribution? How can we use SVE
instructions to produce a speedup?

Goal
3D suite of simulations -- new science, tremendous computing power 10

Our application

11

Ookami

Progress has
been made…

Go team!

Ookami

12

Memory -- Maxblocks

Lesson Learned: A64fx processors have a lot less memory to work with! Make
sure your problem fits in the proper memory (swap, stack, global, etc.), which
is less than the total 32GB per node.

For our 2D supernova problem, default settings from machines with Intel processors
allowed up to 10,000 blocks per processor.

We had to find a new value that could fit within memory -- maximum of 3000 blocks
per processor allowed us to use all of the processors on a node, and we chose to run
with 2500 to be safe.

Ookami

13

Memory - Making it Fit

Need balance

Blocks per
processor

Used processors
per node

Communication
time

Computation
time

Ookami

14

Compiler + MPI test

Run 2D supernova problem for 4s simulation time on 240 cores (5 nodes, 48 cores/node)

Lesson Learned: When choosing a
compiler, also choose the matching
compiled MPI implementation

Ookami

15

Compiler + MPI test

Lesson Learned: When choosing a compiler, also choose the matching compiled
MPI implementation

Each MPI is compiled with specific flags and generates header files unique to the
compiler used. These may or may not be compatible with different brands of compiler.

So to be safe, we use a Cray-compiled MPI with the Cray compiler, an ARM-compiled MPI
with the ARM compiler, and a GCC-compiled MPI with the GCC compiler.

Ookami

16

Memory - MVAPICH adventures

MVAPICH: MPI Implementation developed and distributed by The Ohio State University, through the
lab of Dr. Dhabaleswar K. Panda.

● MVAPICH + Cray Compilers: Expresses explicit “concern” over homogeneity of a computer cluster and
permitted entries in Infiniband cache

○ Can tune environment variables (MV2_HOMOGENEOUS_CLUSTER, MV2_NDREG_ENTRIES(_MAX))
to obtain better performance

● MVAPICH + ARM and GNU Compilers: environment variable warnings do not show up
● Generally gives marginally better runtimes compared to OpenMPI (more on this later)

Ookami

17

Compiler + MPI test

Ookami

18

Compiler + MPI test

Compiler MPI Flags Runtime (h)
Cray SVE 10.0.1 MVAPICH 2.3.5 -O3 -h vector3 2.08

Cray 10.0.3 MVAPICH 2.3.4 -O3 -h vector3 2.52

ARM 21 OpenMPI 4.0.5 -O3 -armpl -mcpu=a64fx 6.27

ARM 21 MVAPICH 2.3.5 -O3 -armpl -mcpu=a64fx 6.06

GCC 10 OpenMPI 4.0.5 -O3 -mcpu=a64fx 2.44

GCC 10 OpenMPI 4.0.5 -O3 2.38

GCC 10 MVAPICH 2.3.5 -O3 -mcpu=a64fx 2.37

GCC 10 MVAPICH 2.3.5 -O3 2.32

Fujitsu 4.4.0a
(run on Fugaku)

Fujitsu-OpenMPI -KSVE,A64FX,ARMV8_3_A 2.71

Ookami

19

Compiler + MPI test

Takeaways:
• MVAPICH is slightly faster than Open-MPI

• ARM compiler is reeeeally slow ☹
○ Lesson Learned: Different compilers and MPI implementations are

better for different problems, so test them all!

• Adding SVE instructions doesn’t make much difference
○ Lesson Learned: SVE might not work right away if your code isn’t

specifically made for it

Cluster SeaWulf Ookami

Processor 328 Intel Xeon E5-2683v3 processors
● Several queues

○ 2 CPUs per node, with
24/28/40 cores per node

174 A64FX processors
● 48 cores per node

○ NUMA node; processors are in
groups of 12

Processor Speed 2.0 GHz 1.8 GHz

Memory 128 GB DDR4
--16GB reserved for system

32 GB HBM2

Run time Compile with GCC 9.2.0 + MVAPICH
2.3.4, run on 140 cores: 1.50 hours

Fastest run on Ookami so far is 2.08h with 240
cores, Cray 10.0.1 SVE compiler + MVAPICH 2.3.5

Ookami

20

Comparison with SeaWulf

vs

Ookami

21

Scaling Study
Run 2D supernova problem for 4s simulation time with GCC 10, MVAPICH 2.3.5, -O3 (no SVE)

Ookami

22

Scaling Study

Takeaways:
• Computationally, not communication, bounded
• This may be different in 3D

Communication time

Computation time

Ookami

23

Basic Profiling
Supernova problem
uses many different
modules…

Where does it spend
its time?

Ookami

24

Basic Profiling

Lesson Learned: When looking for speedups in a complicated simulation, break it
into smaller test problems and optimize those individually

Ookami

25

Sedov Explosion - 3D

● Sedov: A simulation of the Euler inviscid hydrodynamic equations
○ Only uses the hydrodynamics module
○ VERY resource heavy… especially in 3D.

● Drastic increase in memory per block:
○ 3,000 blocks can fit on a processor for 2D simulations… barely 300 for 3D simulations

on Ookami

● Currently a work in progress!

Ookami

26

Sedov Explosion - 3D

● Sedov: A simulation of the Euler inviscid hydrodynamic equations
○ Only uses the hydrodynamics module
○ VERY resource heavy… especially in 3D.

● Attempting to run on 5 A64FX node/240 PE’s requires a drastic drop in block count:
○ 3,000 for 2D simulations… barely 300 for 3D simulations on Ookami
○ Massive memory issue requires careful setups for each of the Cray, ARM and GNU

compilers (compiler flags, MPI support)

● Currently a work in progress with the Ookami cluster @ Stony Brook University and the
Fugaku supercomputer in Kobe, Japan with GNU, ARM, Cray (Ookami), and Fujitsu
(Fugaku) compilers

Ookami

27

SVE

Different compilers/compiler flags turn this option on and off
Other flags print out what was and wasn’t vectorized
● GCC 10, ARM

-O3 -mcpu=a64fx
● Cray

Load the specific SVE compiler (Cray 10.0.1 (with SVE) → -O3 -h vector3)

SVE instructions use the z registers – you can check your executable
objdump -d executable | grep 'z[0-9]'

Ookami

28

SVE

How can we introduce SVE into this?

• Profile the code to see where speedups can be introduced

• Note that GCC compiler cannot vectorize some math functions, use Cray compiler instead

• Old code FLASH 1 was vectorized… we’re now on FLASH 4 and all that was removed

• Compare the old with the new and find places for vectorization

In Summary...

29

There is much to be done, but we have learned a lot along the way!

Lessons Learned:

1. A64fx processors have a lot less memory to work with! Make sure your problem fits
in the proper memory (swap, stack, global, etc.), which is less than the total 32GB per
node

2. When choosing a compiler, also choose the matching compiled MPI implementation

3. Different compilers and MPI implementations are better for different problems, so test
them all!

4. SVE might not work right away if your code isn’t specifically made for it

5. When looking for speedups in a complicated simulation, break it into smaller test
problems and optimize those individually

Acknowledgements

30

• Ookami is a computer technology testbed supported by the National Science Foundation
under grant OAC 1927880. The authors are grateful to the entire Ookami team for their
efforts in procuring and deploying the machine, and in particular for the arduous process of
setting up the software used in this project.

• The authors would like to thank Stony Brook Research Computing and Cyberinfrastructure,
and the Institute for Advanced Computational Science at Stony Brook University for access
to the high-performance SeaWulf computing system, which was made possible by a $1.4M
National Science Foundation grant (#1531492).

• The FLASH code was developed in part by the DOE NNSA ASC- and DOE Office of Science
ASCR-supported Flash Center for Computational Science at the University of Chicago. Work
involving supernovae research was supported in part by the US Department of Energy under
grant DE-FG02-87ER40317.

