

Initial experiences with the Ookami A64FX testbed

Andrew Burford¹, Alan C. Calder¹, David Carlson¹, Barbara Chapman¹, Firat Coşkun¹, Tony Curtis¹, Catherine Feldman¹, Robert J. Harrison¹, Yan Kang¹, Benjamin Michalowicz¹, Eric Raut¹, Eva Siegmann¹, Daniel G. Wood¹, Robert L. Deleon², Mathew Jones², Nikolay A. Simakov², Joseph P. White², Dossay Oryspayev³

¹Institute for Advanced Computational Science, USA ²Center for Computational Research, USA

³Brookhaven National Laboratory, USA

Ookami - 狼

- Ookami is Japanese for wolf
- A computer technology testbed supported by NSF
- Available for researchers worldwide

 (excluding ITAR prohibited countries & restricted parties on the EAR entity list)
- Usage is free for non-commercial and limited commercial purposes

What is Ookami

• 174 1.8Ghz A64FX compute nodes each with 32GB of high-bandwidth

memory and a 512 GB SSD

- Same as in currently fastest machine worldwide, Fugaku
- First deployment outside Japan
- HPE/Cray Apollo 80

Ookami also includes:

- 1 node with dual socket AMD Rome (128 cores) with 512 Gbyte memory
- 2 nodes with dual socket Thunder X2 (64 cores) each with 256 Gbyte memory and 2 NVIDIA
 V100 GPU
- Intel Sky Lake Processors (32 cores) with 192 Gbyte memory
- Delivers ~ 1.5M node hours per year

Fugaku #1 Fastest computer in the world

First machine to be fastest in all 5 major benchmarks:

- Green-500
- Top-500 415 PFLOP/s in double
 precision nearly 3x Summit!
- HPCG
- HPL-AI
- Graph-500

- 432 racks
- 158,976 nodes
- 7,630,848 cores
- 440 PF/s dp (880 sp; 1,760 hp)
- 32 Gbyte memory per node
- 1 Tbyte/s memory bandwidth/node
- Tofu-2 interconnect

https://www.r-ccs.riken.jp/en/fugaku

A64fx at a Glance

- ARM V8 64-bit
- 512-bit SVE
- 48 compute cores
- 4 NUMA regions
- 32 (4x8) GB HBM @ 1 TB/s
- PCle 3 (+ Tofu-3) network

A64fx NUMA Node Architecture

- Supports high calculation performance and low power consumption
- Supports Scalable Vector Extensions (SVE)
- 4 Core Memory Groups (CMGs)
 - 12 cores (13 in the FX1000)
 - 64KB L1\$ per core
 - 256b cache line
 - 8MB L2\$ shared between all cores
 - 256b cache line
 - Zero L3\$
 - 8 GB HBM at 256GB/s

Diagram is the "1000" chip. We have "700" chip, i.e. no assistant cores and no Tofu interface

http://www.jicfus.jp/jp/wp-content/uploads/2018/11/msato-190109.pdf

SVE (Scalable Vector Extensions)

- Enables Vector Length Agnostic (VLA) programming
 - VLA enables portability, scalability, and optimization
 - The actual vector length is set by the CPU architect
 - Any multiple of 128 bits up to 2048 bits
 - May be dynamically reduced by the OS or hypervisor
- Predicate-centric architecture
- SVE was designed for HPC and can vectorize complex structures
 - Gather-load and scatter-store; horizontal reductions
 - SVE begins to tackle traditional barriers to auto-vectorization
- Support from open source and commercial tools

Memory Statistics of Typical Jobs

2017 analysis of XSEDE workload revealed 86% of all jobs need less than 32 GB / node

These 86% of jobs correspond to 85% of the total XSEDE cpu-hour usage

Simakov, White, DeLeon, Gallo, Jones, Palmer, Plessinger, Furlani, "A Workload Analysis of NSF's Innovative HPC Resources Using XDMoD," arXiv:1801.04306v1 [cs.DC], 12 Jan 2018

"Programmability of a CPU, performance of a GPU"

Satoshi Matsuoka (Head of RIKEN, home of Fugaku)

- Easily accessed performance
- New technology path to exascale

What else

- CentOS 8 operating system
- DUO Authentication
- High-performance Lustre file system (~800TB of storage)
- Slurm workload manager
- Compilers: GNU, Arm, Cray, Nvidia, Fujitsu (soon)
- Continuous growing stack of preinstalled software
 - MPI implementations
 - Toolchains
 - Math libraries
 - Performance analysis & debugging: (arm Forge, Cray, GNU, TAU, ..)

```
/cm/local/modulefiles ------
cluster-tools/9.0 gcc/9.2.0
                                   null
                                                                 shared
                   ipmitool/1.8.18 openldap
                                                                 slurm/slurm/19.05.7
cmjob
                   lua/5.3.5
                                   openmpi/mlnx/gcc/64/4.0.3rc4
dot
                  module-git
                                   python3
freeipmi/1.6.4
                  module-info
                                   python37
              -----/cm/shared/modulefiles ------
cm-pmix3/3.1.4 hdf5/1.10.1 hwloc/1.11.11 ucx/1.6.1
                   ------/lustre/shared/modulefiles -------
anaconda/3
                   qnuplot/5.4.1
                                                  ncurses/6.2
archiconda/3
                   go/1.16.3
                                                  ncurses/arm/gcc/6.2
arm-modules/20
                   htop/3.0.2
                                                  ninja/1.10.2
arm-modules/21
                   hwloc/2.4.1
                                                  nvidia/nvhpc-byo-compiler/21.3
cmake/3.19.0
                    intel/compiler/64/2020/20.0.2
                                                  nvidia/nvhpc-nompi/21.3
CPE-nosve/20.10
                    intel/mkl/64/2020/20.0.2
                                                  nvidia/nvhpc/21.3
CPE-nosve/21.03
                    intel/mpi/64.2020/20.0.2
                                                  openblas/0.3.10
CPE/20.10
                    intel/tbb/64/2020/20.0.2
                                                  openmpi/arm21/4.1.0
CPE/21.03
                    internal/template
                                                  openmpi/gcc8/4.1.0
cuda/toolkit/11.2
                    julia/1.6.0
                                                  openmpi/gcc10/4.1.0
curl/7.73.0
                    lapack/3.9.0
                                                  openssl/1.1.1h
doxygen/1.8.20
                   libfabric/1.12.1
                                                  p7zip/16.02
gcc-10.3.0-openacc libgd/gcc/2.3.1
                                                  pax-utils/1.2.9
gcc/10.2.0
                   libpng/gcc/1.6.37
                                                  tau/2
gcc/10.3.0
                   likwid/5.1.1
                                                  ucx/1.10.0
gcc/11.1.0
                   mvapich2/arm21/2.3.5
                                                  util-linux/2.37
ait/2.29
                   mvapich2/gcc8/2.3.5
                                                  xpmem/2.6.3
                   mvapich2/gcc10/2.3.5
gnuplot/5.4.0
                                                  zsh/5.8
```

Initial Experiences

- Most applications run out of the box
- Obtaining high performance is more complex

Minimod

- seismic modeling mini-app developed by Total
- extracts the stencil computation from a production seismic imaging application
- stencil is used to numerically solve the acoustic wave equation
- benchmark to test new and emerging hardware and programming models for geophysics applications

SWIM

- Part of the SPEC CPU2000 Benchmark suite
- weather forecasting benchmark (FORTRAN OpenMP)
- solves the shallow-water equations using finite differences

XDMoD

- Ookami is monitored with XDMoD
- XDMoD software modify to monitor A64FX-specific metrics
- application kernels are used to proactively monitor HPC resource performance by daily benchmarks
- goal is to see how the performance of benchmarks and real applications change as the compiler toolchains improve

Getting Accounts

- Submit a project request (templates on our website)
 - Testbed:
 - Porting and tuning software
 - Benchmarking
 - Limited production calculations to demonstrate capability
 - Significantly less than 15,000 node hours per year
 - First two project years
 - Production:
 - Less than 150K node hours per year
 - Lower priority during the first two project years
- Requests must include:

Title, date, PI, usage description, computational resources, grant number (if funded)

Getting Accounts

- Getting access:
 - Create a project request and submit it through ticketing system:
 https://iacs.supportsystem.com/
 - Requests will be reviewed & published
 - If you are not affiliated to SBU: Fill a volunteer demographic form

https://www.stonybrook.edu/ookami/

Current Status

- ~ 30 testbed projects (USA & Europe)
- ~ 100 users
- Several trainings & webinars
- Talks about Ookami in this session:
 - Lessons Learned: An In-depth Look at Running FLASH on Ookami

Alan C. Calder, Catherine Feldman, and Benjamin Michalowicz

Performance Engineering using SVE

Robert J. Harrison

Get in Contact

- https://www.stonybrook.edu/ookami/
- Bi-weekly Hackathon
 - Tue 10am noon EST
 - Thu 2pm 4pm EST
- Slack Channel for users #OOKAMI

Acknowledgement:

- The whole Ookami team
- NSF (grant grant OAC 1927880)

Eva Siegmann

Lead Research Scientist

eva.siegmann@stonybrook.edu