Arm 1n HPC

Contact: john.linford@arm.com



mailto:john.linford@arm.com

CPU Engagement Models with Arm

Arm IP is the basic building block for extraordinary solutions.

Core License

e Partner licenses complete
microarchitecture.

* CPU differentiation via:
* Configuration options.

*  Wide implementation
envelope with different
process technologies.

2 Confidential © 2019 Arm Limited

Arm [P

ARM Architecture Reference Manual
ARM3. for ARMv8-A arch teciure profile

Architecture License

Partner designs complete
microarchitecture.

Clean room, scratch.
Maximum design freedom:

Directly address needs of the
target market.

Arm architecture validation
preserves software
compatibility

arm



Arm Neoverse Momentum in Servers & HPC

o 2018
Arm Neoverse Announced QM e =
2019’ Huawei released K 920 CPU
_______________ A\ uawei released Kunpeng
VMware demonstrated VIMWAre: e ’ i o SV HUAWEI and TaiShan server platform
ESXi on 64-bit ARM 1
, ___________________________ @2 Nvidia CUDA stack to
Neoverse N1 & E1 arm o? -, ° NVIDIA. Arm Platforms

Platform announced

o /A Microsoft  Marvell's ThunderX2 Solution
Azure for Microsoft Azure Development

AWS announced 2" Generation dWsS o ’

Arm-based Graviton2 Server CPU

2020
77777777777777777 o ﬂ/\ Ampere announced industry’s

yr s Marvell Announced 96- , - AMPERE. 15t 80-Core Server SoC (128 Altra Max)

marvecrr  core ThunderX3 ServerSoC o

° & SIPE/\RL EPI Zeus License

7 The Silicon Pearl

Fujitsu Fugaku Riken [oe)
#1 on Top500 FUJITSU °

3 Confidential © 2019 Arm Limited q rm



Fujitsu/RIKEN Fugaku: Fastest Supercomputer in the World

4

Top place in 4 categories:

@ 416 Pflop/s
@ 13.4 Pflop/s
@ 1.42 Eflop/s
Graph 500 @ 70980 GTEPS

Top500
HPCG
HPL-AI

©RIKEN
Confidential © 2019 Arm Limited

§12500 CERTIFICATE

Supercomputer Fugaku - A64FX 48C 2.2GHz, Tofu interconnect D
RIKEN Center for Computational Science, Japan

oooooooooooooooooooooooooooooooooo

nnnnnnnnnnnnnnnnnnnnnnnnnn

NERSC/Berkeley Lab University of Tennessee NERSC/BerkeleyLab  Prometeus

arm



1. High-Performance Arm CPU A64FX in HPC and Al Areas  Fujitsu

B Architecture features

CMG (Core Memory Group) Armv8.2-A (AArch64 only) SVE (Scalable Vector Extension)  CIFImM
specification TofuD i .
p] 3 cores 28 Gbps x 2 ?a:es x 10 ports SIMD width 512-bit
L2 Cache 8 MiB 110

Memory 8 GiB, 256 GB/s = PCle Gen3 16 lanes FP64/32/16, INT64/32/16/8
48 computing cores + 4 assistant cores (4 CMGs)
HBM2: Peak B/W 1,024 GB/s

TofuD
o il Contoler TofuD: 28 Gbps x 2 lanes x 10 ports

B Peak performance (Chip level)
(Tops)

25 1
20, -
15

B A64FX (Fugaku)
B SPARC64 VINIfx (K computer)

5.4+

, 2.7+
0.128 0.128 N/A N/A
Rt paded [ J

64 bits 32 bits 16 bits 8 bits

(Element size)

T

Copyright 2019 FUJITSU LIMITED



Vanguard Astra by HPE

« 2,592 HPE Apollo 70 compute nodes * Mellanox IB EDR, ConnectX-5
e 5,184 CPUs, 145,152 cores, 2.3 PFLOPs (peak) y QJVIZt C3h6e-§>0rt edges, 3 648-port spine
© Marvell ThunderX2 ARM SoC, 28 core, 2.0 GHz ., Rad Hat RHEL for Arm
* Memory per node: 128 GB (16 x 8 GB DR « HPE Apollo 4520 All-flash Lustre storage
DIMMs) « Storage Capacity: 403 TB (usable)
« Aggregate capacity: 332 TB, 885 TB/s (peak) - Storage Bandwidth: 244 GB/s

AsTRA - ) N o A vy svavey

| .. ! . ‘ - ,
| S e TTMEM Y e
. - N “Per a;pe,u, Ad Astra”

T R A




http://gw4.ac.uk/isambard/

Isambard system specification

10,752 Armv8 cores (168n x 2s x 32c)
- Cavium ThunderX2 32core 2.1 2.5GHz

Cray XC50 ‘Scout’ form factor
* High-speed Aries interconnect

* Cray HPC optimised software stack
- CCE, Cray MPI, math libraries, CrayPAT, ...

Phase 2 (the Arm part):
- Delivered Oct 22"% handed over Oct 29th

- Accepted Nov 9th
- Upgrade to final B2 TX2 silicon, firmware, CPE

completed March 15t 2019

N\

‘;r

i
=0
=,
=l
=l
=i
i

7 Confidential © 2019 Arm Limited



Isambard 2 production system

21,504 Armv8 cores (168n x 2s x 32¢)
- Marvell ThunderX2 32 core @2.5GHz

Cray XC50 ‘Scout’ form factor
* High-speed Aries interconnect

* Cray HPC optimised software stack
- Compilers, math libraries, CrayPAT, ...

- Also comes with all the open source software
toolchains: GNU, Clang/LLVM etc.

8 Confidential © 2019 Arm Limited




Isambard 2's A64fx Apollo80 system

72 nodes, 3,456 cores, 1.8GHz >
. 72 TB/s memory bandwidth D_EJ
- 202 TFLOP/s double precision —

Z TSt pckas
Z Arm [ . FUJITSU ferten?

* Connected with 100Gbps InfiniBand

 Comes with a Cray software stack
- CCE, Armclang, GNU

* Hope to add the Fujitsu compiler

9 Confidential © 2019 Arm Limited




CEA : Deployment by ATOS

« 292 Atos Sequana X1310 compute nodes

« 584 CPUs, 18,688 cores

« Marvell ThunderX2 ARM SoC, 32 cores, 2.2 GHz
* Memory : 8 channels, DDR4 2666, 256 GB

« Mellanox InfiniBand EDR

v Peak Performance 329 TFLOPS
v" HPL = 84% of efficiency
v' HPCG = 3.47 of HPL

10 Confidential © 2019 Arm Limited

y e

MARVELL®




AWS Graviton2 - an Arm Server Processor aWS

Graviton Processor Graviton2 Processor
(\‘3 First Arm-based processor _—=  7x performance, 4x compute cores,
ﬁ]} available in major cloud o0l and 5x faster memory

Built with 64-bit Arm Neoverse
cores with AWS-designed silicon
using 7nm manufacturing

" Built on 64-bit Arm Neoverse cores
with AWS-designed silicon using g:E
16nm manufacturing technology

technology
Up to 16 vCPUs, 10Gbps P Up to 64 vCPUs, 25.Gbps
enhanced networking, 3.5Gbps %i, enhanced petworkmg, 18Gbps
EBS bandwidth EBS bandwidth

11 Confidential © 2019 Arm Limited a rm



AWS Graviton 2 for HPC workloads

The c6g instances have outstanding price/performance as compared to similar x86
instances

* The AWS Graviton 2 implements the Arm Neoverse N1
* Up to 40% improved price/performance over x86 instances
OpenFOAM v1912 - 4M cell Motorbike for 5000 iterations OpenFOAMv1912 - 4M cell Motorbike for 5000 iterations
6 1.6
4o 5 1.44
5 1.28
8, : 12 I I 1.08
° C5n.18xlarge C6g.16xlarge C5.24xlarge 0
’ ’ ’ C5n.18xlarge C6g.16xlarge C5.24xlarge
Cost: lower is better Run time: lower is better

12 Confidential © 2019 Arm Limited q rm



e
<
e
4
<

-+
+
+
-
+
+

Software Ecosystem

e e i e L e e T T L L w L s s T

Confidential © 2019 Arm Limited
+ + -+ + + -+ + . + + -+ + + -+ + +



Applications Debuggers &

Open-source, owned, commercial ISV codes, ...

Profilers

wn
. Arm Forge (DDT, MAP), §
Containers, Interpreters, etc. Rogue Wave, HPC Toolkit, £
Singularity, PodMan, Docker, Python, ... Scalasca, Vampir, TAU, ... z O
el o
‘2
Middleware z C
Mellanox IB/OFED/HPC-X, OpenMPI, MPICH, MVAPICH2, OpenSHMEM, OpenUCX, HPE MPI 2 ((»)
o -5
>
)

OEM/ODM'’s Compilers Libraries Filesystems
Arm, GNU, LLVM, Clang, Flang, ArmPL, FFTW, OpenBLAS, BeeGFS, Lustre, ZFS,
CLeiRHEE IO EHY Cray, PGI/NVIDIA, Fujitsu, ... NumPy, SciPy, Trilinos, PETSc, HDF5, NetCDF, ...
Fujitsu, Gigabyte, ... Hypre, SuperLU, ScalLAPACK, ...

“Inmalepn ‘1eDX ‘NIAD 3dH y3Sug

jJudwWadeue 491snpd

Silicon

Suppliers

Marvell, Fujitsu,
Mellanox, NVIDIA, ...



+ + A RicH aﬁd Grc;wi:ng:
q "m Application Ecosystem

o[ [l T Ls-DYNA
MILC GEANT4 ,

NAMD
Quantum
OpenFOAM |l DL-Poly NEMO FLUENT®

BLAST NWCHEM - QMCPACK

|| d




GNU and LLVM Toolchains

Toolchains for all Arm cores — supported at release

Status:
« LTS Linux distributions support Arm CPU features when a CPU becomes generally available
- Improve performance for key user workloads and industry benchmarks

GNU Toolchain (compilers, debuggers, libraries, etc.)
- Default compiler in Linux distributions like RedHat, SUSE, Ubuntu
- Key segments: Cloud, networking and HPC

LLVM Toolchain (compilers, debuggers, libraries, etc.)
- Default compiler in Android and the basis for commercial compilers (including Arm and Cray compilers)
- Key segments: Mobile (Android/iOS), Cloud

16 Confidential © 2019 Arm Limited q rm



Example: SVE Support

Over four years of active, ongoing development

* Arm actively posting SVE open source patches upstream
- Beginning with first public announcement of SVE at HotChips 2016

* Available upstream

 Since GNU Binutils-2.28 Released Feb 2017, includes SVE assembler & disassembler
- Since GCC 8: Full assembly, disassembly and basic auto-vectorization

- Since LLVM 7: Full assembly, disassembly

- Since QEMU 3: User space SVE emulation

- Since GDB 8.2 HPC use cases fully included

* Constant upstream review
« LLVM: Since Nov 2016, as presented at LLVM conference

e Linux kernel: Since Mar 2017, LWN article on SVE support

Automatic Arm support in latest version of all tools — peer to x86

17 Confidential © 2019 Arm Limited q r m


https://sourceware.org/ml/binutils/2017-02/msg00097.html
http://lists.llvm.org/pipermail/llvm-dev/2016-November/106819.html
https://lwn.net/Articles/717804/

Example: Auto-vectorization in LLVM

* Auto-vectorization via LLVM vectorizers:
- Use cost models to drive decisions about what code blocks can and/or should be vectorized.
- Since October 2018, two different vectorizers used from LLVM: Loop Vectorizer and SLP Vectorizer.

* Loop Vectorizer support for SVE and NEON:

 Loops with unknown trip count - Pointer induction variables

- Runtime checks of pointers - Reverse iterators

- Reductions - Scatter / gather

- Inductions « Vectorization of mixed types

- “If” conversion - Global structures alias analysis

18 Confidential © 2019 Arm Limited q rm


https://llvm.org/docs/Vectorizers.html#the-loop-vectorizer
https://llvm.org/docs/Vectorizers.html#the-slp-vectorizer

Server & HPC Development Solutions from Arm

Commercially supported tools for Linux and high performance computing

Code Generation - Performance Engineering Server & HPC Solution
for Arm servers cross platform, scalable for Arm servers
s s /
C(%l';TER arm arm
FORGE
Commercially S rted Toolkit

arm C¢/C++ Compiler arm Debugger = for aZplithiCon);lengC;meentC;?v Linux
A N A DDT N -

Arm Fortran Compiler (I:\IAI:AT Profiler ¢ C/C++ Compiler for Linux
N A N A e Fortran Compiler for Linux

QATr'M Performance Libraries PERFgerNCE Reporting * Performance Libraries
N J \___ REPORTS J * Performance Reports

* Debugger (DDT)

K Profiler (MAP) /

19 Confidential © 2019 Arm Limited q rm




Arm Compiler for Linux

a.k.a Arm Compiler for HPC, a.k.a. Arm Allinea Compiler

Tuned for Scientific Computing, HPC and Enterprise workloads

- Processor-specific optimizations for various server-class Arm-based platforms
- Optimal shared-memory parallelism using latest Arm-optimized OpenMP runtime

L

Compilers tuned for Scientific
Computing and HPC

Linux user-space compiler with latest features

f /\ - C++ 14 and Fortran 2003 language support with OpenMP 4.5
- Support for Armv8-A and SVE architecture extension

Latest features and - Based on LLVM and Flang, leading open-source compiler projects

performance optimizations

Commercially supported by Arm

- Available for a wide range of Arm-based platforms running leading Linux

Commerecially supported distributions — RedHat, SUSE and Ubuntu
by Arm

20 © 2019 Arm Limited a rm

I"'




Building on LLVM, Clang and Flang projects

C/C++ Files
(.c/.cpp) |

Fortran Files
(.f/.f90) —

Arm C/C++/Fortran Compiler

Clang based

C/C++
Frontend

LLVM IR

PGl Flang based

Fortran
Frontend

Language specific frontend

-

LLVM basﬁ

Optimizer

IR Optimizations

Auto-vectorization

Enhanced optimization for
Armv8-A and SVE

\_

/

Language agnostic optimization

LLVM IR

LLVM based
Armv8-A
code-gen

LLVM based

SVE
code-gen

Architecture specific backend

_Armv8-A
binary

. SVE
binary

21 © 2019 Arm Limited

arm



Arm Performance Libraries
Optimized BLAS, LAPACK and FFT

l"’
Commercially supported
by Arm

£ 77

Best in class performance

Validated with
NAG test suite

22 © 2019 Arm Limited

Commercial 64-bit Armv8-A math libraries

- Commonly used low-level math routines - BLAS, LAPACK and FFT

- Provides FFTW compatible interface for FFT routines

- Sparse linear algebra and batched BLAS support

- libamath gives high-performing math.h functions implementations

Best-in-class serial and parallel performance

- Generic Armv8-A optimizations by Arm
- Tuning for specific platforms like Marvell ThunderX2 in collaboration with silicon
vendors

Validated and supported by Arm

- Available for a wide range of server-class Arm-based platforms
- Validated with NAG’s test suite, a de-facto standard

arm



Arm Performance Libraries — Leading BLAS performance

Arm Compiler for Linux 20.0 vs latest OpenBLAS vs latest BLIS

100 .
90
(qo) o—
0 70
‘5 60
ao 50
(1)
£ 40
S 30 ~—OpenBLAS :
& 920 ~BLIS
10 Arm PL 20.0
0 ¢
0 2000 4000 6000 8000

Matrix dimensions M=N=K

23 © 2019 Arm Limited

High serial
performance for
BLAS level 3
routines, such as
GEMMs also
have class-
leading parallel
performance

Shown is
DGEMM on
square matrices
using 56 threads
on a ThunderX2

arm



Arm Performance Libraries: OpenMP Scaling on N1

Run on AWS Graviton2

1.0

0.8

Efficiency
o
h
i

o
T
i

0.2 1

0.0

N1 DGEMM Efficiency: m=n=k

— 100
— 1000
— 10000

__-______——-—__

24  © 2019 Arm Limited

T T
16 32
nthreads

T
64

 Shown is DGEMM on square
matrices using 64 threads on
an AWS Graviton2

 Shown for matrix sizes of
100, 1,000 and 10,000

 Shows up to 85.7%
efficiency for large matrices

arm



ArmPL 20.0 FFT vs FFTW 3.3.8

6 o
[ J
. . . [ J ® 0o ® d 1-d
4 °
> 5 . .« ‘e . " ., * complex-to-
[ J [ ]
- AU I I A complex
[ J
=y . ., I N
5 ¢ ¢ o o % ..;. ¢ dOUbIe
g . .
5 NS precision
Q o’ e
> 3 * .. s * ThunderX2
8 ¢ o o
V Arm Perf Libs better . ) o
& 2 than FFTW LS te e Ll % g
= (speed-up > 1)
E
<< ) i o e .¢ Performance parity
FFTW bPett]?[.tbhan Arm o o ¢ s o v etecectee S ispeed-up=1)
erf Libs
0 (speed-up < 1)
1 10 100 1000

Transform length

25 © 2019 Arm Limited a rm



Arm Performance Libraries — Optimized Math Routines
Open Source: https://github.com/ARM-software/optimized-routines

Normalised runtime

1,2

0,

[00]

0,

[e)]

0,

D

N

0,

o

Cloverleaf OpenMX

B GCC EMArm MArm + libamath

26  © 2019 Arm Limited

Branson

ArmPL includes libamath and libastring

Algorithmically better performance than standard
library calls
No loss of accuracy
Enabled by default with Arm Compiler for Linux

- Double precision implementations of:
erf(),erfc()

- single and double precision implementations of:
exp (), pow (), log(),1loglO ()

- single precision implementations of:
sin(),cos(),sincos ()

- Efficient memory/string functions from string.h

- Enable autovectorization of math and string
routines by adding —armpl or -fsimdmath

...more to come.

arm



Build Tools

All popular build tools are supported on Arm
Support

e All major build systems and tools:
- CMake, Make, GNUMake, Spack etc.
- Spack used internally at Arm.

* Arm supports KitWare etc. to ensure build tools
like CMake are stable and supported.

* Arm upstreams any necessary changes to
support Arm’s commercial tools.
- e.g. CMake toolchain files for Arm Compilers.

27 Confidential © 2019 Arm Limited

Compilation Performance

* Adata point: ThunderX2 compilation of large
code bases is on is on-par with Intel Skylake
- Usually faster due to higher core counts.

* GNU compilers run faster than LLVM, but that’s
not aarch64-specific; same on any arch.

arm



Application Build Recipes and Spack

Spack is used extensively by Arm

* Multiple places for recipes
 https://gitlab.com/arm-hpc/packages/wikis/packages
 https://developer.arm.com/hpc/hpc-software/categories/applications

 https://github.com/UoB-HPC/benchmarks

 Want to move our knowledge base into Spack
. https://github.com/spack/spack
- Would like customers to also contribute to Spack

* |deally get package owners to update their code

28 Confidential © 2019 Arm Limited

arm


https://gitlab.com/arm-hpc/packages/wikis/packages
https://developer.arm.com/hpc/hpc-software/categories/applications
https://github.com/UoB-HPC/benchmarks
https://github.com/spack/spack

MPI Implementations

Out-of-the-box support for Arm in the latest versions of...

OpenMPI

e Qut-of-the-box support since
3.1.2 (currently 4.0.4)

* developer.arm.com guide
* Upstream contributions
* Used inhouse

e Basis of Bull, Mellanox and
Fujitsu K implementations

* Active development from
Arm and Arm partners

29 Confidential © 2019 Arm Limited

MPICH

e Basis of Cray and Intel
implementations
...and MVAPICH

MVAPICH

* developer.arm.com guide
e Upstream contributions
* Used inhouse

e Basis of Sunway Taihulight
implementation

* Arm investment in OSU
« Arm hardware & tools

arm



Parallel Runtime Environments

Threading, thread placement, and affinity Dynamically linked libraries and page size

* POSIX threads 2.0 fully supported. * Users do not need to change anything in their

* Thread placement, pinning, affinity via hwloc, execution environment or workflow to achieve
numactl, etc. good performance.

- Demonstrated at multiple application scales

e  Most SoCs support a simple memory hierarch L . : .
PP P Y Y at several sites including Sandia and Bristol.

partitioned into a minimal number of NUMA
nodes, e.g. one NUMA node per CPU socket. * Tools like LLNL's Spindle are supported to reduce
|/O pressure when loading dynamically linked

applications.

* The goalis to minimize code refactoring for
performance and eliminate “guess and check”
data movement optimization strategies.

30 Confidential © 2019 Arm Limited q r m


https://computing.llnl.gov/projects/spindle

Scientific Computing Libraries

https://gitlab.com/arm-hpc/packages/wikis/categories/library

Package Support

e Trilinos, PETSc, Hypre,
SuperLU, ScalLAPACK,
NetCDF, HDF5, BLIS, etc.

* Tested to work well with Arm
and GNU compilers.

* 54+ packagesin Arm’s
Community Packages Wiki

31 Confidential © 2019 Arm Limited

Testing and Development

 ThunderX2 access freely
available for open source
project CI/CD
- packet.net
- Verne Global

Resourcing

* Arm supports communities
as part of broader NRE and
commercial projects

* Arm provides reactive
support to users at key HPC
sites worldwide

arm



Arm Performance Engineering Tools Ecosystem

See the http://www.vi-hps.org/tools/ for an excellent view of the tools ecosystem.

Tools
Guide

October 2017

allinea  )0ucH ~pRR  OFme a8 *—r—
O=_ L= @5 M= O —— s

32 Confidential © 2019 Arm Limited

MAP/PR / MPIP / " TAU EXTRA-P PERISCOPE
KCACHEGRIND O|SS / MAQAO FRRRRS -| =
el .
PAPI E== 4 = Hardware Automatic
o monitoring profile & trace
analysis SCORE-P /
m SCALA CA EXTRAE
MUST / g --
ARCHER['#*= | .
Debugging, '/
DDT error & anomaly ' - VAMPIR PARAVER
| detection JUBE Visual trqce wTIe ‘ _
g - analysis
STAT = :
Execution

Optimization

1

MEMCHECKER /
SPINDLE / SIONLIB

PTF /
“ RUBIK /
®  MAQAO

arm



Hardware Performance Counter Support

Hardware performance counter APIs are fully supported

PAPI perf_events Documentation and Tools
e Support for many aarch64 * Native HPM APl is fully  Arm MAP, HPCToolkit, IPM,
server-class CPUs: supported TAU, ScoreP, etc.
- e.g. ThunderX2 »  User applications may: - HPM values can be
e Marvell planning support for - Initialize the HPM access:ed by non-privileged
future CPUs e.g. ThunderX4 - Initiate and reset counters USErS In a secure manner
- Read counters * Performance metrics derived
- Generate interrupts on from multiple counters:
counter overflow - Partners provide their own
- Register interrupt handlers PMU/HPM documentation

from each process and
thread independently

33 Confidential © 2019 Arm Limited q rm



The Arm trademarks featured in this presentation are registered

trademarks or trademarks of Arm Limited (or its subsidiaries) in

+ + + + + + + : the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

Confidential © 2019 Arm Limited

4 + + + + + + + + -k



Arm Forge Ultimate

A cross-platform toolkit for debugging, profiling and performance analysis

The de-facto standard for HPC development

- Available on the vast majority of the Top500 machines in the world
- Fully supported by Arm on Arm servers, x86, IBM Power, Nvidia GPUs, etc.

'ﬁ:’“

Commercially supported
by Arm
B State-of-the art debugging and profiling capabilities
|_|_| - Powerful and in-depth error detection mechanisms (including memory debugging)
e - Sampling-based profiler to identify and understand bottlenecks
Fully Scalable

- Available at any scale (from serial to petaflopic applications)

V#W Easy to use by everyone

- Unigue capabilities to simplify remote interactive sessions
Very user-friendly - Innovative approach to present quintessential information to users

35 © 2019 Arm Limited a rm



Arm Forge — DDT Parallel Debugger

Switch between
MPI ranks and
OpenMP threads

File View Control Search Tools Window Help

w EH & 5 R Fe BL Er Bl B

‘Current Group:

a-9-

Focus on current: @ Group ) Process () Thread | | Step Threads Toget

Analyze memory usage

prerst ta #wrvop [B_Ja] precmnes
Taneny e | dncation b |

Tetal Aceasa Pricasars in Bytes]

24576 processes (0-24575)

Currently selected:

Paused: 17220 Playing: 7356 Finished:
{on nid09271, pid 30269

Create Group

Project Files

A0 ranks:

S8.71 kB
so71 kb 0
sa.71 k0 N 0 .
sa.71 k8 N 0
=871 «& [0 0

Export data and
connect to
continuous
integration

36 © 2019 Arm Limited

17220 117220 |
17220 ]17220[__|
17220 117220 |
17220 117220 |

[ «vert_del_internal (misheap-internal h)

N other

::geometry::decomposition::OptimisedDecom|

Facatiorn
= s Il -1 78} {0 bytes, @ alecation)
e O ITTADOR, vare: 32,7660 bt

i
it

teip || Esh Gusterm ocatars.,,

/* Select the final splitters. Set the boundaries to simplify coding */

Carrant Unage boman Micenssn s Byteal

Lame
L,
ppchel
e
b

.| Locals
Variable Name

/* Compute the number of elements that belong to each bucket */

= MpiEnvironment.cc 3¢ } ™ |atticeData.cc 3¢
Search (Ctrl+K) 546 if (allpicks[i].val != -1}
547 allpicks[ntsamples++]
™ template.cc 548
[ emplate_annotator.cc 549
B[ template_cache.cc 550 /* Sort all the picks */
S temp:ate-d'ztj",:';'awc( 551 ikvsortii(ntsamples, allpicks);
emplate_m ers.cc 552
[ emplate_namelist.cc 553
[ emplate_pathops.cc 554
- template_string.cc i .
B timer.c 555 for (i=1; i<npes; i++)
N : timers.c 556 mypicks[i] = allpicks[i*ntsamples/npes]
| Timers.cc 557 mypicks[@].key = IDX MIN;
® € timing.c 558 mypicks[npes].key = IDX_MAX;
# UnitConverter.cc 559
Bt util.c 560
2 utilityFunctions.cc 561 WCOREPOP; /* free allpicks */
B @ Vector3D.cc 562
Memory Leak Report ST "33 STOPTIMER(ct 1->AuxTmr2
STARTTIMER(ct ctrl->AuxTmr3)
Logand
58311 kB BN B i k3. c139)
58,71 6 0 0 I ormpi_free_list_grow epoints 1 Tracepoint Output I Logbook I
S8.71 kB

er (SimulationMaster.cc:63)
SimulationMaster.cc:154)
etryReader::LoadAndDecompose (GeometryReader.cc:188)

ptimisedDec

v
384
ptimiseDomainDecomposition (GeometryReader.cc:809)
positi ptimisedDecomposition (OptimisedDecomposition.cc:65)
position::CallParmetis (OptimisedDecomposition.cc:181)
Text

Display pending ==

... MPI COMMUN...

Communicator
MPI COMMUN..

MP1 COMMUN. ..
MPI COMMUN.

Visualize data structures

Locals

Current Line(s) Cul

Value

[+ allpicks
Ectrl
[-elmnts
firstvtx
[#-graph

i

i
k
lastvix
mype

Message O

+-mypicks

0x3
[ [
02
<value
il 0xbca0l

Wl <value optimized out>
<value optimized out>
<value optimized out>

——1143373824
~19
i 0x2652160

Display mode

Process Groups
( P

‘Select queuss to show
+ Send
« Receive
+ Unexpected

Shaw local ranks
@ Show glabal ranks

Only ranks with messages

Select communicator

MP1_COMM_WORLD
MPT_COMM SELF
MP_COMM_NULL

HFaie i car e oy

Update
Fonter  From flocal) _From (global] | Toflocal) o (globall
‘a0 a8 113 360
16 12 193 449
m m m 41
174 430 252 508

communications i e e

[l




Arm Forge — MAP Multi-node Low-overhead Profiler

Understand MPI/CPU/IO operations
thanks to timelines and metrics

/hemelb_256p_2014-01-26_19-37.map - Allinea MAP - Allinea Forge 5.1-43967
File Edit View Metrics Window Help
Profiled: hemelb on 256 processes, 0 nodes Sampled from: Sun Jan 26 19:37:21 2014 for 464.1s 'Hide Metrics... |

e @

CPU floating-point ' -
14.9 %

Inspect OpenMP activity

File Edit View Metrics Window Help

Profiled: Discovar on 1 process, 1 node, 24 cores (24 per process) Sampled from: Wed Jul 1 11:28:43 2015 for 478.1s Hide Metrics...

Application activity

Analyze GPU efficiency

Main thread activity

0
172

Memory usage

CPU integer 200

122 MB

1%

19:39:55 (+154.087s, 33.3%): Memory usage ranged from 70.0 kB (rank 0) to 145 kB (rank 71) with mean 119 kB and s.d. 10.6 kB

W StepManager.h 3

Time in global memory accesses
9.6% . -

54 Concern * concern; LAl D -
55 MethodLabel method; s
56 std::string name; -
57 Action(Concern &concern, MethodLabel method) : 04:56:53-D4:59:00 (127.690s): Main thread compute 35.5 %, MP| 4.8 %, Accelerator 11.3 %, File 10 8.4 %
58 concern(&concern), method(method)
61 Action(const Action & actien) :
62 concern(action.concern), method(action.method) (- )
65 B bool Call()
66 {
92. 6% LA, 57 return_concern->CallActi = 1 -
68 )3
7 typedef std::map<steps::Step, std::vector<Action> > Registry; LT | [] ERult cudsl Sproc, mat s, mat b, mat o, shared]
72

73 Vo

.
I nVeStI g ate 78 StepManager (Phase phases = 1, reporting::Timers * timers = NULL, bool separate concerns = false);
79

80 Jees

87 void Reaister(Phase phase. steps::Step sten. Concern & concern. MethodLabel method):

finyrank == 0}

an n Otate d Input/Output | Project Files = Main Thread Stacks ‘ Functions \

Main Thread Stacks

Total core time ~ MPI Function(s) on line

Source File Edit View Metrics Window Help

S O u rC e C O d e EE"Sill"||’\'\i|i|ri1itionMiister::RunSimuIation()
=/ HandleActors [inlined]
and stack o

= CallActionsForPhase [inlined], CallActi

1.6%

allActionsForPhase [inlined]
17 others
12 others

0.2%

r:aster.RunSimulation( ) Profiled: python2.7 on 8 processes, 1 node, 8 cores (1 per process) Sampled from: Thu Jan 24 2019 13:29:04 (UTC) for 32.05

DoTimeStep(); . .
stepManager->CallActions(); Main thread activity
return concern->CallAction(method);
CallActionsForStep(static_cast<steps::Step>(step), 8);
CallActionsForPhase(phase);

13:29:04-13:29:36 (32.019s): Main thread compute 47.4 %, MPI 33.1 %, File I/0 2.0 %, Python interpreter 17.4 %, Sleeping 0.1 %

.
view 2%
Showing data from 256,000 samples taken over 256 processes (1000 per process)

37 © 2019 Arm Limited

16.0% B 18 write_sorted_letters(rank*10**6)
JEREL

comm.Barrier() { wait for everybody to synchronize _here_

imbalance (conm, rank, a, b)

arm



aspects in a single HTML

38

rm Performance Reports Appl

Analyze all performance

or TXT file

Inspect key metrics on
SIMD, multithreading,
10, MPI efficiency and

many more...

© 2019 Arm Limited

MADbench2

arm
PERFORMANCE
REPORTS

sandybridge2

Itmp/MADbench2

16 processes, 1node

Mon Nov 4 12:27:50 2013
109 seconds (2 minutes)

12-core server | HDD / 16 readers + writers MPI

Summary: MADbench2 is |/O-bound in this configuration

The total wallclock ime was spent as follows:

CPU 4s% |

vel o I

This application run was

CPU

A breakdown of how the 4 8% total CPU time was spent:
Scalar numericops  4.9% |

Vector numericops  0.1% |

Memory accesses  95.0% [

Other 00 |

The per-core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache performance.

No time was spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vedtorized

110

A breakdown of how the 53 9% total I/O ime was spent:

Time in reads 5 7% |

Time in writes 96.3% [ |

Estimaled read rate 272 Mb/s [N

Estimated write rate  7.06 Mb/s |

Most of the ime is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or

inefficient access patterns. Use an /O profiler to investigate which
write calls are affected.

Time spent running application code. High values are usually good.
This is low: it may be worth improving /O performance first

Time spentin MPI calls. High values are usually bad

This is average: check the MPI breakdown for advice on reducing it.

Time spent in filesystem 1fO. High values are usually bad.
This is high; check the 'O breakdown section for optimization advice.

MPI

Ofthe 41 3% total time spentin MPI calls:

Time in collective calls 100.0% | ]
Time in point-to-point calls 0.0%

Estimated collective rate 4.07 bytes's I

Estimaled point-to-point rate 0 byles/s |

Al of the time is spent in colleclive calls with a very low transfi
This suggests a significant load imbalance is causing
synchronization overhead. You can investigate this further wil
MP profiler.

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 160 Mb [

173 Mb
17.2% 1

Peak process memory usage
Peak node memory usage
The peak node memory usage is low. You may be able to re

the total number of CPU hours used by running with fewer MF
processes and more data on each process

'—

ication Analysis Tool

Qualify the

type of
workload

O-bound. A breakdown of this time and advice for investigating furtheris in the /O section below.

CPU

A breakdown of the 21.2% CPU time:

Single-core code 30.6%
OpenMP regions 69.4%
Scalar numeric ops 9.5%
Vector numeric ops  0.0%
Memory accesses 78.1%

The per-core performance is

memory-bound. Use a profiler to

identify time-consuming loops and check their cache

performance.

No time is spent in vectorized instructions. Check the

compiler's vectorization advice to see why key loops could not

be vectorized.

Follow guidance
advices for your
next steps and

maximize output

arm



