OOKAMI PROJECT APPLICATION

Date: 13/11/2021

Project Title: Testing and benchmarking electronic structure calculations code VASP on

OOKAMI platform

П	60	$\alpha \Delta$	
u	ъa	ĸc	

□ Testbed

☐ Production

Principal Investigator:

University/Company/Institute: Stony Brook University

Mailing address including country: Department of Materials Science and Chemical

Engineering, Stony Brook University, Stony Brook, NY

Phone number: +1 225-439-9517

Email: navnidhi.rajput@stonybrook.edu

Names & Email of initial project users:

Maxim Makeev (<u>maxim.makeev@stonybrook.edu</u>)

Juntao Yao (juntao.yao@stonybrook.edu)

Usage Description:

The allocation is requested to investigate portability of VASP code, assess its performance on the system, and tune performace of the code with particular emphasis on issues related to parallelization.

Computational Resources:

Total node hours per year: 15,000 node-hours

Size (nodes) and duration (hours) for a typical batch job: 4 nodes/48 hours

Disk space (home, project, scratch): 20GB/500GB/500GB

Personnel Resources (assistance in porting/tuning, or training for your users):

Need assistance in porting VASP

Required software: VASP (https://www.vasp.at/)

If your research is supported by US federal agencies: Yes

Agency: The Office of Naval Research

Grant number(s): Award number: N00014-20-1-2231

Production projects:

Production projects should provide an additional 1-2 pages of documentation about how (a) the code has been tuned to perform well on A64FX (ideally including benchmark data

- comparing performance with other architectures such as x86 or GPUs)
- (b) it can make effective use of the key A64FX architectural features (notably SVE, the high-bandwidth memory, and NUMA characteristics)
- (c) it can accomplish the scientific objectives within the available 32 Gbyte memory per node