OOKAMI PROJECT APPLICATION

Date: March 30. 2022

Project Title: B-Spline R-Matrix and R-Matrix with Time Dependence Calculations for

Electron and Photon Collisions

ı	COGO.	
v	Jage.	١

☐ Production

Principal Investigator: Klaus Bartschat

University/Company/Institute: Drake University / Physics & Astronomy

Mailing address including country: 2804 Forest Avenue

Des Moines, IA 50311

USA

Phone number: +1-515-954-9880

Email: klaus.bartschat@drake.edu

Names & Email of initial project users: Klaus Bartschat

klaus.bartschat@drake.edu

Kathryn Hamilton

(kathryn.hamilton@drake.edu)

Usage Description: We plan to check whether OOKAMI is suitable for our B-spline Atomic R-Matrix (BSR) [1] and R-matrix with Time Dependence (RMT) [2] codes. These packages (written in FORTRAN-90 with OpenMP/MPI parallelization; no GPUs yet, but we are looking into that) are used to model atomic structure and time-independent electron collision and photoionization processes (BSR), as well as time-dependent, short-pulse, intense laser interactions with atoms and molecules (RMT). They are currently running well in production mode on Frontera, Stampede2, Bridges-2, and Expanse, all of which have a different architecture than OOKAMI. Since OOKAMI will become an XSEDE resource later this year, we should find out whether to include it in our next resource request.

[1] O. Zatsarinny, BSR: B-spline atomic R-matrix codes.

Comp. Phys. Commun. 174 (2006) 273

This is the only published version, but a lot has been some since.

[2] Andrew C. Brown, ..., Kathryn R. Hamilton, et al., *RMT: R-matrix with time-dependence.* Solving the semi-relativistic, time-dependent Schrödinger equation for general, multielectron atoms and molecules in intense, ultrashort, arbitrarily polarized laser pulses. Comp. Phys. Commun. **250** (2020) 107062

Computational Resources:

Total node hours per year: 15,000

Size (nodes) and duration (hours) for a typical batch job: 50 nodes / 10 hours [We'll start much smaller, but if things work, these would be typical sizes for real tests.]

Disk space (home, project, scratch): 10 GB, 500 GB, 1 TB

Personnel Resources (assistance in porting/tuning, or training for your users):

Not known yet

Required software: BLAS, LAPACK, SCALAPACK (MKL preferred), cmake, Python

If your research is supported by US federal agencies:

Agency: National Science Foundation

Grant number(s): PHY-1803844, OAC-1834740, PHY-2110023. XSEDE-PHY-090031

Production projects:

Production projects should provide an additional 1-2 pages of documentation about how (a) the code has been tuned to perform well on A64FX (ideally including benchmark data comparing performance with other architectures such as x86 or GPUs)

- (b) it can make effective use of the key A64FX architectural features (notably SVE, the high-bandwidth memory, and NUMA characteristics)
- (c) it can accomplish the scientific objectives within the available 32 Gbyte memory per node

N/A (Testbed project)