

OOKAAI User Group Meeting Th 2/10/2022 2-5pm EST

Eva Siegmann, Robert Harrison

Ookami - 狼

- · Ookami is Japanese for wolf
 - Homage to the origin of the processor and the Stony Brook mascot
- A computer technology testbed supported by NSF
- Available for researchers worldwide (excluding ITAR prohibited countries & restricted parties on the EAR entity list)
- Usage is free for non-commercial and limited commercial purposes

Fugaku #1 Fastest computer in the world

First machine to be fastest in all 5 major benchmarks:

- Green-500
- Top-500 415 PFLOP/s in double precision – nearly 3x Summit!
- HPCG
- HPL-AI
- Graph-500

- 432 racks
- 158,976 nodes
- 7,630,848 cores
- 440 PF/s dp (880 sp; 1,760 hp)
- 32 Gbyte memory per node
- 1 Tbyte/s memory bandwidth/node
- Tofu-2 interconnect

https://www.r-ccs.riken.jp/en/fugaku

Ookami

Node	
Processor	A64FX
#Cores	48
Peak DP	2.76 TOP/s
Memory	32GB@ 1TB/s
System	
#Nodes	176
Peak DP	486 TOP/s
Peak INT8	3886 TOP/s
Memory	5.6 TB
Disk	0.8 PB Lustre
Comms	IB HDR-100

What is Ookami

- 176 Fujitsu A64FX compute nodes each with 32GB of high-bandwidth memory and a 512 Gbyte SSD
 - Same as in currently fastest machine worldwide, Fugaku
 - First deployment outside Japan
 - HPE/Cray Apollo 80
- Ookami also includes:
 - 1 node with dual socket AMD Rome (128 cores) with 512 Gbyte memory
 - 2 nodes with dual socket Thunder X2 (64 cores) each with 256 Gbyte memory and 2 NVIDIA V100 GPU
 - 1 node Intel Sky Lake Processors (32 cores) with 192 Gbyte memory
- Delivers ~ 1.5M node hours per year

A64FX NUMA Node Architecture

- Arm V8-64bit
- Supports high calculation performance and <u>low power consumption</u>
- Supports Scalable Vector Extensions (<u>SVE</u>) with 512-bit vector length
- 4 Core Memory Groups (CMGs)
 - 12 cores (13 in the FX1000)
 - 64KB L1\$ per core 256b cache line
 - 8MB L2\$ shared between all cores 256b cache line
 - Zero L3\$
- 32 (4x8) GB HBM @ 1 TB/s
- PCle 3 (+ Tofu-3) network

A64fx Core Memory Group

http://www.jicfus.jp/jp/wp-content/uploads/2018/11/msato-190109.pdf

What else

- CentOS 8 operating system
- DUO Authentication
- High-performance Lustre file system (~800TB of storage)
- Slurm workload manager
- Compilers: GNU, Arm, Cray, Fujitsu, Intel, Nvidia
- Continuous growing stack of preinstalled software
 - MPI implementations
 - Math libraries
 - Performance analysis & debugging:

(Arm Forge, Cray, GNU, TAU, ..)

Key Findings

- Compiler makes a huge performance difference
- In general Cray and Fujitsu deliver best performance
- Arm delivers competitive performance and fully support current language standards
- GCC optimizes for SVE and A64FX and sometimes generates best performance, but lack of vector math library

Project Timeline

2019 2	020	2021	2022	2023	
Procurement	Early user	System open fo			
Installation	access	testbed projects		& on projects	
System burn-in			XSEDE	integration	

Projects

- Total: 211 users & 71 projects
- 90% projects from within the US
- 10% from Europe
- 93% from academia
- Complete list of projects:

https://www.stonybrook.edu/ookami/projects/

User Support

- Slack channel
- Ticketing system
- Regular webinars
 - Vectorization hackathon, TAU, likwid, XDMoD, etc.
 - All recordings and slides on our website
- Virtual office hours twice a week
 - o Tu, 10 noon EST, and Th 2 4 pm EST

Informal meetings
Join and drop whenever you want
We are happy to help or just chat with you

Allocations

- Currently all allocations through Stony Brook (details next slide)
- Accounts have to be renewed every year
- Ookami is in the process of becoming an XSEDE level 2 service provider
- From October 2022 onwards 90% of allocations will be through XSEDE
- Current testbed projects will still have access though at reduced priority

Getting Accounts

- Submit a project request (templates on our website)
 - Testbed:
 - Porting and tuning software
 - Limited benchmarking
 - less than 15,000 node hours per year
 - First two project years
 - Production:
 - Less than 150K node hours per year
 - Lower priority during the first two project years
- Requests will be reviewed & published
- Allotted projects get <u>free</u> access

Get in Contact

- https://www.stonybrook.edu/ookami/
- Ticketing system: https://iacs.supportsystem.com/
 - Technical questions / issues
 - Project / account requests
- Ookami_computer@stonybrook.edu
 - For general questions
- Bi-weekly office hours (Tue 10am noon, Thu 2 4pm EST)
- Slack Channel