

BENCHMARKING GROMACS ON OOKAMI

Ookami User Group meeting

Géraud Krawezik 02/10/2022

The Benchmark

GROMACS

- Molecular Dynamics code written in MPI + OpenMP
- Real life, mature scientific tool, with ARM optimizations (SVE)
- Does not need a lot of memory per core
- Already have results on x86_64 clusters, and GPUs
- Benchmark executed through MDBenchmark
 - 15 minutes runs
 - Metric: nanoseconds of simulation per day (ns/day)
 - Easy to change run-time conditions: nodes, ranks, threads
 - Formatted results

Version Used, Build Details

- 2021.3: used in production at FI
 - Lots of performance numbers with it
 - Since that version, improvements for large # ranks on x86_64
- However, does not work with all compilers
 - Only GCC works out of the box with: -msve-vector-bits=512
 - Fujitsu/Clang and ARM work with patch
- FFTW: Fujitsu SVE implementation

The Systems (aka inputs)

- Ion channel (main benchmark)
 - 150k atoms
 - Courtesy Sonya Hanson
 (Center for Computational Biology @FI)
- Lignocellulose
 - 1M atoms
 - Courtesy PRACE (EU HPC partnership)
 - Developed to test 10k+ core machines
 - Cannot run on "all-GPU" mode

Results: GCC 10.3.0 + OpenMPI

- Varying the number of MPI ranks per node
- Fill with OpenMP threads
- Goal = using all 48 cores
- Holes= no automatic data decomposition found for the number of ranks

Gromacs 2021.3 performance (ns/day) GCC 10.3.0 (ranks_per_node x threads_per_rank)

Best performance: 97 ns/day

Results: Fujitsu/clang + MPI

- Fujitsu + Clang compiler
- Fujitsu "trad" does not work
- Code has to be patched
- Courtesy: Gilles Gouaillardet (RIST)

Best performance: 146 ns/day

Fujitsu/clang gives better performance than GCC 10.3.0

Gromacs 2021.3 performance (ns/day) (48 cores) Fujitsu/clang (ranks_per_node x threads_per_rank)

Leaving some cores for the OS? (Fujitsu/clang)

Gromacs 2021.3 performance (ns/day) (46 cores) Fujitsu/clang (ranks per node x threads per rank)

Gromacs 2021.3 performance (ns/day) (42 cores) Fujitsu/clang (ranks per node x threads per rank)

Gromacs 2021.3 performance (ns/day) (44 cores) Fujitsu/clang (ranks per node x threads per rank)

Gromacs 2021.3 performance (ns/day) (40 cores) Fujitsu/clang (ranks per node x threads per rank)

Results on other machines

Gromacs 2021.3 performance (ns/day) on AMD Rome nodes (ranks per node x threads per rank)

Gromacs 2021.3 performance (ns/day) on Intel Icelake nodes (ranks per node x threads per rank)

Single-node GPU performance:

4× NVIDIA V100-32GB: 150 ns/day
 4× NVIDIA A100-40GB: 178 ns/day

Lignocellulose

Ookami (Fujitsu/clang) 40 cores/node

Rome (GCC) 128 cores/node

Gromacs 2021.3 performance (ns/day) Fujitsu/clang (ranks_per_node x threads_per_rank)

Gromacs 2021.3 Performance (ns/day) on Rome nodes (ranks per node x threads per rank)

Performance on Rome is more likely limited by collective operations: checking with a 48-core Cascadelake to confirm

Conclusions

- Gromacs works... but compiler selection is tricky (many choices, but few work)
- Problem size is very important:
 - medium system: 100 nodes comparable to 5 rome nodes
 - large system: things look a bit better, with better strong scaling
- Future work: ARM compiler, LLVM-14 once stable enough

Thank you

Any questions?

