
BENCHMARKING GROMACS ON OOKAMI
Ookami User Group meeting

Géraud Krawezik
02/10/2022



The Benchmark

• GROMACS
– Molecular Dynamics code written in MPI + OpenMP
– Real life, mature scientific tool, with ARM optimizations (SVE)
– Does not need a lot of memory per core
– Already have results on x86_64 clusters, and GPUs

• Benchmark executed through MDBenchmark
– 15 minutes runs
– Metric: nanoseconds of simulation per day (ns/day)
– Easy to change run-time conditions: nodes, ranks, threads
– Formatted results



Version Used, Build Details

• 2021.3: used in production at FI
– Lots of performance numbers with it
– Since that version, improvements for large # ranks on x86_64

• However, does not work with all compilers
– Only GCC works out of the box with: -msve-vector-bits=512
– Fujitsu/Clang and ARM work with patch 

• FFTW: Fujitsu SVE implementation



The Systems (aka inputs)

• Ion channel (main benchmark)
– 150k atoms
– Courtesy Sonya Hanson 

(Center for Computational Biology @FI)

• Lignocellulose
– 1M atoms
– Courtesy PRACE (EU HPC partnership)
– Developed to test 10k+ core machines
– Cannot run on “all-GPU” mode

https://docs.google.com/file/d/1Ny5av1hBWHENpwp4_Jq-BNkSwJMrJAM8/preview


Results: GCC 10.3.0 + OpenMPI

• Varying the number of MPI 
ranks per node

• Fill with OpenMP threads
• Goal = using all 48 cores
• Holes= no automatic data 

decomposition found for the 
number of ranks

Best performance: 97 ns/day



Results: Fujitsu/clang + MPI

• Fujitsu + Clang compiler
• Fujitsu “trad” does not work
• Code has to be patched
• Courtesy: Gilles Gouaillardet (RIST)

Best performance: 146 ns/day

Fujitsu/clang gives better performance 
than GCC 10.3.0



Leaving some cores for the OS? (Fujitsu/clang)

Best: 213 ns/day



Results on other machines

Single-node GPU performance:
● 4⨯ NVIDIA V100-32GB: 150 ns/day
● 4⨯ NVIDIA A100-40GB: 178 ns/day

Best: 269 ns/day

Best: 413 ns/day



Lignocellulose
Ookami (Fujitsu/clang) 40 cores/node Rome (GCC) 128 cores/node

Performance on Rome is more likely limited by collective operations: checking 
with a 48-core Cascadelake to confirm



Conclusions

• Gromacs works… but compiler selection is tricky (many 
choices, but few work)

• Problem size is very important:
– medium system: 100 nodes comparable to 5 rome nodes
– large system: things look a bit better, with better strong scaling

• Future work: ARM compiler, LLVM-14 once stable enough

Thank you Eva, Tony, Robert, Catherine, Smeet for the help



Thank you
Any questions?


