"‘o,, PennState %

Pacific
Northwest

NATIONAL LABORATORY

Impact of Write-Allocate Elimination
for Graph Analytics on Ookami

Yan Kang (PSU, ybk5166@psu.edu),
Sayan Ghosh (PNNL, sg0@pnnl.gov)
Mahmut Kandemir (PSU)

2"d Ookami User Group Meeting

3 PennState '~ PennState
¥ College of Engineering Z High Performance

Computing Lab

Motivation

Memory write operations
first needs to read data
from memory into cache

4 al..]=b[...])
Cache Memory

= [Alocate ine ([J R

oo (Y

7

Pacific Northwest
NATIONAL LABORATORY

ps/ns

1-10 ns

Cache

10-100 ns
l Memory |

If the cache line is going to be overwritten anyway, what is the point of the read?

How can we get rid of this spurious read operation and what would it take?

Will' it improve performance of applications, by how much?

Yo PennState
College of Engineering

@ PennState
High Performance
Computing Lab

Pacific Northwest
NATIONAL LABORATORY

What is Write-Allocate Elimination?

Write-Allocate: Allocate a cache line for new data

Evasion: [Hardware detects if cache line is going to be overwritten] store cache line directly in
memory (Intel, non-temporal stores, compiler hints or automatic Specl2M)

Elimination: [Hardware detects if cache line is going to be overwritten] directly write an L2 cache
line with zeroes, processor loads cache line avoiding memory read

Fujitsu ABAFX: performs “zero filling” through a special 64-bit instruction (DC ZVA) in the ARMv8-A

Read Dr. Georg Hager’s blog post and paper:
https://blogs.fau.de/hager/archives/8997

@ PennState https://onlinelibrary.wiley.com/doi/10.1002/cpe.6512 g
¥ College of Engineering

~ PennState

High Performance
Computing Lab

Pacific Northwest
NATIONAL LABORATORY

Zero Filling in Fujitsu A64FX

Without ZFILL

_ Read b[] access

e Slieces | ..
9 Read a[] into caches before write_ 3§
D o I - (o I ,
> — |< — Jil.c% “zero fill” on L2 Cache:
oY = Upon receiving the DC ZVA request, the

Write a[] access and write back results to memory L2 cache secures the cache line

|)I |. I I >| . |i| Corresponding to the Speciﬁed virtual

With ZFILL address and writes zero data
“zero fill’ on L1 Cache:

& | Zoolfiisaquesioraljionis e zero data is written after data in the L1
) - PR WP £ cache is written back to the L2 cache.
8 Copy L2 cache line for a[] into L1 O
(n'd | I€innnnnn i | 2

|I| Memory access

‘ol Pennouwate e
X e ~ PennState
College of Engineering High Performance
Computing Lab

S

7

Pacific Northwest
NATIONAL LABORATORY

Zero Filling in Fujitsu A64FX

Without ZFILL

Saving memory traffic means improving

memory b/w, what’s that benchmark to
study “sustainable main memory b/w"?

road D] decess “zero fill” on L1 Cache:
§ Zero fill request for a] on L2 g zero dgta is_ written after data in the L1
R R frorareeegeed] = cache is written back to the L2 cache.
o Copy L2 cache line for a[] into L1)
&J I - I =
Write a[] access and write back results to memory [Jil_ Memory access]
I -------)l I ------------------------------

Pennouate @ PennState

College of Engineering High Performance
Computing Lab

Benchmarking decisions

o STREAM is “best case” memory b/w benchmark
0 Does not represent irregular cases, most applications

o Graphs —irregular memory accesses

o Applications perform repetitive neighborhood accesses

o NEVE is a benchmark, like STREAM for graphs (has
COPY, SUM and MAX) - |V|*|E|*#ops / t

Input: G = (V, E), (undirected) graph G.

1: forv € Vdo
Can return MB/s! 5. foru e adj(v) do {Neighbors of v}
3: {Perform some work with {v, u}}

'~ PennState
¥ College of Engineering

Sayan Ghosh, Nathan R. Tallent, and Mahantesh Halappanavar. "Characterizing performance of graph neighborhood
communication patterns." IEEE Transactions on Parallel and Distributed Systems 33.4 (2021): 915-928.

Pacific Northwest
NATIONAL LABORATORY

Typical contiguous access

N\
EOOEEEERNESE

Graph CSR access

LI -0 N
! 1 (d
colidx
1 v
I I S e
STREAM s
Graph Neighborhood Access
12
1010
10 8
c 10
3 6
8 104
10
10° Qy, Q O O Oy 6. 6
»y O
706,57, 04,708 25 4,06, 0, %
iy O//‘(')G\f@ G\’?) s ’?)/0/. ~,é(/0,5® (A
")
/)& 6,@’6‘@ /1,//6@/}64:9 ¢ {%\
2 6%/) Qe

perf events
'~ PennState

High Performance
Computing Lab

Pacific Northwest
NATIONAL LABORATORY

[[(([] ” . [
Explicit “Zero Fill” formulation for graph neighborhood accesses
static const int DISTANCE = 100; 1
static const int ELEMS_CACHE_LINE = 256 / sizeof(double); 2
static const int OFFSET = DISTANCE * ELEM_CACHE_LINE; 3
4 . .
static inline void 2fill(double * a) { @ 5 Explicit assembly to
asm volatile("dc zva, %0": : "r"(a)); 6 invoke DC ZVA
} 7
8
#pragma omp parallel 9
{ 10 H
int const tid = omp_get_thread_num(); < T EaCh thread Works on flxed
int const nthreads = omp_get_num_threads(); 12 chunk of iterations over |V|
int chunk = nvertices / nthreads; 13 . .
doublex const zfill_limit = c + (tid+1)xchunk - OFFSET; 14 (work is variable)
15
#pragma omp for schedule(static) 16
for (int j=0; j<nvertices; j+=ELEMS_CACHE_LINE) { - BIOCk Ou.ll:ermOSt Ioop
int const x __res:»trict__ cons.t jrowptr = rowptr * Js 18 over Ver“ces
double x __restrict__ const jbuf = buf + j; 19
20
if (JOUF+OFFSET < zfill_Limit) €€ = Invoke zero fill in strides larger
zfill (jbuf+OFFSET); 22 .
23 than L2 prefetch distance
for (int 1=0; i<ELEMS_CACHE_LINE; ++i) 24
for (int e=jrowptr[i]; e<jrowptr[i+1]; ++e) = . .
jbuf[il += colidx[el.weight; <€ 2 Inner loop, where the Zfill virtual
} // loop over vertices 27 H :
SRl - .l o8 address will be invoked several
times (trip count unknown)

Listing 1: Graph neighbor access pseudocode leveraging “zero U
.

@ PennState fill” for degree accumulation. https://gitlab.com/arm-hpc/training/arm-sve-tools/- "; PennState

g College of Engineerin Itree/master/06_AB4FX/02_stream/04_stream_zfill High Performance
Computing Lab

Benchmarks and applications for evaluations

Pacific Northwest
NATIONAL LABORATORY

Benchmark Scenarios

Tested Kernels

Application scenarios

Ta—rgeted kernels

STREAM

Copy

Scale

Add

Graph500 Breadth First Search [22]

Next frontier list update is similar to graph neighbor-
hood Copy.

Triad

Graph Neighborhood Kernels

Add

Copy

Louvain graph clustering [11]

Modularity computation requires summing data, sim-
ilar to graph neighborhood Add.

Max

GAP benchmark suite [5]

";a.
o,
4

Expect STREAM to be
the best casel

GAP

£3 ¥ 3%

PennState
College of Engineering

Breadth First Search (BFS)

Next frontier list update is similar to graph neighbor-
hood Copy.

PageRank (PR and PR(SPMV))

Score update is similar to STREAM Copy.

Connected Components
(CC and CC(SV))

Singleton partition assignment is similar to STREAM
Copy.

Betweenness Centrality (BC)

Aggregation of betweenness scores similar to graph
neighborhood Add.

+

http://gap.cs.berkeley.edu/benchmark.htmi

https://github.com/sg0/louvain-offload

https://qgithub.com/sg0/gapbs

https://qithub.com/sg0/graph500

https://qgithub.com/sg0/neve

" , PennState
High Performance
J Computing Lab

https://github.com/sg0/louvain-offload
https://github.com/sg0/gapbs
https://github.com/sg0/graph500
https://github.com/sg0/neve

STREAM benchmark evaluations (GCC, ARM and FCC)

9 x 102
[GCC/11.2 3 ARM/22.0 7z | FUJITSU/;.S =3 FUJITSU/4.5/ZF-Im3pIicit1\\ FUjitSU haS a
5% 5% . .
I == == compiler option (-
40% 40% [1 Kzfill), referred as
20%== 7 implicit version
7x10° 1o o iR gy [does not work for
. - C++ compiler]
@ 3%
o 6x 102 — ——
C‘g e o ol bow oo E T E
= o |
@ N—— — ——
L === — S—
= —] — —
5% 102 — — I —]
— — 7 ces 1
— — Z o — All compilers
— % 2 — demonstrate
4102 X — % e XX Improvements,
=92 %% , = /4 X Al FCC up to 70%!
COPY SCALE ADD TRIAD

Figure 5: Performance of STREAM (GB/s, more is better) across
compilers for regular and “zero fill” (red broken lines) versions.

'~ PennState
¥ College of Engineering

PennState

High Performance
Computing Lab

Mean Rate GB/s

Graph benchmark evaluations (GCC, ARM and FCC)

-

Pacific Northwest
NATIONAL LABORATORY

3
+0 : 3 GConiz E= ARM/22.0 [ZJ FUJITSU/4.5 ; - H
] 1 1 1 1 1
i o | i i i i
5 1 -24% 4 1 1 1 1 n
. ol 28% =0 i i 28% | 1 1% iy
=. 7%] 1] 1 1 &
v = 9%
: 19%] | 3d=hi% 1 ! ! . I 25% 1 -6%! i Jops
s 19% 0w “E 7 E 1 -1% i “‘_3’: . ;' — 19577 E E ;'
2%7) I 20% | E2, % = i o 5%
2 — P 1% .
10 y o 1% =1 10% o] . 0 B ; 2477 |
9 EV A1 10% ey 4 %39% 32V e i
;) —.—.86% 9% . i 11% . i
15':,, = : . 1% ! .4 y : h % 1% 1
H \ P | !
=11 1
b | |
— ' |
6% | F4/1! 1
A ='A1 i
=k i 15%
1 ='A 1
b =k 15% i 11%
=
— 1
COPY ADD MAX COPY ADD MAX COPY ADD MAX CcorY ADD MAX COPY ADD MAX COoPY ADD MAX COPY ADD MAX MAX
com-Orkut uk-2002 ljournal-2008 indochina-2004 Mawi_201512020030 kron_g500-logn21 hollywood-2009 vas_stokes_4M

Figure 7: Performance of graph neighborhood kernels (GB/s, more is better) across compilers and graphs for regular and “zero fill” versions.
Text in blue indicates performance degradation in percentage for “zero fill” version, whereas red indicates a relative performance improvement.

- Used different graphs — implies different structure/work-per-loop
- ZFILL: degradation of up to 28% but also up to 90% improvement (FCC)
- Fujitsu: Irregularities with ADD kernel — >4x memory writes, 3 extra

instructions to perform ADD operation compared to GCC/ARM!

-3 PennState

S

¥ College of Engineering

"‘o,’; PennState
High Performance
J Computing Lab

Graph Application Evaluations

[J GCC/11.2 E=3 ARM/22.0 [ZZA FUJITSU/4.5
11% 3%
101 4 = 27
7% 3%
- — 1% y
0 — ; —
P 4% — —
= — /"7 =
2 5% — —
= : 8% 1% — —
1072 4 6% -1%| 1% — —
SCALE=20 SCALE=21 SCALE=22 SCALE=23 SCALE=24 SCALE=25

Figure 9: Execution times of Graph500 BFS with % improvements
for explicit “zero fill” version against scale 20-25 Kronecker graphs.

- Does not improve performance where there is limited
work in the ZFILL section
- ~10% improvement when there is sufficient work

PennState
College of Engineering

[GCC112 £ ARM220 CZ1 FUJTSUMAS

a% 1%

1%

Run Time (s)

2

com-Orkut

r99_n_2_24_s0 uk-2002 ljournal-2008 nipkkt200 Bump_2911

Figure 10: Performance of GAP BFS benchmark for regular and
“zero fill” (% improvements) under different graphs.

S
I &
¥
@I 2
K3
Run Time (s)

NATIONAL LABORATORY

[GCC/112 B3 ARM22.0 22 FUJITSUAS
1%
1% 13
2%
8% 0%
com-Orkut 19g_n_2_24 50 k-2002 ljournal-2008 nlpkkt200 Bump_2911

Figure 13: Performance of GAP CC benchmark for regular and
“zero fill” (% improvements) under different graphs.

[GCCAl2 =3 ARM22.0 22 FUITSU/A5 100
[C3 GConlz O ARM/22.0 £Z3 FUJITSU/4.5
7]
10° r 1% 2%
2%
1% 1%

o = o)

E — e

£ —

s = E

H — < S
— &
—
= 1%
— 1% 6% -6X
]
=
 — REL

= %
=
com-Orkut r99_n_2 24 s0 uk-2002 liournal-2008 nlpkkt200 Bump_2911 com-Orkut rgg_n_2_24_s0 uk-2002 ljournal-2008 nlpkkt200 Bump_2911

Figure 11: Performance of GAP PR benchmark for regular and

“zero fill” (% improvements) under different graphs.

Figure 15: Performance of GAP BC benchmark for regular and
“zero fill” (% improvements) under different graphs.

PennState

High Performance
Computing Lab

Pacific Northwest
NATIONAL LABORATORY

Observations

 NEVE exhibit about 2-5x performance degradation compared to STREAM
e Fujitsu ZFILL-implicit on Graph500 BFS demonstrate 7-17% improvement

 Compared to 3—-11% improvement for explicit version (compiler can win here!)
 Median improvement of 5-9% GAP PR and CC benchmarks

Benchmarks (STREAM & Graph Neighborhood) Applications (Graph500 & GAPBS & Louvain)

e °
C
SE’ z benchmarks | = | graph applications
o . ~20/40% | %, ~10%
O fun{ e : o W
=] |

£ 20%] -~ g I e Rl __ e e ____ 2 &
T : ... ¢ . o “‘. ° \...’..‘:o :u‘
\o - L]' L) s
9

. °
®@e o °F cscme 00 e o ames o 0° 00 &

0 20 40 60 80 100 [20 40 60 80 100
Figure 17: Zero Fill % improvement quantities for bench-
marks and applications across various graphs and compilers.

‘'~ 3 PennState '~ PennState
¥ College of Engineering Z High Performance

Computing Lab

Pacific Northwest
NATIONAL LABORATORY

Performance variabilities for irregular workloads on Ookami

RHEL: timeseries RHEL: sorted by detour
0.00018 — . . . - . 0.00018 ~ — -
ab4fx-linux ab4fx-linux
0.00016 | E 0.00016 |
0.00014 | . 0.00014 |
0.00012 | E Sorted 0.00012 |
))
@ 0.0001 t g,i 0.0001
3 8 -5 8 -5
5 x10™ L > 8x10™ |
a a
6x10° | 1 6x10° |
4x10° | 4x10° |]
2x10°5 | 2x105 | i |
0 0
0 2 4 6 8 10 0 200 400 600 800 1000
Time(sec) Rank

Selfish Detour benchmark indicates noise

'~J PennState ‘3 PennState
¥ College of Engineering Z High Performance
Computing Lab

Pacific Northwest
NATIONAL LABORATORY

FX700 vs. FX1000 (in terms of performance events availability)

L2 events, FX700 (Ookami)

> [sayaghosh@fj002 ~]$ perf list | grep -i 12

I12d_cache OR armv8_pmuv3_0/12d_cache/ [Kernel
PMU event]
12d_cache_refill OR armv8_pmuv3_0/12d_cache_refill/ [Kernel
PMU event]
I12d_cache_wb OR armv8_pmuv3_0/I12d_cache_wb/ [Kernel
PMU event]
12d_tlb OR armv8_pmuv3_0/12d_tlb/ [Kernel
PMU event]
12d_tlb_refill OR armv8_pmuv3_0/12d_tlb_refill/ [Kernel
PMU event]
12i_tlb OR armv8_pmuv3_0/I2i_tlb/ [Kernel
PMU event]
12i_tlb_refill OR armv8_pmuv3_0/I12i_tlb_refill/ [Kernel
PMU event]
PennState

College of Engineering

L2 events, FX1000 (Fugaku) [via Jens Domke, RIKEN]

[u10016@e29-3210s ~]$ perf list | grep -i 12

ea_|2 [This event counts energy consumption per cycle of L2 cache]
12_miss_count [This event counts the number of times of L2 cache miss]
12_miss_wait [This event counts outstanding L2 cache miss requests per cycle]
12d_cache

12d_cache_mibmch_prf [an L2 cache refill buffer allocated by demand access]
12d_cache_refill

12d_cache_refill_dm [This event counts L2D_CACHE_REFILL caused by demand access]
12d_cache_refill_hwprf [This event counts L2D_CACHE_REFILL caused by hardware prefetch]
12d_cache_refill_prf [This event counts L2D_CACHE_REFILL caused by software or hardware
12d_cache_swap_local [This event counts operations where demand access hits an L2 cache

12d_cache_wb

12d_swap_dm [This event counts operations where demand access hits an L2 cache

12d_tlb

12d_tlb_refill

12i_tlb

12i_tlb_refill

12hwpf_inj_alloc_pf [This event counts allocation type prefetch injection requests to L2

I2hwpf_inj_noalloc_pf [L2 cache generated by hardware prefetcher]

12hwpf_other [This event counts prefetch requests to L2 cache generated by the other

12hwpf_stream_pf [This event counts streaming prefetch requests to L2 cache generated by for L1D cache, L2
cache and memory access

L1D cache, L2 cache and memory access]

Id_comp_wait_I2_miss

Id_comp_wait_I2_miss_ex

12_pipe_comp_all [This event counts completed requests in L2 cache pipeline]
12_pipe_comp_pf_I12mib_mch [an L2 cache refill buffer allocated by demand access]
12_pipe_val [This event counts valid cycles of L2 cache pipeline]

(\guag
~ PennState
High Performance
Computing Lab

Pacific Northwest
NATIONAL LABORATORY

Thanks

PNNL LDRD Data Model-Convergence

DOE ASCR Advanced Memory to Support Artificial Intelligence for
Science (AIAMS, Pl: Andrés Marquez, PNNL)

Penn State HPCL (Prof. Mahmut Kandemir)
Ookami testbed support (Eva and team)

3 PennState '~ PennState
¥ College of Engineering Z High Performance
omputing Lal

