
Impact of Write-Allocate Elimination
for Graph Analytics on Ookami

Yan Kang (PSU, ybk5166@psu.edu),
Sayan Ghosh (PNNL, sg0@pnnl.gov)
Mahmut Kandemir (PSU)

2nd Ookami User Group Meeting

Motivation

a[-------------]

a[...] = b[…]
MemoryCache

t=0

a[-------------]t=1

Write miss

a[-------------]t=2

Allocate line

Copy

Reg.

Cache

Memory

ps/ns

1-10 ns

10-100 ns

Memory write operations
first needs to read data

from memory into cache

If the cache line is going to be overwritten anyway, what is the point of the read?

How can we get rid of this spurious read operation and what would it take?

Will it improve performance of applications, by how much?

Write-Allocate: Allocate a cache line for new data

Evasion: [Hardware detects if cache line is going to be overwritten] store cache line directly in
memory (Intel, non-temporal stores, compiler hints or automatic SpecI2M)

Elimination: [Hardware detects if cache line is going to be overwritten] directly write an L2 cache
line with zeroes, processor loads cache line avoiding memory read

Fujitsu A64FX: Performs “zero filling” through a special 64-bit instruction (DC ZVA) in the ARMv8-A

What is Write-Allocate Elimination?

https://blogs.fau.de/hager/archives/8997
https://onlinelibrary.wiley.com/doi/10.1002/cpe.6512

Read Dr. Georg Hager’s blog post and paper:

Zero Filling in Fujitsu A64FX

“zero fill” on L2 Cache:
Upon receiving the DC ZVA request, the
L2 cache secures the cache line
corresponding to the specified virtual
address and writes zero data

“zero fill” on L1 Cache:
zero data is written after data in the L1
cache is written back to the L2 cache.

Memory access

Zero Filling in Fujitsu A64FX

“zero fill” on L2 Cache:
Upon receiving the DC ZVA request, the
L2 cache secures the cache line
corresponding to the specified virtual
address and writes zero data

“zero fill” on L1 Cache:
zero data is written after data in the L1
cache is written back to the L2 cache.

Memory access

Saving memory traffic means improving
memory b/w, what’s that benchmark to
study “sustainable main memory b/w”?🤔

Benchmarking decisions

q STREAM is “best case” memory b/w benchmark
q Does not represent irregular cases, most applications

q Graphs – irregular memory accesses
q Applications perform repetitive neighborhood accesses

q NEVE is a benchmark, like STREAM for graphs (has
COPY, SUM and MAX) - |V|*|E|*#ops / t

Sayan Ghosh, Nathan R. Tallent, and Mahantesh Halappanavar. "Characterizing performance of graph neighborhood
communication patterns." IEEE Transactions on Parallel and Distributed Systems 33.4 (2021): 915-928.

Can return MB/s!

Explicit “Zero Fill” formulation for graph neighborhood accesses

Explicit assembly to
invoke DC ZVA

Block outermost loop
over vertices

Invoke zero fill in strides larger
than L2 prefetch distance

https://gitlab.com/arm-hpc/training/arm-sve-tools/-
/tree/master/06_A64FX/02_stream/04_stream_zfill

Inner loop, where the zfill virtual
address will be invoked several
times (trip count unknown)

Each thread works on fixed
chunk of iterations over |V|
(work is variable)

Benchmarks and applications for evaluations

Expect STREAM to be
the best case!

http://gap.cs.berkeley.edu/benchmark.html

https://github.com/sg0/louvain-offload
https://github.com/sg0/gapbs
https://github.com/sg0/graph500
https://github.com/sg0/neve

https://github.com/sg0/louvain-offload
https://github.com/sg0/gapbs
https://github.com/sg0/graph500
https://github.com/sg0/neve

STREAM benchmark evaluations (GCC, ARM and FCC)

All compilers
demonstrate

improvements,
FCC up to 70%!

Fujitsu has a
compiler option (-
Kzfill), referred as

implicit version
[does not work for

C++ compiler]

Graph benchmark evaluations (GCC, ARM and FCC)

- Used different graphs – implies different structure/work-per-loop
- ZFILL: degradation of up to 28% but also up to 90% improvement (FCC)
- Fujitsu: Irregularities with ADD kernel – >4x memory writes, 3 extra

instructions to perform ADD operation compared to GCC/ARM!

Graph Application Evaluations

- Does not improve performance where there is limited
work in the ZFILL section

- ~10% improvement when there is sufficient work

Observations

• NEVE exhibit about 2–5x performance degradation compared to STREAM
• Fujitsu ZFILL-implicit on Graph500 BFS demonstrate 7–17% improvement

• Compared to 3–11% improvement for explicit version (compiler can win here!)

• Median improvement of 5–9% GAP PR and CC benchmarks

benchmarks graph applications

%
-im

pr
ov

em
en

t

~20/40% ~10%

Performance variabilities for irregular workloads on Ookami

sorted

Selfish Detour benchmark indicates noise

FX700 vs. FX1000 (in terms of performance events availability)

> [sayaghosh@fj002 ~]$ perf list | grep -i l2
l2d_cache OR armv8_pmuv3_0/l2d_cache/ [Kernel
PMU event]
l2d_cache_refill OR armv8_pmuv3_0/l2d_cache_refill/ [Kernel
PMU event]
l2d_cache_wb OR armv8_pmuv3_0/l2d_cache_wb/ [Kernel
PMU event]
l2d_tlb OR armv8_pmuv3_0/l2d_tlb/ [Kernel
PMU event]
l2d_tlb_refill OR armv8_pmuv3_0/l2d_tlb_refill/ [Kernel
PMU event]
l2i_tlb OR armv8_pmuv3_0/l2i_tlb/ [Kernel
PMU event]
l2i_tlb_refill OR armv8_pmuv3_0/l2i_tlb_refill/ [Kernel
PMU event]

[u10016@e29-3210s ~]$ perf list | grep -i l2

ea_l2 [This event counts energy consumption per cycle of L2 cache]
l2_miss_count [This event counts the number of times of L2 cache miss]
l2_miss_wait [This event counts outstanding L2 cache miss requests per cycle]
l2d_cache
l2d_cache_mibmch_prf [an L2 cache refill buffer allocated by demand access]
l2d_cache_refill
l2d_cache_refill_dm [This event counts L2D_CACHE_REFILL caused by demand access]
l2d_cache_refill_hwprf [This event counts L2D_CACHE_REFILL caused by hardware prefetch]
l2d_cache_refill_prf [This event counts L2D_CACHE_REFILL caused by software or hardware
l2d_cache_swap_local [This event counts operations where demand access hits an L2 cache
l2d_cache_wb
l2d_swap_dm [This event counts operations where demand access hits an L2 cache
l2d_tlb
l2d_tlb_refill
l2i_tlb
l2i_tlb_refill
l2hwpf_inj_alloc_pf [This event counts allocation type prefetch injection requests to L2
l2hwpf_inj_noalloc_pf [L2 cache generated by hardware prefetcher]
l2hwpf_other [This event counts prefetch requests to L2 cache generated by the other
l2hwpf_stream_pf [This event counts streaming prefetch requests to L2 cache generated by for L1D cache, L2
cache and memory access
L1D cache, L2 cache and memory access]
ld_comp_wait_l2_miss
ld_comp_wait_l2_miss_ex
l2_pipe_comp_all [This event counts completed requests in L2 cache pipeline]
l2_pipe_comp_pf_l2mib_mch [an L2 cache refill buffer allocated by demand access]
l2_pipe_val [This event counts valid cycles of L2 cache pipeline]

L2 events, FX700 (Ookami) L2 events, FX1000 (Fugaku) [via Jens Domke, RIKEN]

Thanks

• PNNL LDRD Data Model-Convergence
• DOE ASCR Advanced Memory to Support Artificial Intelligence for

Science (AIAMS, PI: Andrés Márquez, PNNL)
• Penn State HPCL (Prof. Mahmut Kandemir)
• Ookami testbed support (Eva and team)

