
Graph-based proxy 

applications and 
derivative benchmarking 

on Ookami

Sayan Ghosh

Computer Scientist, PNNL

February 11, 2022

Ookami User Group Meeting



2

Graph analytics codes

Vite/Grappolo (Clustering), MEL (Matching), 

Ripples (Influence Maximization)

[PARCO’15, IPDPS’18, HPEC’17, HPEC’18, 

HPEC’19, CLUSTER’19, SC’20, SC’21]

miniVite/Grappolo (Clustering), MEL-

UPX (Matching), TriC (Triangle 

Counting)

[PMBS’18, HPEC’20]

NEVE (Communication and 

memory access analysis)

[TPDS’21]

Derivative benchmarks

Proxy applications

Applications



3

Graph algorithms

▪ Combinatorial (graph) algorithms are key 
enablers in data analytics
▪ Graph coloring, matching, community 

detection, pattern, centralities, traversals, etc.

▪ Relatively less computation and more
memory accesses
▪ Graph codes on accelerators mainly exploits 

the b/w, ALUs are relatively underutilized 
(many algorithms have 0 FLOPS)

▪ Limited vectorization advantage

▪ Graphs are multifarious, distributed-
memory poses challenges
▪ Asynchronous, irregular and adversarial 

communication patterns

▪ Network contention

Pair-wise communication volume for BFS (left) 

and Graph neighborhood (right) for same graph

Communication is shown as a heat map of 

bytes/process pair, black is 0 bytes

Graph500 or traversal-based algorithms are not 

necessarily representative use cases!



4

Derivative Benchmark: Analyzing Graph Memory 
Accesses via simple kernels

Scanning the neighborhood of a vertex 

in a graph is common

Disparity in maximum and average 

#edges impacts performance 

(unstructured parallelism)

• Reporting TEPS (higher the better)

• Detect issues with systems and runtimes

• Sandbox for building graph applications

* Results from Yan Kang, PSU

Different graphs (100M+ 

edges) on different compilers

Red spectrum is good, 

blue/white not so much

• Column-wise variation depict differences in compilers

• Row-wise variation depict differences across graphs 

(structure is impeding parallelism, investigate)

• Will try ZFILL

Neighbor copy Neighbor max

Neighbor add



5

Proxy: Triangle counting by exploiting graph structure

Communication

• Developed several variants of distributed 
exact graph triangle counting
▪ Simple formulation – exploits vertex-centric 

distributed graph structure – process-based

▪ Options to suspend and resume work on a 
vertex based on a customizable buffer 

✓ Throttle messages and limit neighborhood size

▪ Different communication models: MPI 
send/recv, RMA, neighborhood collectives

• This code is a pilot before moving on 
optimizing other apps –
clustering/matching, etc

• Preliminary results on Ookami shows about 
3.5x speedup relative to 8x nodes

Ghosh S, Halappanavar M. TriC: Distributed-memory Triangle Counting by Exploiting the Graph Structure. In 2020 IEEE High 

Performance Extreme Computing Conference (HPEC) 2020 Sep 22 (pp. 1-6). IEEE. [code: https://github.com/sg0/tric]



6

Summary

• Most of our codes are distributed and have a startup problem (more nodes to 
run – major communication overhead!)
▪ Mitigating it with fixed-buffer and suspend-restart mechanism

▪ Buffer size is a trade-off (too large OOM, too small more iters)

▪ More processes and less threads lead to better results (not much on-node parallelism –
could be more) – using 12-24 PEs per node

▪ Investigate communication avoiding heuristics and extract more bandwidth from node

▪ Impact of SVE?

• armclang (21.0) performance seems to be generally better

• Software setup/building was straightforward – thanks for the support and 
active Slack channel! 


