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Derivative benchmarks

Proxy applications

miniVite/Grappolo (Clustering), MEL-
UPX (Matching), TriC (Triangle
Applications Counting)
[PMBS’18, HPEC’20]

Vite/Grappolo (Clustering), MEL (Matching),
Ripples (Influence Maximization)
[PARCO’15, IPDPS’18, HPEC'17, HPEC’18,
HPEC'19, CLUSTER’19, SC’20, SC’21]
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= Combinatorial (graph) algorithms are key
enablers in data analytics

= Graph coloring, matching, community

detection, pattern, centralities, traversals, etc.

» Relatively less computation and more
memory accesses

= Graph codes on accelerators mainly exploits
the b/w, ALUs are relatively underutilized
(many algorithms have 0 FLOPS)

* Limited vectorization advantage
» Graphs are multifarious, distributed-

memory poses challenges

= Asynchronous, irregular and adversarial
communication patterns

= Network contention

Input: G(V,E), s € V
Q.enqueue ((visit(s)) I t: G(V.E
while (!Q.empty()): fr;}r)uu in(V; :

u = Q.dequeue () . ! )
for v in neighbor(u): Bl o neizhbor(u) :
if (!visited(v): visit (v)

Q.enqueue (( visit(v))
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Pair-wise communication volume for BFS (left)
and Graph neighborhood (right) for same graph

Communication is shown as a heat map of
bytes/process pair, black is 0 bytes

Graph500 or traversal-based algorithms are not
necessarily representative use cases!




"%/ Derivative Benchmark: Analyzing Graph Memory
reclfic et ACCesses via simple kernels
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Input: G = (V, E), (undirected) graph G.

Graph Adjacency matrix CSR Typical contiguous access
| LN LN £ 1: forv € V do
0O 1 2 3 SEE cee b 2. for u € adj(v) do {Neighbors of v}
olof1|1]|o]! 3: {Perform some work with {v, u}}
1110l o rowptr: 024 69 Graph CSR access
o7 Tolo 7] colidx:12030312 T g ] Jrowetr Scanning the neighborhood of a vertex
in a graph is common
3{of1]1]o0 \ \ i\& D
| ! ) — 1 [ Disparity in maximum and average
’ ’ . cee #edges impacts performance
Different graphs (100M+ (unstructured parallelism)
edges) on different compilers blue/white not so much
« Reporting TEPS (higher the better)

MM I x10° » Detect issues with systems and runtimes
|28 « Sandbox for building graph applications

Neighbor copy

europe_osm €urope_osm

—24

u e 2 kmer_U1 .
kmer_U1 20 er_Ula
E er_Uta 5 Neighbor add
r 4
z r -20
=5 -16 g8
@ kmer_V2a 0] kmer_V2a europe_osm
- 16
1.2
mawi_201512020030 - - oe mawi_201512020030 1.2 r kmer_U1a
' 2
CPE/21.03 Fujitsw4.50 GCC11.2 armclang 21.0 CPE/21.03 Fujitsw4 50 GCC11.2 armclang 21.0 é.
Compiler Compiler @ kmer_V2a

« Column-wise variation depict differences in compilers
* Row-wise variation depict differences across graphs mawi_201512020030 -
(structure is impeding parallelism, investigate)
* ReSU“:S from Yan Kang’ PSU o Wl” try ZF”_L CPE/21.03 Fu;ilsuf4c56(:npll(zcric11.2 armclang 21.0
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Actual edge
_____ Prospective edge

— Communication

Remote edge search,
Send message to

« Developed several variants of distributed

exact graph triangle counting ouner(u) o check u
IT {U,W; exiIsts
= Simple formulation — exploits vertex-centric / 1. Local edge search,
distributed graph structure — process-based

= Options to suspend and resume work on a Vv
vertex based on a customizable buffer

v Throttle messages and limit neighborhood size

= Different communication models: MPI
send/recv, RMA, neighborhood collectives

* This code is a pilot before moving on
optimizing other apps —
clustering/matching, etc

Send message back to source

. check if {u,w} exists
/ . 2. Remote edge acknowledge,
i If edge was found or otherwise
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* Preliminary results on Ookami shows about
3.5x speedup relative to 8x nodes

Ghosh S, Halappanavar M. TriC: Distributed-memory Triangle Counting by Exploiting the Graph Structure. In 2020 IEEE High
Performance Extreme Computing Conference (HPEC) 2020 Sep 22 (pp. 1-6). IEEE. [code: https://github.com/sgO0/tric]
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OOKAMI NODES AND PES (24 PES/NODE)
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* Most of our codes are distributed and have a startup problem (more nodes to
run — major communication overhead!)
= Mitigating it with fixed-buffer and suspend-restart mechanism
= Buffer size is a trade-off (too large OOM, too small more iters)

= More processes and less threads lead to better results (not much on-node parallelism —
could be more) — using 12-24 PEs per node

* Investigate communication avoiding heuristics and extract more bandwidth from node
* Impact of SVE?

« armclang (21.0) performance seems to be generally better

« Software setup/building was straightforward — thanks for the support and
active Slack channel!




