7

Pacific
Northwest

NATIONAL LABORATORY

Graph-based proxy

applications and
derivative benchmarking

on Ookami

February 11, 2022
Ookami User Group Meeting

Sayan Ghosh
Computer Scientist, PNNL

ENERGY BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy

o

Pacific

Northwest (Sraph analytics codes

Derivative benchmarks

Proxy applications

miniVite/Grappolo (Clustering), MEL-
UPX (Matching), TriC (Triangle
Applications Counting)
[PMBS’18, HPEC’20]

Vite/Grappolo (Clustering), MEL (Matching),
Ripples (Influence Maximization)
[PARCO’15, IPDPS’18, HPEC'17, HPEC’18,
HPEC'19, CLUSTER’19, SC’20, SC’21]

7

Pacific

Northwest (Graph algorithms

= Combinatorial (graph) algorithms are key
enablers in data analytics

= Graph coloring, matching, community

detection, pattern, centralities, traversals, etc.

» Relatively less computation and more
memory accesses

= Graph codes on accelerators mainly exploits
the b/w, ALUs are relatively underutilized
(many algorithms have 0 FLOPS)

* Limited vectorization advantage
» Graphs are multifarious, distributed-

memory poses challenges

= Asynchronous, irregular and adversarial
communication patterns

= Network contention

Input: G(V,E), s € V
Q.enqueue ((visit(s)) I t: G(V.E
while (!Q.empty()): fr;}r)uu in(V; :

u = Q.dequeue () . !)
for v in neighbor(u): Bl o neizhbor(u) :
if (!visited(v): visit (v)

Q.enqueue ((visit(v))

TOTAL VOLUME BYTES
MIPamhs

RECENER

1023
= G.OET,

1.31€7

Pair-wise communication volume for BFS (left)
and Graph neighborhood (right) for same graph

Communication is shown as a heat map of
bytes/process pair, black is 0 bytes

Graph500 or traversal-based algorithms are not
necessarily representative use cases!

"%/ Derivative Benchmark: Analyzing Graph Memory
reclfic et ACCesses via simple kernels

NATIONAL LABORATORY

Input: G = (V, E), (undirected) graph G.

Graph Adjacency matrix CSR Typical contiguous access
| LN LN £ 1: forv € V do
0O 1 2 3 SEE cee b 2. for u € adj(v) do {Neighbors of v}
olof1|1]|o]! 3: {Perform some work with {v, u}}
1110l o rowptr: 024 69 Graph CSR access
o7 Tolo 7] colidx:12030312 T g] Jrowetr Scanning the neighborhood of a vertex
in a graph is common
3{of1]1]o0 \ \ i\& D
| !) — 1 [Disparity in maximum and average
’ ’ . cee #edges impacts performance
Different graphs (100M+ (unstructured parallelism)
edges) on different compilers blue/white not so much
« Reporting TEPS (higher the better)

MM I x10° » Detect issues with systems and runtimes
|28 « Sandbox for building graph applications

Neighbor copy

europe_osm €urope_osm

—24

u e 2 kmer_U1 .
kmer_U1 20 er_Ula
E er_Uta 5 Neighbor add
r 4
z r -20
=5 -16 g8
@ kmer_V2a 0] kmer_V2a europe_osm
- 16
1.2
mawi_201512020030 - - oe mawi_201512020030 1.2 r kmer_U1a
' 2
CPE/21.03 Fujitsw4.50 GCC11.2 armclang 21.0 CPE/21.03 Fujitsw4 50 GCC11.2 armclang 21.0 é.
Compiler Compiler @ kmer_V2a

« Column-wise variation depict differences in compilers
* Row-wise variation depict differences across graphs mawi_201512020030 -
(structure is impeding parallelism, investigate)
* ReSU“:S from Yan Kang’ PSU o Wl” try ZF”_L CPE/21.03 Fu;ilsuf4c56(:npll(zcric11.2 armclang 21.0

7

Pacific Proxy: Triangle counting by exploiting graph structure

Northwest

NATIONAL LABORATORY

Actual edge
_____ Prospective edge

— Communication

Remote edge search,
Send message to

« Developed several variants of distributed

exact graph triangle counting ouner(u) o check u
IT {U,W; exiIsts
= Simple formulation — exploits vertex-centric / 1. Local edge search,
distributed graph structure — process-based

= Options to suspend and resume work on a Vv
vertex based on a customizable buffer

v Throttle messages and limit neighborhood size

= Different communication models: MPI
send/recv, RMA, neighborhood collectives

* This code is a pilot before moving on
optimizing other apps —
clustering/matching, etc

Send message back to source

. check if {u,w} exists
/ . 2. Remote edge acknowledge,
i If edge was found or otherwise

W

com-orkut (|E|=234M)

-

—

(%)
o
w
L2}
w
=
-
=
=]
-
2
Q
w
>
w

—

* Preliminary results on Ookami shows about
3.5x speedup relative to 8x nodes

Ghosh S, Halappanavar M. TriC: Distributed-memory Triangle Counting by Exploiting the Graph Structure. In 2020 IEEE High
Performance Extreme Computing Conference (HPEC) 2020 Sep 22 (pp. 1-6). IEEE. [code: https://github.com/sgO0/tric]

16 (384) 32 (768) 64 (1536) 128 (3072)
OOKAMI NODES AND PES (24 PES/NODE)

7

Pacific

Northwest Summary

* Most of our codes are distributed and have a startup problem (more nodes to
run — major communication overhead!)
= Mitigating it with fixed-buffer and suspend-restart mechanism
= Buffer size is a trade-off (too large OOM, too small more iters)

= More processes and less threads lead to better results (not much on-node parallelism —
could be more) — using 12-24 PEs per node

* Investigate communication avoiding heuristics and extract more bandwidth from node
* Impact of SVE?

« armclang (21.0) performance seems to be generally better

« Software setup/building was straightforward — thanks for the support and
active Slack channel!

