Ookami User Group Meeting:
FLASH on A64FX

Catherine Feldman, Benjamin Michalowicz, Eva Siegmann, Tony Curtis,
Alan Calder and Robert Harrison

Institute for Advanced Computational Science
Stony Brook University, NY, USA

(g) °
£ IH' S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

FLASH Center

Founded in 1997 as part of the DOE’s ASCI

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 131:273-334, 2000 November
©) 2000. The American Astronomical Society. All rights reserved. Printed in US.A.

FLASH: AN ADAPTIVE MESH HYDRODYNAMICS CODE FOR MODELING ASTROPHYSICAL
THERMONUCLEAR FLASHES

B. FRyxeLL,"? K. OLSON,"? P. RIckER,>* F. X. TiMMes,>* M. ZINGALE,>® D. Q. Lams,>* P. MACNEICE,* AccolarabadiSirategic
R. ROSNER,'"%3 J. W. TRURAN,'>"* AND H. Turo?** FREE

Received 1999 November 9; accepted 2000 April 13 - Lawrence Livermore

ABSTRACT

We report on the completion of the first version of a new-generation simulation code, FLASH. The
FLASH code solves the fully compressible, reactive hydrodynamic equations and allows for the use of
adaptive mesh refinement. It also contains state-of-the-art modules for the equations of state and ther-
monuclear reaction networks. The FLASH code was developed to study the problems of nuclear flashes
on the surfaces of neutron stars and white dwarfs, as well as in the interior of white dwarfs. We expect,
however, that the FLASH code will be useful for solving a wide variety of other problems. This first
version of the code has been subjected to a large variety of test cases and is currently being used
production simulations of X-ray bursts, Rayleigh-Taylor and Richtmyer-Meshkov instabilities, and th
monuclear flame fronts. The FLASH code is portable and already runs on a wide variety of massiv
parallel machines, including some of the largest machines now extant.

Subject headings: equation of state — hydrodynamics — methods: numerical
nuclear reactions, nucleosynthesis, abundances — stars: general

'\r

flash.rochester.edu

CENTER

FLASH Code Features

Modular and extensible software package
Multi-scale, multi-physics applications
Solvers include hydrodynamics,
magnetohydrodynamics, nuclear burning, high
energy density physics, gravity, and more!
Written in Fortran 90
Parallelized with MPI

* Not too successfully threaded (yet!)
Uses PARAMESH adaptive mesh refinement to save
on computation time
1D, 2D, and 3D problems

N T ER

Our Science Application

Dim supernova
Hybrid white dwarf
Pure deflagration — subsonic burning

U0
(3) SUQC[
39 — -
O (@) O
— — —

B

107
10°
103
107

x 103

x 103

Adaptive Grid

Complexity and size increase with time

102 blocks 10° blocks

Strong Scaling

Run 2D supernova problem for 4s simulation time
GCC 10.3.0 + MVAPICH 2.3.5

Compiler Comparison

Run 2D supernova problem for 4s simulation time
on 240 cores (5 nodes, 48 cores/node)

. ™
Compilers:
e GCC
. Cray + SVE
 ARM
. Different combinations

>' are better for
different programming languages...

MPI Implementations:
...50 test away!

* Open-MPI
« MVAPICH

Compiler Flags

Tested 3 compilers and 2 MPI implementations

Compiler Compiler Flags MPI Implementation Additional SVE Flags

GCC 10.3.0 -fdefault-real-8 MVAPICH 2.3.5 -03 -mcpu=ab4fx
-Wuninitialized -fdefault-double-8 Open-MPI 4.0.5
-fallow-argument-mismatch

Cray 10.0.3 -03 -h vector3 MVAPICH 2.3.5 Load the Cray 10.0.1
-s real64 -s integer32 SVE module
ARM 21.0 -r8 -armpl MVAPICH 2.3.5 -03 -mcpu=ab4fx

Open-MPI 4.0.5

Test if your executable is using SVE instructions, see if it’s using the ‘z’ registers:
objdump -d executable | grep 'z [0-9]'

Compiler Comparison - Results

MVAPICH slightly faster than OpenMPI
ARM compiler extremely slow
Enabling SVE doesn’t automatically produce a speedup — more tuning needed
The GCC 10 compiler is unable to vectorize certain math functions including exp and pow on its
own, but can be linked to the ARM performance libraries:
(-L<ARMPL install dir>/1lib -larmpl 1lp64 -lamath -1m)
(Use —larmgl_lp64_ﬁp for threaded apps) a

Compiler Comparison - Results

Memory use -- sleep program

w= OpenMP| == OpenMPI (no infiniband) MVAPICH

8
")
o 6
=
o
o)
o
Q 4
©
o
wn
3
=
= 2
[}
=

0

1p 4p 12p 24p 36p 48p 2N 5N 10N

Adding UCX TLS=cma, self, knem, xpmem to OpenMPI job submission turns off infiniband
and other communication and only activates intra-node communication. This brings OpenMPI

memory allocation down. But you can only do this when running on 1 node (we need infiniband
to talk between nodes!)

MPI Binding and Placement

Mostly point-to-point communication
Can we take advantage of this in CMGs?

You can set the placement with the variable MvV2 BINDING POLICY in MVAPICH, and by
using the ——map-by option in OpenMPI

Architecture Comparison

Cluster SeaWulf Ookami
Processor 328 Intel Xeon E5-2683v3 processors 174 A64FX processors
* Several queues * 48 cores per node
* 2 CPUs per node, with * NUMA node; processors are in
24/28/40 cores per node groups of 12
Processor Speed | 2.0 GHz 1.8 GHz
Memory 128 GB DDR4 32 GB HBM2
--16GB reserved for system
Run time GCC 10.2.0 compiler + MVAPICH 2.3.5 Cray 10.0.1 SVE compiler + MVAPICH 2.3.5
240 cores — 10 nodes, 24 cores/node 240 cores — 5 nodes, 48 cores/node
0.77 hours 2.08 hours (fastest run time)

This gap is larger than expected from the difference in processor speed alone

To get the most out of A64FX, need to tune code manually for SVE instructions and
use HBM2

Profiling

Particles
9 6% Grid Refine
Burn 21.1%
52% Initialization
Flame ’ 0.2%
9.5% Timestep
0.4%
/O
3.5%
Hydro

50.4%

Profiling

Other

49.6%

\ / EOS
20%

Instrumenting FLASH for PAPI

program hellotest

use region mod, only: region

. . <€ import modules
use perf mod, only: pperf, finalizer
implicit none
type (pperf) :: perfmonl
region = 'Greeting' . Create profiler object
perfmonl = pperf () and set up region
write(*,*) 'Hello, Ookami pals!' < Code you want to profile
call finalizer (perfmonl) < Deallocate profiler object
stop

end program hellotest

Instrumenting FLASH for PAPI

S python /lustre/projects/calder-group/papiread.py

{'cpu in mhz': '4",
'"threads': [{'id': '3004619",
'regions': [{'Greeting': {'region count': '1l"',
'cycles': '4161'"',
'"PERF COUNT HW CPU CYCLES': '23451"',
'"PERF COUNT HW CACHE MISSES': '177',
'DTLB-LOAD-MISSES': '86',
'"SVE INST RETIRED': 'Q"',
'"PERF COUNT HW STALLED CYCLES BACKEND': '1444',
'"PERF COUNT HW STALLED CYCLES FRONTEND': '17614'}}11}1}
thread : 0 3004619

Greeting:

HW cycles: 23451

Seconds: 1.30e-05

SVE instructions per cycle: 0.00
Main memory bandwidth (Gbyte/s): 3.48
DTILB misses/s: 6600997.83

Future Work

Looking at running a pure hydrodynamics problem, Sedov explosion
. Find bottlenecks using PAPI in both 2D and 3D

Vectoriéé EOS and other routines for our supernova problem
Expld,r‘e? iiinking different math libraries to the GCC compiler
G Study MPI binding and placements

Investigate.Jommunication patterns and memory use

Acknowledgements

Ookami is a computer technology testbed supported by the National Science
Foundation under grant OAC 1927880. The authors are grateful to the Ookami
team for their efforts procuring and deploying the machine, for the arduous
process of setting up the software used, and for hours of valuable debugging and
help.

The authors would like to thank Research Computing and Cyberinfrastructure, and
the Institute for Advanced Computational Science, at Stony Brook University for
access to the high-performance SeaWulf cluster, which was made possible by a
$1.4M National Science Foundation grant (#1531492).

The FLASH code was developed in part by the DOE NNSA ASCl and DOE Office of
Science ASCR-supported Flash Center for Computational Science at the University
of Chicago.

Work involving supernovae research was supported in part by the US Department
of Energy under grant DE-FG02-87ER40317.

Questions, Comments, or Further
Discussion?

Get in touch at: catherine.feldman@stonybrook.edu

Thank you for your attention!

mailto:catherine.feldman@stonybrook.edu

