
Ookami User Group Meeting:
FLASH on A64FX

Catherine Feldman, Benjamin Michalowicz, Eva Siegmann, Tony Curtis,
Alan Calder and Robert Harrison

Institute for Advanced Computational Science

Stony Brook University, NY, USA

FLASH Center
Founded in 1997 as part of the DOE’s ASCI

flash.rochester.edu

• Modular and extensible software package
• Multi-scale, multi-physics applications
• Solvers include hydrodynamics,

magnetohydrodynamics, nuclear burning, high
energy density physics, gravity, and more!

• Written in Fortran 90
• Parallelized with MPI

• Not too successfully threaded (yet!)
• Uses PARAMESH adaptive mesh refinement to save

on computation time
• 1D, 2D, and 3D problems

FLASH Code Features

Dim supernova
Hybrid white dwarf

Pure deflagration – subsonic burning

Our Science Application

Adaptive Grid

102 blocks 105 blocks

Complexity and size increase with time

Strong Scaling

Run 2D supernova problem for 4s simulation time
GCC 10.3.0 + MVAPICH 2.3.5

Compiler Comparison

Run 2D supernova problem for 4s simulation time
on 240 cores (5 nodes, 48 cores/node)

Compiler Flags
Tested 3 compilers and 2 MPI implementations

Test if your executable is using SVE instructions, see if it’s using the ‘z’ registers:
objdump -d executable | grep 'z[0-9]'

Compiler Comparison - Results

MVAPICH slightly faster than OpenMPI
ARM compiler extremely slow

Enabling SVE doesn’t automatically produce a speedup – more tuning needed

The GCC 10 compiler is unable to vectorize certain math functions including exp and pow on its
own, but can be linked to the ARM performance libraries:
(-L<ARMPL_install_dir>/lib -larmpl_lp64 -lamath -lm)
(Use -larmpl_lp64_mp for threaded apps)

Compiler Comparison - Results

Adding UCX_TLS=cma,self,knem,xpmem to OpenMPI job submission turns off infiniband
and other communication and only activates intra-node communication. This brings OpenMPI
memory allocation down. But you can only do this when running on 1 node (we need infiniband
to talk between nodes!)

MPI Binding and Placement

Mostly point-to-point communication
Can we take advantage of this in CMGs?

You can set the placement with the variable MV2_BINDING_POLICY in MVAPICH, and by
using the --map-by option in OpenMPI

Architecture Comparison

Cluster SeaWulf Ookami

Processor 328 Intel Xeon E5-2683v3 processors
• Several queues

• 2 CPUs per node, with
24/28/40 cores per node

174 A64FX processors
• 48 cores per node

• NUMA node; processors are in
groups of 12

Processor Speed 2.0 GHz 1.8 GHz

Memory 128 GB DDR4
--16GB reserved for system

32 GB HBM2

Run time GCC 10.2.0 compiler + MVAPICH 2.3.5
240 cores – 10 nodes, 24 cores/node
0.77 hours

Cray 10.0.1 SVE compiler + MVAPICH 2.3.5
240 cores – 5 nodes, 48 cores/node
2.08 hours (fastest run time)

vs

This gap is larger than expected from the difference in processor speed alone

To get the most out of A64FX, need to tune code manually for SVE instructions and
use HBM2

Profiling

Profiling

Other
49.6%

EOS
20%

Instrumenting FLASH for PAPI

program hellotest

 use region_mod, only: region

 use perf_mod, only: pperf, finalizer

 implicit none

 type(pperf) :: perfmon1

 region = 'Greeting'

 perfmon1 = pperf()

 write(*,*)'Hello, Ookami pals!'

 call finalizer(perfmon1)

 stop

end program hellotest

import modules

Create profiler object
and set up region

Code you want to profile

Deallocate profiler object

Instrumenting FLASH for PAPI

$ python /lustre/projects/calder-group/papiread.py

{'cpu in mhz': '4',

'threads': [{'id': '3004619',

'regions': [{'Greeting': {'region_count': '1',

'cycles': '4161',

'PERF_COUNT_HW_CPU_CYCLES': '23451',

'PERF_COUNT_HW_CACHE_MISSES': '177',

'DTLB-LOAD-MISSES': '86',

'SVE_INST_RETIRED': '0',

'PERF_COUNT_HW_STALLED_CYCLES_BACKEND': '1444',

'PERF_COUNT_HW_STALLED_CYCLES_FRONTEND': '17614'}}]}]}

 thread : 0 3004619

 Greeting:

 HW cycles: 23451

 Seconds: 1.30e-05

 SVE instructions per cycle: 0.00

 Main memory bandwidth (Gbyte/s): 3.48

 DTLB misses/s: 6600997.83

Future Work

Looking at running a pure hydrodynamics problem, Sedov explosion
Find bottlenecks using PAPI in both 2D and 3D

Vectorize EOS and other routines for our supernova problem

Explore linking different math libraries to the GCC compiler

Study MPI binding and placements

Investigate communication patterns and memory use

Acknowledgements

• Ookami is a computer technology testbed supported by the National Science
Foundation under grant OAC 1927880. The authors are grateful to the Ookami
team for their efforts procuring and deploying the machine, for the arduous
process of setting up the software used, and for hours of valuable debugging and
help.

• The authors would like to thank Research Computing and Cyberinfrastructure, and

the Institute for Advanced Computational Science, at Stony Brook University for
access to the high-performance SeaWulf cluster, which was made possible by a
$1.4M National Science Foundation grant (#1531492).

• The FLASH code was developed in part by the DOE NNSA ASCI and DOE Office of

Science ASCR-supported Flash Center for Computational Science at the University
of Chicago.

• Work involving supernovae research was supported in part by the US Department

of Energy under grant DE-FG02-87ER40317.

Questions, Comments, or Further
Discussion?

Get in touch at: catherine.feldman@stonybrook.edu
Thank you for your attention!

mailto:catherine.feldman@stonybrook.edu

