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Machine Learning 

Machine Learning has been applied to production 

systems in many areas:  Self driving cars, smart 

assistants on cellular devices, traffic camera systems, etc.
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PyTorch and other Frameworks/Libraries

● PyTorch is an open source machine learning library based on the Torch library.
○ It provides tensor computations with gpu acceleration and reverse-mode automatic differentiation through 

autograd

○ Version 1.10.0 is cloned from GitHub and kept consistent across all builds

Compiler BLAS Library Horovod Compiler Flags

Fujitsu v4.5 

(Clang mode)

SSL2 v0.20.3 (Fujitsu 

patch)

-Kfast -Knolargepage -lpthread

Arm v21.0 Arm Performance 

Libraries

v0.23.0 -Ofast -pthread -mcpu=a64fx

GNU v10.3 Arm Performance 

Libraries

v0.23.0 (eigen patch) -Ofast -pthread -mcpu=a64fx

GNU v10.3 OpenBLAS v0.3.19 v0.23.0 (eigen patch) -Ofast -pthread -mcpu=a64fx

GNU v10.3 BLIS 0.8.1 v0.23.0 -Ofast -pthread -mcpu=a64fx
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Build Process

● Python v3.8.2 is built from source with O3 optimization for all compilers. 
o The python object file is re-compiled with the respective C++ compiler and linked against the BLAS libraries.

● PyTorch is built with oneDNN v2.4.3 support (formerly known as MKL-DNN)
○ Fujitsu achieved this by creating an aarch64 version of xbyak JIT assembler.

○ xbyak_aarch64 and xbyak_translator_aarch64 have been primarily developed to enable assembly coding with 

full SVE support and porting oneDNN to aarch64.

○ Their work has been upstreamed and can be used directly (original scripts require building xed (Intel’s x86 Encoder 

Decoder) prior to installing oneDNN for A64FX).

○ A patch is applied to cmake files (FindBLAS) to search & recognize SSL2, ArmPL, OpenBLAS and BLIS

● Horovod, a distributed deep learning framework, is built with openMPI 
● v4.0.1 (modified) for Fujitsu compilers and v4.1.1 for ARM and GNU compilers 
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Single Node Training on A64FX 

● Task: Image Classification
● Dataset: Photo, Art Painting, Cartoon, Sketch (PACS*) - 4 

domains, 7 classes, 9991 images
● Deep Neural Network - ResNet50

Training : 6101 images                                                                                            
Transforms : Resizing, Horizontal Flips, Color Jittering, Gray scaling, tensor 
conversion, normalization  

Evaluation : 3942 images                                                                          
Transforms : Resizing, tensor conversion, normalization

● Model training & inference can be improved by using different 
memory formats (NCHW default, NHWC, nChw16c - mkldnn 
block format)

● Some of the variables used to optimize the runs -
OMP_NUM_THREADS=48 and XOS_MMM_L_HPAGE_TYPE=none

● Using TCMalloc for memory allocation.
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Single Node Training on A64FX 

Lower is better
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Importance of (A64FX supported) vectorized libraries

• BLIS was built with a generic configuration on 

A64FX (-mcpu flag added in {C,CXX}FLAGS 

explicitly)

• During configuration, PyTorch does not find 

LAPACK support. The graph shows speedup for 

other library builds.

• These libraries are important because oneDNN 

does not have optimized implementations for all 

operators provided by PyTorch. In that case, we 

must convert the outputs from prior layers to the 

dense (NCHW) representation, perform the 

unsupported operation and then convert the 

output back to the block format.

** this can also be seen in OpenBLAS v0.3.10  (sve-enabled 

sgemm & dgemm kernels added in v0.3.19)

Higher is better

Epoch time for GNU + BLIS** :   10162.18s
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Distributed Training with Horovod 

● Dataset: CIFAR-10* - 10 classes, 60000 images (50,000 train & 

10,000 test)

● Model: ResNet50

● Train batch size = 512 images

● Horovod built with OpenMPI to run distributed code

● Process mapping achieved by --map-by flag

● Two mappings tested:

○ 1 process per NUMA region

■ XOS_MMM_L_PAGING_POLICY=demand:demand:demand

■ --map-by ppr:1:numa:pe=12

○ 1 process per node

■ XOS_MMM_L_HPAGE_TYPE=none

■ --map-by ppr:1:node:pe=48
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Distributed Training with Horovod 
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Lower is better

Images processed at 128 nodes per node: 30.75%

Images processed at 128 nodes per node: 67.14%



Scaling Discrepancy with GNU compiler

● In the prior slide, we see a discrepancy in distributing the workload over multiple nodes with the GNU compiler

● After checking the trace files (Horovod timeline), we see that there is a large communication bottleneck compared to 

the ARM and Fujitsu compilers.

● Still trying to figure out what could be causing this…

● This issue is reproducible and similar results are seen with different versions ---
○ GNU v10.3.0 + OpenMPI (v4.1.1, v4.1.2) and GNU v11.2.0 + openMPI v4.1.2

ARM compiler GNU compiler

2 node trace information over 1 epoch
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Sidebar: GNU/ARM compilers with SSL2

● With some effort, compiling oneDNN and PyTorch with GNU/ARM compilers and Fujitsu’s SSL2 

BLAS library is possible.
○ For oneDNN, elementwise operations run successfully, but forward and backward passes for convolution 

operations run into a Segmentation Fault. 

○ For PyTorch, MLP networks can run end-to-end without running into any errors ( and no significant changes in 

precision). CNNs run into a fault, as mentioned above.

● If anyone tries to see the dependencies of shared libraries provided by Fujitsu….
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Summary

● Single node training runs show significant improvements by leveraging a block memory format and 

mkl-dnn fused operations compared to disabled mkl-dnn. 

● GNU compiler builds outperform Fujitsu compiler build with mkl-dnn enabled. 

● Fujitsu SSL2 shows higher performance when using native operations defined in ATen – tensor core 

library. 

● Distributed training runs with Horovod show better run time per epoch for mkl-dnn fused operations 

and block format when using 1 process per node and 48 threads per process compared to 1 process 

per NUMA region and 12 threads per NUMA.The same is not true when mapping processes by 

NUMA regions.
○ Fused operations lead to lower kernel launches.

○ However, the scaling efficiency of using 1 process per node is much lower than the efficiency of 

using 1 process per NUMA region.

● Fujitsu compiler outperforms ARM and GNU compilers w.r.t. scaling. 
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Thank you
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