
Machine Learning with PyTorch

1

Smeet Chheda

Stony Brook University

Ookami User Group Meeting – 02/10/2022

Machine Learning

Machine Learning has been applied to production

systems in many areas: Self driving cars, smart

assistants on cellular devices, traffic camera systems, etc.

2

PyTorch and other Frameworks/Libraries

● PyTorch is an open source machine learning library based on the Torch library.
○ It provides tensor computations with gpu acceleration and reverse-mode automatic differentiation through

autograd

○ Version 1.10.0 is cloned from GitHub and kept consistent across all builds

Compiler BLAS Library Horovod Compiler Flags

Fujitsu v4.5

(Clang mode)

SSL2 v0.20.3 (Fujitsu

patch)

-Kfast -Knolargepage -lpthread

Arm v21.0 Arm Performance

Libraries

v0.23.0 -Ofast -pthread -mcpu=a64fx

GNU v10.3 Arm Performance

Libraries

v0.23.0 (eigen patch) -Ofast -pthread -mcpu=a64fx

GNU v10.3 OpenBLAS v0.3.19 v0.23.0 (eigen patch) -Ofast -pthread -mcpu=a64fx

GNU v10.3 BLIS 0.8.1 v0.23.0 -Ofast -pthread -mcpu=a64fx

3

Build Process

● Python v3.8.2 is built from source with O3 optimization for all compilers.
o The python object file is re-compiled with the respective C++ compiler and linked against the BLAS libraries.

● PyTorch is built with oneDNN v2.4.3 support (formerly known as MKL-DNN)
○ Fujitsu achieved this by creating an aarch64 version of xbyak JIT assembler.

○ xbyak_aarch64 and xbyak_translator_aarch64 have been primarily developed to enable assembly coding with

full SVE support and porting oneDNN to aarch64.

○ Their work has been upstreamed and can be used directly (original scripts require building xed (Intel’s x86 Encoder

Decoder) prior to installing oneDNN for A64FX).

○ A patch is applied to cmake files (FindBLAS) to search & recognize SSL2, ArmPL, OpenBLAS and BLIS

● Horovod, a distributed deep learning framework, is built with openMPI
● v4.0.1 (modified) for Fujitsu compilers and v4.1.1 for ARM and GNU compilers

4

Single Node Training on A64FX

● Task: Image Classification
● Dataset: Photo, Art Painting, Cartoon, Sketch (PACS*) - 4

domains, 7 classes, 9991 images
● Deep Neural Network - ResNet50

Training : 6101 images
Transforms : Resizing, Horizontal Flips, Color Jittering, Gray scaling, tensor
conversion, normalization

Evaluation : 3942 images
Transforms : Resizing, tensor conversion, normalization

● Model training & inference can be improved by using different
memory formats (NCHW default, NHWC, nChw16c - mkldnn
block format)

● Some of the variables used to optimize the runs -
OMP_NUM_THREADS=48 and XOS_MMM_L_HPAGE_TYPE=none

● Using TCMalloc for memory allocation.

5

Single Node Training on A64FX

Lower is better

6

Importance of (A64FX supported) vectorized libraries

• BLIS was built with a generic configuration on

A64FX (-mcpu flag added in {C,CXX}FLAGS

explicitly)

• During configuration, PyTorch does not find

LAPACK support. The graph shows speedup for

other library builds.

• These libraries are important because oneDNN

does not have optimized implementations for all

operators provided by PyTorch. In that case, we

must convert the outputs from prior layers to the

dense (NCHW) representation, perform the

unsupported operation and then convert the

output back to the block format.

** this can also be seen in OpenBLAS v0.3.10 (sve-enabled

sgemm & dgemm kernels added in v0.3.19)

Higher is better

Epoch time for GNU + BLIS** : 10162.18s

7

Distributed Training with Horovod

● Dataset: CIFAR-10* - 10 classes, 60000 images (50,000 train &

10,000 test)

● Model: ResNet50

● Train batch size = 512 images

● Horovod built with OpenMPI to run distributed code

● Process mapping achieved by --map-by flag

● Two mappings tested:

○ 1 process per NUMA region

■ XOS_MMM_L_PAGING_POLICY=demand:demand:demand

■ --map-by ppr:1:numa:pe=12

○ 1 process per node

■ XOS_MMM_L_HPAGE_TYPE=none

■ --map-by ppr:1:node:pe=48

8

Distributed Training with Horovod

9

Lower is better

Images processed at 128 nodes per node: 30.75%

Images processed at 128 nodes per node: 67.14%

Scaling Discrepancy with GNU compiler

● In the prior slide, we see a discrepancy in distributing the workload over multiple nodes with the GNU compiler

● After checking the trace files (Horovod timeline), we see that there is a large communication bottleneck compared to

the ARM and Fujitsu compilers.

● Still trying to figure out what could be causing this…

● This issue is reproducible and similar results are seen with different versions ---
○ GNU v10.3.0 + OpenMPI (v4.1.1, v4.1.2) and GNU v11.2.0 + openMPI v4.1.2

ARM compiler GNU compiler

2 node trace information over 1 epoch

10

Sidebar: GNU/ARM compilers with SSL2

● With some effort, compiling oneDNN and PyTorch with GNU/ARM compilers and Fujitsu’s SSL2

BLAS library is possible.
○ For oneDNN, elementwise operations run successfully, but forward and backward passes for convolution

operations run into a Segmentation Fault.

○ For PyTorch, MLP networks can run end-to-end without running into any errors (and no significant changes in

precision). CNNs run into a fault, as mentioned above.

● If anyone tries to see the dependencies of shared libraries provided by Fujitsu….

11

Summary

● Single node training runs show significant improvements by leveraging a block memory format and

mkl-dnn fused operations compared to disabled mkl-dnn.

● GNU compiler builds outperform Fujitsu compiler build with mkl-dnn enabled.

● Fujitsu SSL2 shows higher performance when using native operations defined in ATen – tensor core

library.

● Distributed training runs with Horovod show better run time per epoch for mkl-dnn fused operations

and block format when using 1 process per node and 48 threads per process compared to 1 process

per NUMA region and 12 threads per NUMA.The same is not true when mapping processes by

NUMA regions.
○ Fused operations lead to lower kernel launches.

○ However, the scaling efficiency of using 1 process per node is much lower than the efficiency of

using 1 process per NUMA region.

● Fujitsu compiler outperforms ARM and GNU compilers w.r.t. scaling.

12

Acknowledgement

I would like to thank Tony, Eva and the entire Ookami Team for their help and sharing

invaluable knowledge.

13

Thank you

14

