Machine Learning with PyTorch

Smeet Chheda
Stony Brook University
Ookami User Group Meeting — 02/10/2022

@ iﬂcs y‘\(lfh—';\llTllJJ?ArI l'((_)R ADVANC fl) gﬁgﬁgﬂgﬂ! EQ

TONAL SCIENCE
Labaratary

Machine Learning

Machine Learning has been applied to production
systems in many areas: Self driving cars, smart
assistants on cellular devices, traffic camera systems, etc.

Ig S INSTITUTE FOR ADVANCED

OMPUTATIONAL SCIENCE

PyTorch and other Frameworks/Libraries

e PyTorch is an open source machine learning library based on the Torch library.
o It provides tensor computations with gpu acceleration and reverse-mode automatic differentiation through
autograd
o Version 1.10.0 is cloned from GitHub and kept consistent across all builds

Compiler BLAS Library Horovod Compiler Flags

Fujitsu v4.5 SSL2 v0.20.3 (Fujitsu -Kfast -Knolargepage -Ipthread

(Clang mode) patch)

Arm v21.0 Arm Performance v0.23.0 -Ofast -pthread -mcpu=a64fx
Libraries

GNU v10.3 Arm Performance v0.23.0 (eigen patch) | -Ofast -pthread -mcpu=a64fx
Libraries

GNU v10.3 OpenBLAS v0.3.19 v0.23.0 (eigen patch) | -Ofast -pthread -mcpu=a64fx

GNU v10.3 BLIS 0.8.1 v0.23.0 -Ofast -pthread -mcpu=a64fx

Ig S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

Build Process

e Python v3.8.2 is built from source with O3 optimization for all compilers.
o The python object file is re-compiled with the respective C++ compiler and linked against the BLAS libraries.

e PyTorch is built with oneDNN v2.4.3 support (formerly known as MKL-DNN)
o Fujitsu achieved this by creating an aarch64 version of xbyak JIT assembler.
o xbyak aarch64 and xbyak_translator_aarch64 have been primarily developed to enable assembly coding with

full SVE support and porting oneDNN to aarch64.
o Their work has been upstreamed and can be used directly (original scripts require building xed (Intel's x86 Encoder

Decoder) prior to installing oneDNN for A64FX).
o Apatch is applied to cmake files (FindBLAS) to search & recognize SSL2, ArmPL, OpenBLAS and BLIS

e Horovod, a distributed deep learning framework, is built with openMPI
e v4.0.1 (modified) for Fujitsu compilers and v4.1.1 for ARM and GNU compilers

{ S;) o
Ig' :S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Single Node Training on A64FX

Task: Image Classification

Dataset: Photo, Art Painting, Cartoon, Sketch (PACS*) - 4)
domains, 7 classes, 9991 images _ h& BTN |
Deep Neural Network - ResNet50 art paint L& e

- . cartoon
Training : 6101 images
Transforms : Resizing, Horizontal Flips, Color Jittering, Gray scaling, tensor
conversion, normalization
Evaluation : 3942 images sketch
Transforms : Resizing, tensor conversion, normalization
photo

e Model training & inference can be improved by using different
memory formats (NCHW default, NHWC, nChw16c - mkldnn
block format)

e Some of the variables used to optimize the runs -
OMP_NUM_THREADS=48 and XOS_MMM_L_HPAGE_TYPE=none

e Using TCMalloc for memory allocation.

o C
CQ Iﬂ S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

Block Memory Format
225 221.217
220 215.025

215

210

205

20 193.97

195 190.29 189.99
190

18

180

175

170

Fujitsu+SSL2 ARM+ArmPL GNU+ArmPL GNU+OpenBLAS ~ GNU+BLIS
Compiler + BLAS library ~ Batch Size=256

Epoch Time (seconds)
(%]

1200

1000

800

600

400

Epoch Time (seconds)

200

Lower is better

Single Node Training on A64FX

NCHW format, oneDNN disabled

1022.47
703.83
609.92
347.26 I
Fujitsu+SSL2 ARM+ArmPL GNU+ArmPL GNU+OpenBLAS

Compiler + BLAS library Batch Size=128

‘ g ? .n
I CS INSTITUTE FOR ADVANCED
k COMPUTATIONAL SCIENCE

mportance of (A64FX supported) vectorized libraries

* BLIS was built with a generic configuration on
Per Epoch Speedup Higher is better AB64FX (-mcpu flag added in {C,CXX}FLAGS
explicitly)
2926 * During configuration, PyTorch does not find
LAPACK support. The graph shows speedup for
other library builds.

w
wn

w
o

]
w

]
o

16.66
14.43

=
w

Speedup (x)

9.94 * These libraries are important because oneDNN
does not have optimized implementations for all
operators provided by PyTorch. In that case, we
Fujitsu+S5L2 ARM+ArmPL GNU+ArmPL GNU+OpenBLAS GNU+BLIS must convert the OUtpUtS from pl’iOI’ Iayers to the
Compiler + BLAS library dense (NCHW) representation, perform the
unsupported operation and then convert the
output back to the block format.

=
o

w

1

(=]

Epoch time for GNU + BLIS**: 10162.18s

** this can also be seen in OpenBLAS v0.3.10 (sve-enabled
sgemm & dgemm kernels added in v0.3.19)

Ig S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Distributed Training with Horovod

Dataset: CIFAR-10* - 10 classes, 60000 images (50,000 train &
10,000 test)

Model: ResNet50

Train batch size = 512 images

Horovod built with OpenMPI to run distributed code
Process mapping achieved by --map-by flag
Two mappings tested:
o 1 process per NUMA region
| XOS_MMM_L_PAGING_POLICY=demand:demand:demand
| --map-by ppr:l:numa:pe=12
o 1 process per node
B XOS_MMM_L_HPAGE_TYPE=none
| --map-by ppr:1:node:pe=48

airplane ﬁ.% V..=‘-_-_
automobile EE“H‘
o R WES ¥ B
= EHEGHSEEEsP
deer)5 -Rgﬁng
g [AESHSBANE
roo N I N I 1 O N
rors [[) 1 S R O TR
s e e RS e
ek oo) s 10 5 o (L R

‘ g ? o ﬂ
I CS INSTITUTE FOR ADVANCED
") COMPUTATIONAL SCIENCE

Distributed Training with Horovod

1 Process / Node; 48 Threads / Process

]
a8

:1:: ’ ’ Epoch Time (seconds)
“ 0 # Nodes 1 2 4 8 16 32 64 128
': a0 Fujitsu+SSL2 99.93 55.67| 31.25| 17.8| 11.25| 6.89 3.67 2.54
g ARM+ArmPL 111.26 79.61 47.31 27.52 16.78 9.86 5.68 3.27
* T 2 e e 2 64 128 GNU+ArmPL 97.14 96.48 60.44 36.7 21.7 13.65 7.94 4.58
I — I Images processed at 128 nodes per node: 30.75%

Lower is better

1 Process / NUMA; 12 Threads / Process
1200
1000

500 Epoch Time (seconds)

g 500 # Nodes 1 2 4 8 16 32 64 128
E 400 Fujitsu+55L2 846.79 433.2 224.2 116.9 63.4 35.04 18.4 9.85
& w0 o ARM+ArmPL 1022.6 526.1 271.8 142.3 76.61 42.77 22.1 11.5

T 2 4 8 6w e e GNU+ArmPL 1055.9 542.1 280.3 146.8 78.81 44.07 22.6 11.7

Humper of odes Images processed at 128 nodes per node: 67.14%

== Fujitsu+55L2 ARM+ArmPL GNU+ArmPL

‘ g) o
. » Iﬂ. :S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Scaling Discrepancy with GNU compiler

In the prior slide, we see a discrepancy in distributing the workload over multiple nodes with the GNU compiler

After checking the trace files (Horovod timeline), we see that there is a large communication bottleneck compared to
the ARM and Fujitsu compilers.

Still trying to figure out what could be causing this... ﬁ

Name ¥ Wall Duration ¥ Selftime ¥ Average Wall Duration ¥ Occurrences < Name ¥ Wall Duration ¥ Selftime ¥ Average Wall Duration ¥ Occurrences ¥

NEGOTIATE ALLREDUCE G 1,904478 ms 1,994,478 40.704 ms 49 NEGOTIATE ALLREDUCE @ 35,801.265 ms 35,801.265 ms 730638 ms 4%

ALIREDUCE & 4,362 944 ms 5900 ms 20040 ms 49 ALLREDUCE & 6,344.522 ms 4.804 ms 129.480 ms 49

MEMCPY IN FUSION BUFFER & 0.760 ms 0.760 ms 0.020 ms 38 MEMCPY IN FUSION BUFFER @ 5.465 ms 5.465 ms 0114 ms 48

MPI_ALLREDUCE @ 4355308 ms 4,355.308 ms 58.884 ms 49 MPI ALLREDUCE =% 6,328858ms 5,323.858 ms 129.160 ms 49

MEMCPY OUT FUSION BUFFER @ 0876 ms 0876 ms 0.026 ms 38 MEMCPY OUT FUSION BUFFER @ 5.395 ms 5.395 ms 0.112ms 48

Totals 10,714.466 ms 6,357.422 ms 48.047 ms 223 Totals 48,485.505 ms 42,145.787 ms 199.529 ms 243
ARM compiler GNU compiler

2 node trace information over 1 epoch

® This issue is reproducible and similar results are seen with different versions ---
O GNUv10.3.0 + OpenMPI (v4.1.1, v4.1.2) and GNU v11.2.0 + openMPI v4.1.2

o C
@ Ig S INSTITUTE FOR ADVANCED 10

COMPUTATIONAL SCIENCE

Sidebar: GNU/ARM compilers with SSL2

® \With some effort, compiling oneDNN and PyTorch with GNU/ARM compilers and Fujitsu’s SSL2

BLAS library is possible.
O For oneDNN, elementwise operations run successfully, but forward and backward passes for convolution
operations run into a Segmentation Fault.
O For PyTorch, MLP networks can run end-to-end without running into any errors (and no significant changes in
precision). CNNSs run into a fault, as mentioned above.

® [f anyone tries to see the dependencies of shared libraries provided by Fujitsu....

[schheda@fj-debugz 1ib64]% pwd
Jopt/Flsvstclanga/cp-1.0.20.06/11b64
[schheda@fj-debugz 1ib64]% ldd libfjlapackexsve.so

statically linked
[schheda@fj-debug2 1ib641% i

o C
@ Ig S INSTITUTE FOR ADVANCED 11

COMPUTATIONAL SCIENCE

Summary

Single node training runs show significant improvements by leveraging a block memory format and
mkl-dnn fused operations compared to disabled mkl-dnn.

GNU compiler builds outperform Fujitsu compiler build with mkl-dnn enabled.

Fujitsu SSL2 shows higher performance when using native operations defined in ATen — tensor core
library.

Distributed training runs with Horovod show better run time per epoch for mkl-dnn fused operations
and block format when using 1 process per node and 48 threads per process compared to 1 process
per NUMA region and 12 threads per NUMA.The same is not true when mapping processes by
NUMA regions.

o Fused operations lead to lower kernel launches.
However, the scaling efficiency of using 1 process per node is much lower than the efficiency of
using 1 process per NUMA region.
Fujitsu compiler outperforms ARM and GNU compilers w.r.t. scaling.

{ S;) o
IQ' :S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

12

Acknowledgement

| would like to thank Tony, Eva and the entire Ookami Team for their help and sharing
invaluable knowledge.

I CS INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

13

Thank you

o C
@ Ig S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

