Quest for Scientific Excitement at the Multidisciplinary Interface of Chemistry and Biology

Iwao Ojima

University Distinguished Professor and Director Department of Chemistry and ICB&DD Stony Brook University

Stony Brook Symposium on Chemical Synthesis in Life Sciences Charles B. Wang Center, Stony Brook University June 5-6, 2015

	Citation	Year
Catalytic asymmetric synthesis John Wiley & Sons	1958	1993 2000
Transition metal-catalyzed carbocyclizations in organic synthesis I Ojima, M Tzamarioudaki, Z Li, RJ Donovan	705	2010 1996
Chemical reviews 96 (2), 635-662		
Fluorine in medicinal chemistry and chemical biology I Ojima Wiley-Blackwell	422	2009
Biomedical frontiers of fluorine chemistry I Ojima, JR McCarthy, JT Welch	417	1996
Recent advances in tumor-targeting anticancer drug conjugates S Jaracz, J Chen, LV Kuznetsova, I Ojima Bioorganic & medicinal chemistry 13 (17), 5043-5054	346	2005
New and efficient approaches to the semisynthesis of taxol and its C-13 side chain analogs by means of β-lactam synthon method I Ojima, I Habus, M Zhao, M Zucco, YH Park, CM Sun, T Brigaud Tetrahedron 48 (34), 6985-7012	312	1992

(Google Scholar 6/3/2015)

Recent advances in the. betalactam synthon method I Ojima Accounts of chemical research 28 (9), 383-389	294	2008
A common pharmacophore for cytotoxic natural products that stabilize microtubules I Ojima, S Chakravarty, T Inoue, S Lin, L He, SB Horwitz, SD Kuduk, Proceedings of the National Academy of Sciences 96 (8), 4256-4261	286	1999
Recent advances in the hydrosilylation and related reactions I Ojima, Z Li, J Zhu Patai's Chemistry of Functional Groups	275	1998
Asymmetric synthesis of building-blocks for peptides and peptidomimetics by means of the β-lactam synthon method I Ojima, F Delaloge Chemical Society Reviews 26 (5), 377-386	264	1997
Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery J Chen, S Chen, X Zhao, LV Kuznetsova, SS Wong, I Ojima Journal of the American Chemical Society 130 (49), 16778-16785	254	2008

(Google Scholar 6/3/2015)

Catalytic Asymmetric Synthesis (CAS) in Perspective

1993

2000

THIRD EDITION Catalytic Asymmetric Synthesis Chiral EDITED BY IWAO OJIMA WILEY

2010

Discovery of Rh-Complex Catalyzed Hydrosilylation of Carbonyl Compounds and Imines and Applications to Regioselective and Asymmetric Reductions

Mechanistic Studies on the Rh-complex Catalyzed Hydrosilylations

Ojima's Mechanism --hydrosilylation of carbonyl compounds

"Ojima-Crabree" Mechanism for *trans*-addition to 1-alkynes

Chem. Lett., 541 (1973) J. Organometal. Chem., **94**, 449 (1975) Organometallics, **1**, 1390 (1982) Organometallics, 9, 3127-33 (1990)

Discovery and Development of Novel Silylformylation Process Catalyzed by Rh Complexes and Rh-Co Mixed Metal Clusters

XXII Organosilicon Symposium, Philadelphia, April 7-8, 1989, PL7 Organometallics, **10**, 39 (1991). J. Cluster Sci., **3**, 423 (1992). Tetrahedron, **49**, 5431 (1993).

Discovery and Development of Novel Silylcarbocyclization (SiCaC) Processes

J. Organometal. Chem., **521**, 421 (1996)

J. Am.Chem. Soc.121, 3220 (1999).

CO-SiCaT and [2+2+2+1] Cycloaddition: Novel Carbonylative Tricyclization Processes of Enediynes

B. Bennacer, M. Fujiwara, S.-Y. Lee, I. Ojima, *J. Am. Chem. Soc.* 127, 17756 -17767 (2005). *For SiCaC and CO-SiCaC, see* A. T. Vu, S.-Y. Lee, J. V. McCullagh, A. Moralee, T. H. Hoang, I. Ojima, *J. Am. Chem. Soc.* 124, 9164-9174 (2002). *For SiCaT and CO-SiCaT, see* I. Ojima, A. T. Vu, J. V. McCullah, A. Kinoshita, *J. Am. Chem. Soc.* 121, 3230-3231 (1999). I. Ojima and S.-Y. Lee, *J. Am. Chem. Soc.*, 122, 2385-2386 (2000)

[2+2+2+1] of Enediynes to form Fused Tetracyclic Framework

J. J. Kaloko, Y.-H. G. Teng and I. Ojima, Chem. Commun. 4569-4571 (2009)

B. Bennacer, M. Fujiwara, S.-Y. Lee, I. Ojima, J. Am. Chem. Soc. 127, 17756 -17767 (2005).

Synthesis of Colchicinoids

Gary Y. H Teng

Mechanistic Studies on the Asymmetric Hydrogenation of Dehydroamino Acids -- Proposal of dual mechanism depending on hydrogen pressure

J. Org. Chem., **495** (1979)

Application to the asymmetric synthesis of pantolactone and pantothenic acid

Application to the synthesis of analgesic brain peptide, enkephalin analogs

Chiral Biphenol-based Phosphorous Ligand Libraries

Exhibit excellent efficacy in asymmetric hydrogenation, conjugate addition, hydroformylation, allylic alkylation and allylic amination reactions

Hua, Z.; Vassar, V. C.; Ojima, I. Org. Lett. 2003, *5*, 3831-3834.
Choi, H.; Hua, Z.; Ojima, I. Org. Lett. 2004, *6*, 2689-2691.
Hua, Z.; Vassar, V. C.; Choi, H.; Ojima, I. Proc. Nat. Acad. Sci. 2004, *101*, 5411-5416.
Chapsal, B. D.; Ojima, I., Org. Lett. 2006, *8*, 1395-1398.
Chapsal, B. D.; Hua, Z.; Ojima, I. Tetrahedron : Asymmetry, 2006, 17, 642-657. [J. Halpern special issue]
Shi, C.; Ojima, I., Tetrahedron 2007, *63*, 8563-8570. [H. Yamamoto special issue]
Chapsal. B. D.; Ojima, I. NATO Science Ser. 2008, *246*, 29-54.
Shi, C.; Chien, C.-W.; Ojima, I. Chem. Asian J. 2011, *6*, 674-680 (2011). [E. Nakamura special issue]
C.-F. Lin and I. Ojima, J. Org. Chem. 2011, *76*, 6240-6249.
C.-W. Chien, C. Shi, C.-F. Lin, I. Ojima. Tetrahedron 2011, *67*, 6513-6523 [S. Omura Tetrahedron Prize Special Issue]
Y. Zang and I. Ojima, J. Org. Chem. 2013, *78*, 4013-4018.
C.-F. Lin, C.-W. Chien, and I. Ojima, Org. Chem. Front. 2014, *1*, 1062-1066.
Y. Zang and I. Ojima, Tetrahedron Lett. 2015, *56*, 3288-3292.

Highly Efficient Short Asymmetric Total Synthesis of (+)-γ-Lycorane

B. D. Chapsal and I. Ojima, Org. Lett. 8, 1395 -1398 (2006);

B. D. Chapsal, Z. Hua and I. Ojima", Tetrahedron : Asymmetry, 17, 642-657 (2006) [Jack Halpern Special Issue

Invention and Development of β-Lactam Synthon Method (1st-generation)

J. Am. Chem. Soc. , 110, 278 (1988). J. Am. Chem. Soc. , 112, 770 (19

α,α'-Dialkyldipeptides through novel tandem trialkylation

Ph

Me

base

ĊO₂Bu^t

ĊO₂Bu^t

i. H⁺

ii. e

Ph

Ph

(impossible to synthesize by peptide coupling methods)

Highly efficient asymmetric synthesis of β-lactams and isoserines via novel chiral ester – enolate cyclocondensation

J. Am. Chem. Soc. , **112**, 770 (1990)

Mel

base

J. Org. Chem., **56**, 1681 (1991). *Tetrahedron*, **48**, 6985 (1992). *Tetrahedron Lett.*, **33**, 5739 (1992). *Tetrahedron Lett.*, **34**, 4149 (1993). *Bioog, Med. Chem. Lett.*, **3**, 2479 (1993). *US Patent* 5,294,737 (1994)

Biologically Active α-Hydroxy-β-Amino Acids

1-Carbalkoxy-3-hydroxy-4-R_f-β-lactams: Versatile intermediates for fluoropeptides and fluoropeptidomimetics

I. Ojima, L. Kuznetsova, I. M. Ungureanu, A. Pepe, I. Zanardi, and J. Chen, ACS Symp. Ser. 911 "Fluorine-Containing Synthons", Soloshonok, V. (Ed.), Oxford University Press, Washington, DC. (2005); pp 544-561.

Applications of hydrocarbonylations of fluorine-olefins to the synthesis of fluoro-amino acids

Hydroformylation, Hydroesterification, Hydrocarboxylation, Amidocarbonylation

Enkephalins

An enkephalin is involved in regulating nociception in the body. The enkephalins are termed endogenous ligands, or specifically endorphins, as they are internally derived and bind to the body's opioid receptors. Discovered in 1975, two forms of enkephalin were revealed, one containing Leu and the other containing Met. Both are products of the proenkephalin gene.

Met-enkephalin: Tyr-Gly-Gly-Phe-Met. Leu-enkephalin: Tyr-Gly-Gly-Phe-Leu.

The receptors for enkephalin are the delta opioid receptors (GPCR family). The delta opioid receptor agonists produce analgesia, may act as antidepressant, and mimic ischemic preconditioning providing significant cardioprotection.

http://en.wikipedia.org/wiki/Enkephalin

The human κ -opioid receptor (a GPCR) in complex with JDTic antagonist

http://en.wikipedia.org/wiki/G-protein-coupled_receptor

New Potent Enkephalin Analogs Containing Trifluoromethyl-Amino Acid Residues

Phe

Met

Gly

Gly

「vr

I. Ojima and F.A. Jameison, J. D. Conway, K. Nakahashi, M. Hagiwara, T. Miyamae, and H. E. Radunz, Bioorg. Med. Chem. Lett., 2, 219-222 (1992) I. Ojima, K. Nakahashi, U.S. Pat. 5,276,137 (1994)

In vivo Analgesic Activity of Fluoro-enkephalin analogs (i.c.v.)

Entry	Enkephalins	ED ₅₀ (10 ⁻	⁹ mol/mouse)
1	Methionine-Enkephalin	700	
2	(Morphine•HCI)	0.07	
3	Tyr-(D)Ala-Gly-Phe-Met-NH ₂	0.05	
4	Sedapain [™] (Morphine analog)	0.05	
5	Tyr-(L)TFNV-Gly-Phe-Met	120	
6	Tyr-Gly-(L)TFNV-Phe-Met	140	
7	Tyr-(L)TFNV-Gly-Phe-Met-NH ₂	25	
8	Tyr-(D)TFNV-Gly-Phe-Met-NH ₂	0.007	(100,000 x)
9	Tyr-(D)Nval-Gly-Phe-Met-NH ₂	0.04	
10	Tyr-Gly-(L)TFNV-Phe-Met-NH ₂	22	
11	Tyr-Gly-(D)TFNV-Phe-Met-NH ₂	12	
12	Tyr-(D)TFNL-Gly-Phe-Met-NH ₂	0.07	
13	Tyr-(D)TFNV-Gly-(N-Me)Phe-Met-NH ₂	0.002	(350,000 x)

I. Ojima and F.A. Jameison, J. D. Conway, K. Nakahashi, M. Hagiwara, T. Miyamae, and H. E. Radunz, *Bioorg. Med. Chem. Lett.*, **2**, 219-222 (1992)

I. Ojima, K. Nakahashi, *U.S. Pa*t. 5,276,137 (1994)

In vitro receptor-binding assay for fluoro-enkephalin analogs

Enkephalin	Receptor	Tissue	Ligand ^a	IC ₅₀ (nM)
[D-TFNV ² , Met ⁵ -NH ₂] enkephalin	ти	cerebrum ^b	[³ H]-PL-017	0.5
Methionine-enkephalin	ти	cerebrum ^b	[³ H]-PL-017	2
[D-TFNV ² , Met ⁵ -NH ₂] enkephalin	delta	cerebrum ^b	[³ H]-DPDPE	2
Methionine-enkephalin	delta	cerebrum ^b	[³ H]-DPDPE	1
[D-TFNV ² , Met ⁵ -NH ₂] enkephalin	kappa	cerebellum ^c	[³ H]-U-69593	400
Methionine-enkephalin	kappa	cerebellum ^c	[³ H]-U-69593	>10,000

Frontal

Lobe

Parietal

Lobe

CEREBELLUM

Occipital

CEREBRI

Temporal

Lobe

EnchantedLearning.com

BRAIN STEM

^{*a*} [³H]-PL-017 = [³H]Tyr-Pro-(N-Me)Phe-(D)Pro-NH₂; [³H]-DPDPE = [³H][(D)Pen², (D)Pen⁵]enkephalin; [³H]-U-69593 = [³H](5á,7á,8â)-(-)-*N*-methyl-*N*-[7-(1-pyrrolidnyl)-1-oxaspiro(4,5)dec-8-yl]benzeneacetamide. ^{*b*} rat. ^{*c*} guinea pig.

- Remarkable enhancement in *in vivo* potency is not based on stronger binding to receptor sites, but mainly due to the extremely efficient inhibition of degradation/metabolism by aminopeptidases(s).
- enhancement of the rates of absorption and transport, arising from the lipophilicity of trifluoromethyl group can be taken into account.
- [D-TFNV², Met⁵-NH₂]enkephalin crosses BBB (ED₅₀: 0.1 μM/mouse by *i.v.*;
 0.2 μM/mouse by *s.c.*).

I. Ojima and F.A. Jameison, J. D. Conway, K. Nakahashi, M. Hagiwara, T. Miyamae, and H. E. Radunz, *Bioorg. Med. Chem. Lett.*, **2**, 219-222 (1992)

I. Ojima, K. Nakahashi, U.S. Pat. 5,276,137 (1994)

2-TFMAA: A highly versatile CF₃-building block

I. Ojima, *L'actualite chimique, France,* 171 (1987); I. Ojima, *Chem. Rev.*, **88**, 1011-1030 (1988) I. Ojima, K. Kato, K. Nakahashi, T. Fuchikami, and M. Fujita, *J. Org. Chem.*, **54**, 4511 (1989)

Pd-Catalyzed Ureidocarbonylation of 2-Br-TFP

Synthesis of 5,6-dihydrothymine-f₃ via cyclocondensation of 2-Br-TFP with urea and thioureas

T. Fuchikami and I. Ojima, *Tetrahedron Lett.*, 23, 4099 (1982)
T. Fuchikami, A. Yamanouchi and I. Ojima, *Synthesis*, 766 (1984)
I. Ojima, T. Fuchikami, M. Fujita, *U.S. Pat.* 4581452 (1986)
I. Ojima, *Chem. Rev.*, 88, 1011-1030 (1988)

Commercial Application to Trifluridine (Viroptic)

T. Fuchikami, A. Yamanouchi and I. Ojima, Synthesis, 766 (1984)

I. Ojima, T. Fuchikami, M. Fujita, U.S. Pat. 4581452 (1986)

1-Azabicyclo[x.y.0]alkane amino acids and their congeners

Cyclohydrocarbonylation (CHC) Approach

Ojima, M. Tzamarioudaki, M. Eguchi, J. Org. Chem. 1995, 60, 7078.
I. Ojima, D. M. Iula, M. Tzamarioudaki, *Tetrahedron Lett.*, 1998, *39*, 4599.
I. Ojima and E. S. Vidal, J. Org. Chem. 1998, 63, 7999.
N. Mizutani, W.-H. Chiou, I. Ojima, Org. Lett., 2002, 4, 4575.
W. H. Chiou, S.-Y. Lee, I. Ojima, Can. J. Chem. 2005, 83, 681.
W. H. Chiou, N. Mizutani, I. Ojima, J. Org. Chem. 2007, 72, 1871.
W.-H. Chiou, A. Schoenfelder, A. Mann, L. Sun, I. Ojima, J. Org. Chem. 2007, 72, 9418.

PUBLISHED BY THE AMERICAN CHEMICAL SOCIETY

Cyclohydrocarbonylation (CHC) Approach (2)

W.-H. Chiou, C.-C. Hsu, G.-H. Lin, S. J. Chaterpaul, and I. Ojima, Org. Lett. 11, 2659-2662 (2009).

Bioactive Conformation of Paclitaxel

A 3-D view of the structure of a microtubule obtained by cryo-electron microscopy and image reconstruction.

Nogales, E., Wolf, S. G., and Downing, K. H. *Nature* **391**, 199-203 (1998). Rao, S., He, L., Chakravarty, S., Ojima, I., Orr, G. A., Horwitz, S. B. *J. Biol. Chem.*, 274, 37990-37994 (1999).

Taxol And Friends Have Something In Common

Researchers propose a structural basis for the anticancer activity of compounds that stabilize cell microtubules

Ojima and coworkers propose that two corresponding structural regions (areas colored green and beige) in each of four classes of agents--Taxol, the epothilones, eleuthe-robin, and discodermolide--account for most of the compounds' antitumor activity. The researchers used nonatax [Adapted from *PNAS,* copyright 1999]

Solid State NMR Studies on F-Labeled Taxane – Microtubule Complexes

Aco O OH NH O OH \dot{B} OH OH \dot{B} OH OH \dot{C} O $d_2=6.3$ Å $d_3>8$ Å $d_3>8$ Å R^2 R¹/R² = ¹⁹F or ²H

RFDR (Radio Frequency Driven Recoupling) Adv. Med. Chem., 4, 69-124 (1999)
 REDOR (¹⁹F-¹³C)
 REDOR (¹⁹F-²H)

 (Rotational Echo Double Resonance)
 Biochemistry, **39**, 281 (2000)

 J. Am. Chem. Soc. 129, 361-370 (2007)

REDOR-Taxol-1JFF

(For clarity, only heavy atoms, C2'OH of REDOR-Taxol and His229 are shown.)

L. Sun, I. Ojima *et al. J. Org. Chem.* **73**, 9584–9593 (2008) L. Sun, C. Simmerling and I. Ojima, *ChemMedChem.*, **4**, 719-731 (2009)

REDOR-Taxol: Crucial Bioactive Conformation

R. Geney, L. Sun, P. Pera, R. J. Bernacki, S. Xia, S. B. Horwitz, C. L. Simmerling, and I. Ojima, Chem. & Biol. 2005, 12, 339-348

Synthesis of Conformationally Restricted Taxoid Mimicking Tubulin-Bound Paclitaxel Coformation

R. Geney, L. Sun, P. Pera, R. J. Bernacki, S. Xia, S. B. Horwitz, C. L. Simmerling, and I. Ojima*, Chem. & Biol. 2005, 12, 339-348

Synthesis of SB-T-2054

L. Sun, X. Geng, R. Geney, Y. Li, Z. Li, J. W. Lauher, S. Xia, S. B. Horwitz, J.M. Veith, P. Pera, R. J. Bernacki, I. Ojima, *J. Org. Chem.* **73** (2008) in press [A. I. Meyers Memorial Issue].

Biological evaluation of C14-C3'N linked macrocyclic taxoids

J. Org. Chem. 73 (2008) in press. [A. I. Meyers Memorial Issue]

"Guided Molecular Missiles" for Tumor-Targeting Drug Delivery

"Guided Molecular Missiles for Tumor-Targeting Chemotherapy", I. Ojima, Acc. Chem. Res. 41, 108-119 (2008).
"Functionalized Single-walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery",
J. Chen, S. Chen, X. Zhao, L. V. Kuznetsova, S. S. Wong and I. Ojima, J. Am. Chem. Soc., 130, 16778-16785 (2008).
"Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release"S.Chen, X. Zhao. J. Chen, J. Chen, L. Kuznetsova, S. S. Wong, I. Ojima, *Bioconjugate Chem.* 21, 979-987 (2010).
"Tumor-Targeting Drug Delivery of Chemotherapeutic Agents", I. Ojima, *Pure & Appl. Chem.* 83, 1685-1698 (2011).
"Tumor-targeting drug delivery of new generation taxoids", I. Ojima, E. S. Zuniga, W. T. Berger, and J. D. Seitz, *Future Med. Chem.*, 4, 33-50 (2012).

New Self-Immolative Linkers for Taxoid Conjugates

"Guided Molecular Missiles for Tumor-Targeting Chemotherapy", I. Ojima, Acc. Chem. Res. 41, 108-119 (2008).

Monitoring the internalization and drug release using fluorescent and fluorogenic probes

I,Ojima, Acc. Chem. Res. **41**, 108-119 (2008) S.Chen, X. Zhao. J. Chen, J. Chen, L. Kuznetsova, S. S. Wong, I. Ojima, *Bioconjugate Chem.* **21**, 979-987 (2010).

(A) epifluorescence CFM image of L1210FR cells that are first incubated with Biotin-Linker-Coumarin in the nonfluorescent form, and post-treated with glutathione to release the biotin and activate the dye to fluoresce blue. (B) CFM image L1210FR cells that are first incubated with Biotin-Linker-Taxoid-Fluorescein and post-treated with glutathione Et ester to release the Fluorescein-labeled Taxoid that are shown to bind to the microtubules inside the cancer cells.

I. Ojima, Acc. Chem. Res. 41, 108-119 (2008)

S.Chen, X. Zhao. J. Chen, J. Chen, L. Kuznetsova, S. S. Wong, I. Ojima, *Bioconjugate Chem.* 21, 979-987 (2010).

¹⁹F NMR Chemical Shift Dispersion in Novel Taxoid "3-FAB x 2 Probe"

J. D. Seitz, J. G.Vineberg et al. *J. Fluor. Chem.* **171**, 148–161 (2015), *Bordeuax Fluorine Days Special Issue*

¹⁹F NMR spectra (1024 scans) showing individual chemical shifts of 200 μ M solutions of BLT-S-F₆ **2** and taxoid **4** in blood plasma-D₂O-ethanol-polysorbate 80 (86:10:2:2), and a 1:1 mixture of **2** and **4** in blood plasma-D₂O-ethanol-polysorbate 80 (84:10:4:2)

¹⁹F NMR Monitoring of Drug Release in Blood Plasma with GSH (100 equiv.) [20 mM] (cancer cell mimicked condition)

Time-resolved ¹⁹F NMR spectra for the drug release of probe 2 (200 μ M) in 86% blood plasma, 2% ethanol, and 2% Tween 80 in D₂O at 30 min after the addition of 100 equivalents of GSH at 37 °C with 1 h intervals (1024 scans/spectrum) for 13 h. The signals of 2-*m*-OCF₃ (*left*) and the 3'-CF₃ (*right*) are shown, which indicate full drug release after 13.5 h.

J. D. Seitz, J. G.Vineberg, L. Wei, J. F. Khan, B. Lichtenthal, C.-F. Lin and I. Ojima, J. Fluor. Chem. 171, 148–161 (2015).

Synthesis of "Trojan Horse" Guided Molecular Missile

J. Chen S. Chen, X. Zhao, L. Kuznetsova, S. S. Wong, I. Ojima, J. Am. Chem. Soc. 130, 16778-16785 (2008).

Internalization and Drug Release of Biotin-CNT-Linker-Taxoid-Fluorescein

n: 0.50 mmol/g: 178 biotins/tube m: 0.20 mmol/g: 71 taxoids/tube

CFM images of L1210FR cells treated with **biotin-CNT-taxoid-fluorescein** incubated in the absence (A) and in the presence (B) of GSH Et ester. The latter shows the presence of a microtubule network, polymerized by taxoid, after the disulfide bonds had been cleaved by the GSH ethyl ester.

J. Chen S. Chen, X. Zhao, L. Kuznetsova, S. S. Wong, I. Ojima, J. Am. Chem. Soc. 130, 16778-16785 (2008).

J. Chen S. Chen, X. Zhao, L. Kuznetsova, S. S. Wong, I. Ojima, J. Am. Chem. Soc. 130, 16778-16785 (2008).

Construction of Asymmetric Bow-tie Dendimers with Different Generation Dendrons

G. T-S. Teng. Ph.D. Research Proposal, Stony Brook University (2010)

H. F. Gaertner, F. Cerini, A. Kamath, A.-F. Rochat, C.-A. Siegrist, L. Menin, O. Hartley, Bioconj. Chem. 2011, 22, 1103–1114

PAMAM Dendrimer-Based Tumor-Targeted DDS

Asymmetric PAMAM Dendrimer DDS Construction

LC-TOF Analysis

G3 Construct

Chemical Formula: $C_{912}H_{1604}N_{218}O_{252}S_{34}$ Exact Mass: 20730.99 Molecular Weight: 20746.01

Tao Wang

Click-Ready Asymmetric PAMAM Dendrimer Construct Synthesis

(Biotin)₁₆-D₃-linker-D1-(Alkyne)₄ Template

Exceptional Potency (IC₅₀) and Cancer Cell Specificity of ABTD-1 Multiple binding of the tumor-targeting module to biotin receptors

	ID-8	MX-1	WI-38
Paclitaxel	21.2 ± 4.30	3.83 ± 0.59	17.5 ± 5.2
SB-T-1214	1.89 ± 0.30	$\boldsymbol{2.90 \pm 0.47}$	4.14 ± 0.82
BLT-S	7.84 ± 1.85	26.7 ± 3.44	519 ± 90.3
BLT-S + GSH-OEt*	5.91 ± 0.32	1.52 ± 0.34	N.D.
ABTD-1	7.84 ± 1.85	$\boldsymbol{2.05 \pm 0.91}$	582 ± 48.8
ABTD-1 + GSH-OEt*	0.62 ± 0.07	0.12 ± 0.05	N.D.
ABTD-3	> 5000	> 5000	N.D.

Concentration of compound that inhibits 50% (IC₅₀, nM) of different types of cells after 72 h of drug exposure at 37 °C under 5 % CO_2 .

*24 h of drug exposure, followed by thorough washing with DPBS, and 48 hours incubation with 6 eq glutathione-OEt at 37 °C under 5 % CO_2 .

Tao Wang

Molecular Structure of ABTD-1 Tumor-Targeting Dendrimer Conjugate

New Generation Tumor-Targeting Anticancer Agents -Basic structure of the multi-functional conjugates: tailor-made "nano medicine"-

Acknowledgments

\$\$\$\$

National Institutes of Health (NCI, NIAID, NIGMS) National Science Foundation Department of Defense (DTRA) New York State Office of Science, Technology and Academic Research (NYSTAR) Faculty Development Award ACS-Petroleum Research Fund Arthur C. Cope Funds (ACS) John S. Guggenheim Memorial Foundation **New York State Science & Technology Foundation Japan Health Science Foundation Indena SpA Rhone-Poulenc Rorer (Sanofi-Aventis)** ImmunoGen, Inc. **Mitsubishi Chemical Corporation** Japan Halon Co., Ltd. (Tosoh F-Tech, Inc.) Ajinomoto Co., Inc. Yuki Gosei Yakuhin K. K. **Central Glass Co., Ltd.**

Acknowledgments

Benjamin Hsiao

Robert Filler John Welch (ACS F-Chem Award)

S. Danishefsky Koji Nakanishi (E. B. Hershberg Award)

Paul Wender Albert Meyers (A. C. Cope Scholar Award)

Susan Horwitz

Ralph Bernacki

E. Bombardelli

A. Commercon

C. Ferlini

C. Simmerling Stan. Wong

Peter Tonge

Ric. Slayden

Jacqueline Kampf

Marinaccio

Roxanne Brockner

Yoko Ojima