Stony Brook University
AAPOND

Using Advanced Analytics to Boost Student Success

Dr. Braden J. Hosch, Asst. Vice President for Institutional Research, Planning \& Effectiveness, Nov. 11, 2018
$\star|\mid$ Stony Brook University

Overview

- Institutional profile and grad rate improvements
- Initiatives
- "Traditional" IR / Analytics
- Predictive Analytics
- Takeaways

FAR

Stony Brook University Institutional Profile

Students:
26, 254 Fall headcount

Freshman graduation rates increased fifteen percentage points in the last five years; equity gaps are largely closed

FAR

Improvements realized through multi-pronged approach

Broad-based academic success team
$3^{\text {rd-party }}$ analytics
"Traditional" institutional research

Policy and procedure reform

Mini-grants to seniors

In-house analytics

Expanded advising

Class availability

Attention to special populations

FAR

Traditional IR - grad rates by DFW rates

Number of $1^{\text {st }}$ Term Course Grades of D, F, W or U

Address Courses with Higher DFW Rates

Top 18 Fall 2010 courses
23.5\%-37.9\%

Top 18 Fall 2017 courses
18.1\%-25.9\%

FAR
BEYOND

Exploratory IR - number of course grades of A

Number of $1^{\text {st }}$ Term Course Grades of A or A-

4-Year Graduation Rate (pct)

Method for local analytics: student-level predictions

Credit to: Nora Galambos, Ph.D., Senior Data Scientist

Decision trees using SAS Enterprise Miner

| Classification |
| :---: | :---: | :---: | :---: |
| and |
| Regression |
| Trees (CART) |
| method | | Clustering to to |
| :---: |
| reduce multi- |
| collinearity | | Imputation of |
| :---: |
| some but not |
| all missing |
| values |\quad| Data |
| :---: |
| partitioned |
| into training, |
| test, and |
| validation sets |

EAR

Data included in model

Demographics	Pre-college academic characteristics	College academic characteristics	Transactions, service utilization, activities.	Financial aid
- Gender - Race/ethnicity - geographic residence when admitted.	- SAT scores - high school GPA - average SAT scores of the high school (to control for high school GPA).	- Credits accepted when admitted - AP credits - number of STEM and nonSTEM courses current term - enrollment in high DFW courses - area of major.	- Learning management system (LMS) logins - advising visits - tutoring center utilization - intramural and fitness class participation	- Expected family contribution AGI - types and amounts of disbursed aid - Pell, Tuition Assistance Program (TAP).

FAR
BEYOND

LMS Data Processing

- Count only one login per course per hour
- A course can have up to 24 logins per day
- Eliminates multiple logins just few minutes apart.
- Logins totaled by week
- Per-course login rates calculated for STEM and non-STEM courses
- Class assignment grades not yet included
- Timing and data processing issues
- Completeness issues
- Significant noise and false positives

FAR

Decision Tree Model for Freshmen GPA: Part 1—HS GPA <= 92.0

HS GPA<=92.0

LMS logins per non-STEM crs, wk 2-6 >=11.3 or missing

LMS logins per non-STEM crs, wks 2-6<11.3

Avg. HS SAT CR >570				Avg. HS SAT CR<=570				Avg. HS SAT CR >=540				Avg. HS SAT CR <540		
$\begin{aligned} & \text { SAT I } \\ & \text { CR > } \end{aligned}$		$\begin{aligned} & \text { SAT } \\ & \text { CR }<= \end{aligned}$	$\begin{aligned} & \text { Math } \\ & =1360 \end{aligned}$	$\begin{gathered} \text { Login } \\ \text { STEM } \\ 2-6> \end{gathered}$	per crs, wk 32.2	$\begin{aligned} & \text { Login } \\ & \text { STEM } \\ & 2-6 \end{aligned}$	sper crs, wk 32.2	$\begin{aligned} & \text { AP } \\ & \text { Crs } \end{aligned}$	$\begin{aligned} & \text { TEM } \\ & >=1 \end{aligned}$	$\begin{gathered} \mathrm{AP} \\ \mathrm{Cr} \end{gathered}$	$\begin{gathered} \text { EM } \\ 0 \end{gathered}$	$\begin{aligned} & \text { Logs } \\ & \text { crs, } \\ & >=5 . \end{aligned}$	$\begin{aligned} & \text { r STEM } \\ & \text { k 2-6 } \\ & \text { or miss } \end{aligned}$	Logs per STEM crs. wk \qquad
$\begin{gathered} \text { AP } \\ \text { STEM } \\ \text { Crs>= } \\ 1 \end{gathered}$	AP Stem Crs = 0			$\begin{aligned} & \text { SAT } \\ & \text { Math } \\ & >=680 \end{aligned}$	SAT Math< 680 or miss.	$\begin{gathered} \text { Non- } \\ \text { STEM } \\ \text { crs logs } \\ >=3 \text { or } \\ \text { miss. } \end{gathered}$	$\begin{gathered} \text { Non- } \\ \text { STEM } \\ \text { crs } \\ \text { logins }<3 \end{gathered}$	STEM crs logs Wk. miss.	STEM crs logs Wk 1 <5	$\begin{gathered} \text { STEM } \\ \operatorname{logs~Wk.~} \\ 1>=5 \text { or } \\ \text { miss. } \end{gathered}$	$\begin{gathered} \text { STEM } \\ \text { crs } \\ \text { logs } \\ \text { W. } 1 \\ <5 \end{gathered}$	$\begin{gathered} \text { STEE } \\ \text { Crs logs } \\ \text { Wk } \\ >=1 \\ \text { ior } \\ \text { miss. } \end{gathered}$		$\begin{gathered} \text { Avg. } \\ \text { GPA }= \\ 1.59 \\ \mathrm{~N}=13 \end{gathered}$
Avg. GPA = 3.63	Avg. GPA = 3.20	Avg. GPA = 2.92	Avg. GPA = 3.25	Avg. GPA = 3.35	Avg. GPA = 3.09	$\begin{aligned} & \text { Avg. } \\ & \text { GPA }= \\ & 2.94 \end{aligned}$	$\begin{aligned} & \text { Avg. } \\ & \text { GPA= } \\ & 2.53 \end{aligned}$	Avg. GPA = 3.21	Avg. GPA = 2.69	Avg. GPA = 2.75	Avg. GPA = 2.12	$\begin{gathered} \text { GPA }= \\ 2.62 \\ N= \end{gathered}$	Avg. GPA = 1.94	
$N=46$	$N=23$	$\mathrm{N}=34$	$\mathrm{N}=94$	$\mathrm{N}=78$	$N=121$	$N=371$	$N=57$	$N=64$	$\mathrm{N}=16$	$N=73$	$\mathrm{N}=18$	N		12

Decision Tree Model for F14 Freshmen GPA: Part 2—HS GPA > 92.0

HS GPA>92.0 or Missing															
Scholarship = Yes								Scholarship = No							
HS GPA >=96.5 or missing				HS GPA < 96.5				LMS logins per non-STEM crs. Wk 2-6 >=10.4				LMS logins per non-STEM crs. wk 2-6 < 10.4			
Ma Place Exam	$\begin{aligned} & \text { ath } \\ & \text { ment } \\ & i>=5 \end{aligned}$	Ma Place	$\begin{aligned} & \text { ath } \\ & m \text { ment } \\ & n<5 \end{aligned}$	$\begin{gathered} \text { Logs } p \\ \text { STEM } \\ 2-6> \end{gathered}$	er noncrs,wks =29.1	$\begin{aligned} & \text { Logs p } \\ & \text { STEM } \\ & 2-6 \end{aligned}$	er noncrs,wks 29.1	$\begin{aligned} & \mathrm{AP} \\ & \mathrm{Crs} \end{aligned}$	$\begin{aligned} & \text { TEM } \\ & >=1 \end{aligned}$		$\begin{aligned} & \text { TEM } \\ & =0 \end{aligned}$	$\begin{gathered} \text { Logs } p \\ \text { crs, } \\ >=1 \\ m \end{gathered}$	$\begin{aligned} & \text { r STEM } \\ & \text { ks 2-6 } \\ & .9 \text { or } \\ & \text { ss. } \end{aligned}$	Logs crs.	$\begin{aligned} & \text { rr STEM } \\ & \text { ks } 26< \\ & 0.9 \end{aligned}$
Logs per STEM Crs., wk 2-6 $>=15.6$	$\begin{gathered} \hline \text { Logs } \\ \text { per } \\ \text { STMM } \\ \text { Crs, wk } \\ 2.6 \\ \hline 15.6 \\ \hline 15.6 \end{gathered}$	$\begin{gathered} \text { Ethnic } \\ \text { Group } \\ = \\ \text { White, } \\ \text { Hisp. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ethnic } \\ & \text { Group= } \\ & \text { Asian, } \\ & \text { Affr. } \\ & \text { Amer, } \\ & \text { Unk. } \end{aligned}$	$\begin{aligned} & \text { SAT } \\ & \text { Math } \\ & >=70 \\ & 0 \end{aligned}$	$\begin{gathered} \text { SAT } \\ \text { Math } \\ <700 \\ \text { or } \\ \text { miss. } \end{gathered}$	$\begin{gathered} \text { Avg } \\ \text { HS. CR, } \\ \text { M Wrt } \\ >=183 \\ 0 \text { miss } \end{gathered}$	$\begin{aligned} & \text { Avg. } \\ & \text { HS CR, } \\ & \text { M, } \\ & \text { Wrt< } \\ & 1830 \\ & \hline \end{aligned}$	$\begin{gathered} \text { DFW } \\ \text { STEM } \\ \text { Crs } \\ \text { Total } \\ >=2 \end{gathered}$	$\begin{gathered} \text { DFW } \\ \text { STEM } \\ \text { Crs } \\ \text { Total } \\ <2 \end{gathered}$	$\begin{gathered} \text { SAT } \\ \text { Math } \\ >=76 \\ 0 \end{gathered}$	$\begin{aligned} & \text { SAT } \\ & \text { Math } \\ & <760 \end{aligned}$	$\begin{aligned} & \text { DFW } \\ & \text { non- } \\ & \text { STEM } \\ & \text { 1tt }_{\text {yrs }} \\ & >=28 \% \end{aligned}$	$\begin{aligned} & \text { DFW } \\ & \text { non- } \\ & \text { STEM } \\ & \text { 1tstrs }^{\text {ctrs }} \\ & \hline 28 \% \end{aligned}$	$\begin{gathered} \text { STEM } \\ \text { Crs } \\ \text { logs } \\ \text { Wk1 } \\ >=8 \end{gathered}$	$\begin{array}{\|l\|l} \text { STEM } \\ \text { Crs logs } \\ \text { Wk } 1<8 \\ \text { or miss } \end{array}$
$\begin{gathered} \text { Avg. } \\ \text { GPA }= \\ 3.63 \\ \mathrm{~N}= \\ 285 \end{gathered}$	$\begin{gathered} \text { Avg. } \\ \text { GPA } \\ 3.40 \\ \mathrm{~N}=83 \end{gathered}$	Avg. GPA $=3.50$ $\mathrm{~N}=73$	Avg. GPA= 3.05 N=30	Avg. GPA 3.76 N=26	Avg. GPA 3. N $=74$ \%	Avg. GPA $=$ 3.59 $N=54$	$\begin{array}{\|c} \text { Avg. } \\ \text { GPA } \\ \text { GPA } \\ 3.13 \\ \mathrm{~N} \end{array}$	$\begin{gathered} \text { Avg. } \\ \text { GPA }= \\ 3.23 \\ \mathrm{~N}= \\ 163 \end{gathered}$	Avg. GPA 3.4 N=101	Avg. GPA $=$ 3.76 $N=11$	$\begin{gathered} \text { Avg. } \\ \text { GPA }= \\ 3.03 \\ \mathrm{~N}= \\ 194 \end{gathered}$	$\begin{gathered} \text { Avg. } \\ \text { GPA }= \\ 3.05 \\ \mathrm{~N}=72 \end{gathered}$	$\begin{gathered} \text { Avg. } \\ \text { GPA }= \\ 2.90 \\ \mathrm{~N}=73 \end{gathered}$	Avg. GPA 1.30 N=11	$\begin{gathered} \text { Avg. } \\ \text { GPA }= \\ 2.52 \\ \mathrm{~N}=16 \end{gathered}$

Analvtics dashboard
 Risk Levels

FAR
BEYOND

Population monitoring and drill to detail

FAR
BEYOND

Final thoughts

Selected Technical considerations

- Information delivery
- Data quality/governance
- False positives/negatives
Use of analytics is not just technical
- Culture change
- Trust
- Ethics

FAR
BEYOND

