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About Me: / 2T 4

Outside the Lab, I Enjoy:

I was born and raised in Iran.

I received both my Bachelor’s and Master’s degrees in Genetics. 7MY LY 3 A

During my Master’s, I focused on the role of non-coding RNAs as internal R
controls in breast cancer.

After graduation, I worked for two years as an R&D Manager at HANIFA
Genetics.

I’m passionate about translating cellular and molecular findings into insights
that can inform better diagnostics and therapies.

Traveling and exploring new places €
Gardening and spending time in nature .
Painting and creative expression
Taking long walks to clear my mind A
Quality time with my family @




Cancer is a complex evolving ecosystem, where a single cell escapes normal controls and disrupts tissue
homeostasis.

We study how changes in tumor microenvironment apply selective pressure on cancer cells, influencing their
evolution and adaptation.

This interplay between tumor cells and the microenvironment drives tumor heterogeneity and phenotypic
plasticity.

We use the integration of spatial single-cell omics (transcriptomics, proteomics, metabolomics, lipidomics) and
machine learning to analyze cancer cell adaptation within their native microenvironments.



Tumor-Associated Macrophages (TAMs): A Double-Edged Sword in Ovarian Cancer
Progression and Immunosuppression

Angiogenesis

* TAMs Exhibit high plasticity: Visnayh
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POU2F3 Co-Activator OCA-T2
Is Essential for Tuft Cell Lineage
Development

Liam Shanley
Fourth Year PhD Student
Vakoc Lab
Speed Science, 9/10/25



Tuft cells are rare chemosensory cells found
In the epithelium in mucosal tissues
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The Vakoc lab studies transcription factors, their
co-activators, and the ways they cooperate to
drive cell lineage

Tuft Cell Lineage TC loss TC No TC loss
reduction
trachea small colon thymus | stomach
intestine
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Targeting H3-3A using antisense
oligonucleotides as a therapy for pediatric
high-grade glioma
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Shivani Deshpande

3rd year graduate student
Krainer Lab at CSHL
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ASO Targeting of H3-3A

Ga r ASO for downregulation of H3K27M
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« Combination therapy protocols for H3.3K27M DMG

» Using the splice-switching ASOs to target a second
mutation in the same exon: G34R/V
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Investigating strategies for decreasing the risk of
mammary tumorigenesis in younhg women

Dhivyaa Anandan
dos Santos Lab, CSHL
Genetics Speed Science
September 10, 2025
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Lifestyle factors and environmental exposures play a role in risk for
breast cancer

WHAT FACTORS AFFECT

BREAST CANCER R/SK? UDEEREREHIERK ¥ am= First pregnancy < 20 years === First pregnancy 25-30 years

. e First pregnancy > 30 years
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- -
or obese
Same risk
Sedentary lifestyle as nulliparous
)
Drinking more than one
alcoholic drink a day

. . Exposure to high-dose
radiation, particularly

before age 40
¢ Decreased risk Y Y v Y Y 1
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2222

Inherited genetic
mutations
(e.g., BRCAT) ’

Using hormone therapy
after menopause

Meier-Abt & Bentires-Alj, Trends Mol Med 2014

1. Whatis the underlying mechanism behind
the protective effect of an early first
pregnancy?

2. Looking beyond pregnancy - can dietary
interventions mediate risk for breast cancer?

[ MIRACLE|..SCIENCE| ... SOUL | [SISRT{IoTelY

CityofHope.org/breast-cancer-environment




Mimicking pregnancy-induced changes to Investigating the effect of probiotics on

mammary immunity mammary tumor development
IgG plasma cells are elevated in post-pregnancy mammary glands and Probiotic diet delays mammary tumor development and alters the
recognize antigens associated with pregnancy and mammary collagen composition of the gland.

tumorigenesis.
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Role of maternal immune
activation in
neurodevelopmental disorders

Paige Henderson

Cheadle
~ ?‘ Lab



Bacterial infection

S \‘ * Increased risk of autism and
s schizophrenia in children
" ——) &( ASD diagnosis is 4x more
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* Mechanisms linking MIA and
&) .
432, neurodevelopmental disorders
remain unclear
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Cancer cachexia

Immune infiltrate
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Secreted cytokines
and soluable factors

Localized disease
process

Systemic response
(e.g. inflammation)

Systemic effects of unresolved disease
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Central nervous Endocrine system Circadian rhythm
system Increased Disrupted sleep
Reduced appetite glucocorticoids pattern

U

Liver Immune system Gut
Metabolic Suppressed innate and Altered
reprogramming adaptive immunity microbiome

Muscle tissue Adipose tissue Bone
Atrophy and Wasting and lipolysis Atrophy
proteolysis

Alice Wang
(Tobias Janowitz lab at CSHL)

Ferrer et al. Cell (2023)
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Deciphering the role of stearoyl-CoA desaturase 1 (SCD) in breast
cancer

SFA MUFA PUFA oSFA
No double bonds 1 double bond 2 or more double bonds JLN\/\MAN\
10 Stearoyl-CoA
NAD(P)H + H* Cytochrome b5 reductase m/tochrom b5
X (FADH ) Fe2* )(.
NAD(P) Cytochrome bS5 raductase cytochrom b5
- (FAD) Fe3*
S
PUFA
Increasing oxidation potential
Lipotoxicity Ferroptosis SFA: Saturate fatty acid
\ J
f MUFA: Mono-unsaturate fatty acid

Cell membrane
SCD is a key player in populating this balance

_

PUFA: Poly-unsaturate fatty acid
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Reversible Redox Regulation of T-Cell
Protein Tyrosine Phosphatase

(PTPN2)
TanChun Kuo
Tonks Lab
i
Stony Brook

University



Reversible Redox Regulation of PTPN2 (TCPTP
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Silvia Shui @ Westcott Lab in CSHL
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T Cell Immunity Is Important in Cancer Immunology

[Naive T cellsJ

Effector T
cells

J

Waiting for priming, and can
be differentiated into Effector
and Memory T cells

Primed and activated by
antigen presenting cells, and
induce cancer cell death

Long-lived antigen-
experienced T cells. Can
provide long-term protection.

[ Ideal Balance ]

Shift to Effector
T cells

Ahmed et al., Cancer Pathogenesis and Therapy (2023)
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Dietary fatty acid (FA)-induced PPARd activation in stem cells is a causal mechanism
that links HFD/obesity to increased intestinal cancer risk

FA metabolism in stem cells promotes stemness
and cancer risk in response to diet and obesity
High Fat Diet / Obesity

T ¢
g ~ 9 Months 'j)
_ e

v

=)

T Fatty Acids

¥ .
Fatty acid
T PPAR > oxi ation__

T 42U8 — B-catenin

Stem Cells Tumor Initating
Stem Cells

How do distinct dietary fatty acids influence stem cell activity and regeneration in the intestine?

Beyaz et al. 2016, Beyaz et al. 2021a



Intestinal epithelium as a model to study stem cell regeneration and plasticity?

1. Homeostasis

- What are the signals?

- Plasticity in physiological contexts?

Goblet Cell E
Tuft Cell
- The influence of nutrient metabolism?

Secretory
Enterocytes prern'tor

I— TA Cells

Cheng and Leblond 1974, Potten et al. 1977, Barker et al. 2007, Buczacki et al. 2013, Nusse et al. 2018, Ayyaz et al. 2019, Murata et al. 2020, Cheng et al. 2019, Beyaz et al. 2016



Tracmg modern human-specific adaptations with
c Ancestral Recombination Graphs
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Primary tumor Metastasis 1

Cancer Evolution

Metastasis 2
driver gene i
) mutations are
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Quant/Pop Genetics



b%ev Modern Human-Specific Genetic Variants

Humans specific amino acid .
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* What We Observe and What We Want to Know

Observed Unobserved

1 e—)—()
d2 O Q O :
O O O

Relationship

Id3

Id4 O—O—(D_

Present-day haplotypes Genealogical relationships

Patterns of shared variants When lineages coalesce

No time or ancestry information How variants spread through time



What is Ancestral Recombination Graph?
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Dynamics of DNA

Replication in Yarrowia

]ipolytica

Speed Science 2025
Stillman Lab
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Give yourselves a pat on the back!



Oligodendrocytes myelinate the CNS

00:00 [m:s]

10 um

Movie from Marisca, R. et al. Nat Neurosci 23, 363-374 (2020).




Oligodendrocytes myelinate the CNS

» Provide neural network stability —
» Increase action potential speed 10 um
» Metabolically support neurons

Image from EM facility at Trinity College
Movie from Marisca, R. et al. Nat Neurosci 23, 363-374 (2020).




Metformin accelerates myelin repair in adult rodents

Metformin (mg/kg)

No Met 50 100 200

eccorum  Metformin e 'W“'vh PACC m
K Be===

Myelin Repair

&

+/- metforminkga_‘ Sl

Age-matched Control Myelin Loss No Metformin + Metformin

Figure adapted from Narine, M., Azmi, M. A,, et al. Front Cell Neurosci. 2023.




Myelination is a
prolonged process

Developmental myelination take
place in waves during:

* Infancy
e Childhood
* Late teen/Early adulthood

Adaptive myelination continues
throughout life.

Does metformin affect
developmental myelination?

Timeline of myelin changes throughout life

Stage 2 3 4

A

>

Early childhood _
Childhood

Adolescence

T T T

40 60 80
Age (years) Myelin waves highlighted by shaded area

Cycles of myelination

Monophasic
Multiphasic

Continuous/protracted

Time
Figure adapted from de Faria, O. et al. Nat Neurosci 24, 1508—-1521 (2021).




Metformin attenuates
developmental myelination in the
central nervous system

Maryam (Minnie) Azmi
6t year PhD Candidate
~ Advisor: Dr. Holly Colognato
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The Veeramah Lab

Molecular evolutionary mechanisms of
rapid adaptation

Alexander Kwakye



Jackpot mediated rapid adaptation
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Allele Frequency

Trajectory of SNPs within a year across multiple years
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Differentially expressed genes between Cheney and Cornelius lakes
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FOXAT1 restrains cytotoxic
sphingolipids in breast cancer

Sam Chiappone
9-10-25



The family of sphingolipids known collectively as
ceramide are cytostatic and also cytotoxic at high
levels, giving ceramide the status of a putative
“tumor suppressor lipid”

What regulates ceramide levels in cancer?
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Breast Cancer

The machine learning algorithm ARACNE
predicted FOXA1 to be the most significant
regulator of sphingolipid (SL) genes in breast
cancer RNA-Seq samples from TCGA

WGCNA also classified FOXA1 as
associated with the most significant
cluster of SL genes in RNA-Seq from
breast cancerin TCGA



Mean Normalized Expression

Experimental validation of FOXA1 function in
breast cancer; control of SL gene expression
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Does the colony growth defect in FOXA
knockdown cells depend on ceramide?

AllStar negative
control siRNA

i

siFOXA1




Conclusions

»In this work, we identify at least one factor controlling ceramide
levels in breast cancer, the pioneer transcription factor FOXA1

»We also potentially pin a molecular function on FOXA1’s control
of aggressiveness in breast cancer, which has been elusive



Nelson Gautier
van der Velden Lab
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3 combined
More brands of Dubai chocolate Qeau. ally.
recalled in salmonella outbreak
linked to pistachios interactions with

More recalls have been issued for a popular type of chocolate after a salmonella outbreak linked to
certain brands of pistachios and pistachio-containing products.

Aug.14,2025 &1minread [] [T &




Role of Inflammatory Monocytes in Salmonella-
Induced Colitis

Lumen | -

i N o e
; Rehslgirfatﬁon “\ﬁ"
Salmonélksl/—‘ R = :" » .
Microbiota o - » Specifically, | am interested
- /o | . in how IMs contribute both
. - directly and indirectly to

the generation of host-
derived nitrate and the
subsequent expansion of
salmonella in the lumen of

I 3 Inflammation
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Adapted from McLaughlin et al. PLoS Pathogens 2019
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Lysosomal ceramide-metabolizing enzymes,
regulate plasma membrane ceramide in
response to acid stress



Functions of Plasma Membrane Ceramide
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Proposed Model: ASM producing lysosomal ceramide that
IS transferred to the PM in acidic conditions
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Modified model of PMCer generation
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ldentifying novel NRF2 functional binding partners in
NSCLC
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The Vakoc Laboratory
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Our goal: to reveal novel mechanisms of
NRF2 function in KEAP71-mutant NSCLC
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2. To identify and biochemically characterize cancer-related NRF2 regulators
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CUL3 is a putative coregulator of NRF2 activity in
KEAP71-mutant LC
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