
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

Spring 2024 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Use one exam book for each problem, and label it carefully with the problem topic and num-
ber and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1
A driven pendulum

Consider a simple pendulum consisting of a massless rod of length ℓ and an endpoint
mass m. The pendulum’s point of support oscillates vertically according to y = A cosΩt
with A≪ ℓ, see figure (a) below.

2012/2013 Master’s Review Examination Mechanics

2 (60 points total)

Consider a simple pendulum of length l and mass m whose point of support oscillates vertically
according to the law y = A cos⌦t. (See Fig.1a.)

A. [10 points] Derive the Lagrangian of the system. (It is convenient, but not necessary, to
omit the total derivative.)

B. [10 points] Write the Lagrange equation.

C. [10 points] Suppose ⌦ ⌧
p

g/l and the amplitude of the oscillation of the pendulum
is small. So the equation of motion is linear. In this case both the amplitude and the
frequency !(t) of oscillation of the pendulum slowly change in time. Write the adiabatic
invariant of the problem, I in terms of the energy E and !. How does E(t) depend on
time?

D. [10 points] Find an interval of frequency ⌦ ± �⌦, where parametric resonance takes
place. Do your calculations to lowest order in the amplitude A. Assume that the
oscillations are linear.

E. [10 points] Suppose now that ⌦ �
p

g/l. Write the equation of motion and the e↵ective
potential averaged over the period of oscillation 2⇡/⌦.

F. [10 points] What is the condition on the frequency for stability of the vertical inverted
position of the pendulum, as shown in Fig.1b?

m

y=A cos t y=A cos t 

l

a) b)

2

(a) (6 points) Derive the Lagrangian of the system and determine the equations of motion.
It is convenient (but not necessary) to omit all total time derivatives.

(b) (4 points) Consider the limit where Ω2 ≫ ω2
0 ≡ g/ℓ. Write the angle of the pendulum

as θ(t) = Θ(t) + ξ(t) where Θ(t) is a slow (approximately constant) variable, and ξ(t)
is a rapid variable with a small amplitude of order ξ0 ≡ A/ℓ ≪ 1. Approximate the
equations of motion to order Ω2 ξ0 ≫ ω2

0 to determine the rapid angular variation ξ(t)
at specified Θ. Carefully explain your approximations.

(c) (6 points) Now approximate the equations of motion for θ(t) = Θ(t)+ ξ(t) to order ω2
0

and Ω2ξ20 , which are the same order of magnitude. Derive an effective (time-averaged)
equation of motion for the angle Θ(t) by averaging over a single period of the fast
oscillations. Carefully explain your steps.

(d) (4 points) Consider the vertical inverted position of the pendulum, as shown in fig-
ure (b) above. Determine the condition for stability of this position.
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Solution

(a) Taking the coordinates

x =ℓ sin θ (1)
y =− ℓ cos θ + A cosΩt (2)

Then we have

ẋ =ℓ cos θ θ̇ (3)

ẏ =ℓ sin θ θ̇ − AΩ sin(Ωt) (4)

The Lagrangian is

L =
1

2
m(ẋ2 + ẏ2)−mgy (5)

Substituting in the expressions for the coordinates and dropping all terms that only depend
on time (and not θ and θ̇) we find

L =
1

2
mℓ2θ̇2 +mgℓ cos θ −mAℓΩ sin(Ωt) sin(θ)θ̇ (6)

Integrating the last term by parts

−Ω sin(Ωt) sin(θ)θ̇ =Ωsin(Ωt) ∂t cos(θ) (7)
=∂t [Ω sin(Ωt) cos(θ)]− Ω2 cos(Ωt) cos θ (8)

and dropping the total derivative yields the Lagrangian in its final form

L =
1

2
mℓ2θ̇2 +mgℓ cos θ −mAℓΩ2 cos(Ωt) cos(θ) . (9)

Evaluating the Euler-Lagrange equations, we find

mℓ2θ̈ = −mgℓ sin(θ) +mAℓΩ2 cos(Ωt) sin θ (10)

Dividing by mℓ2 we have

θ̈ = −ω2
0 sin(θ) + ξ0Ω

2 cos(Ωt) sin θ (11)

where we defined

ω2
0 =

g

ℓ
(12)

ξ0 =
A

ℓ
(13)
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(b) We then write
θ(t) = Θ(t) + ξ(t) (14)

Substituting and expanding

Θ̈ + ξ̈ = −ω2
0 sin(Θ + ξ) + ξ0Ω

2 cos(Ωt) sin(Θ + ξ) (15)

Now we expand the sin

sin(Θ + ξ) = sinΘ cos ξ + cosΘ sin ξ (16)

=sin(Θ)

(
1− ξ2

2

)
+ cos(Θ)ξ (17)

Using this expansion we find

Θ̈ + ξ̈ =− ω2
0 [sinΘ +O(ξ0)] + ξ0Ω

2 cos(Ωt)
[
sinΘ + cosΘ ξ +O(ξ20)

]
(18)

The terms in this expression are of order

RHS ∼
[
ω2
0 +O(ω2

0ξ0)
]
+
[
Ω2ξ0 + Ω2ξ20 +O(Ω2ξ30)

]
(19)

which indicates the overall consistency of the approximation scheme.

Then the equation of motion for terms of order Ω2ξ is

ξ̈ = ξ0Ω
2 cos(Ωt) sinΘ (20)

which yields ξ(t)
ξ(t) = −ξ0 cos(Ωt) sinΘ (21)

(c) With this expression for ξ, we then have an equation of motion for Θ. First we note

ξ̈(t)− ξ0Ω
2 cos(Ωt) sinΘ = −2ξ0Ω sin(Ωt) cos(Θ)Θ̇ (22)

Then
Θ̈ = −ω2

0 sinΘ + ξ0Ω
2 cos(Ωt) cosΘ ξ + 2ξ0Ω sin(Ωt) cos(Θ)Θ̇ (23)

Using that

ξ =0 (24)

sin(Ωt) =0 (25)

cos(Ωt)ξ =− 1
2
ξ0 sinΘ (26)

We average over time yielding

Θ̈ = −ω2
0 sinΘ− 1

2
ξ20Ω

2 cosΘ sinΘ (27)
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(d) At Θ ≃ π + φ we have

sinΘ ≃− φ (28)
cosΘ ≃− 1 (29)

Leading to

φ̈ = ω2
0 φ− 1

2
ξ20Ω

2 φ (30)

This will correspond to a stable equilibrium when for

1

2
ξ20Ω

2 > ω2
0 (31)

Or

Ω >

√
2g

ℓ

ℓ

A
(32)
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Classical Mechanics 2
An oscillating log

Consider a uniform log of length L, cross-sectional area A and mass M floating vertically
in water of density ρ0. The log is attached by a spring of spring constant k to a uniform
beam, which is pivoted at its center as shown below. The beam also has mass M but has
length 2L. In equilibrium the beam is horizontal and the spring is uncompressed with natural
length x0. Assume the log moves vertically when the beam-log system is perturbed.

(a) (4 points) First consider an isolated log, unattached to the spring, that is partially
submerged and in static equilibrium. Determine the work required to increase its
depth by a distance x.

(b) (12 points) Find the natural frequencies for small displacements of the beam-log system.

Hint: To simplify algebra, introduce appropriate definitions and dimensionless vari-
ables.

(c) (3 points) Consider the limit of a very stiff spring. Determine the natural frequencies
and normal modes in this limit. Sketch the normal modes and describe the physics of
the modes qualitatively in the stiff spring limit.

(d) (1 points) Suppose that the liquid has a small viscous coefficient so that the log ex-
periences a small damping force, F = −η ẋ. For each normal mode, determine the
(fractional) rate of energy dissipation per cycle, Ė/E, in limit of a stiff spring con-
stant.

Figure 1: (a) Log and beam in equilibrium (b) Log and beam displaced from equilibrium
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Solution

(a) The force of gravity is Mg. The depth of the log is d = L − (h − x0) where the
increase in pressure relative to the atmosphere is ρgd. Thus we have

Mg = ρgAd . (1)

When the rod is displaced by an additional distance x (downward), the upward force is:

Fnet = −Mg + ρAg(d+ x) =
Mg

d
≡ Kx , (2)

where k0 ≡Mg/d. So the work done is

W =
1

2
Kx2 . (3)

(b) The Lagrangian of the system consists of the kinetic energy of the rod and log

T =
1

2
Mẋ2 +

1

2
Iθ2 , (4)

where

I =

∫ L

−L

dM y2 =
1

3
ML2 . (5)

The change in length of the spring is

ℓ = Lθ − x (6)

So the potential energy associated with increasing the depth by x and rotating the rod by θ
is

U =
1

2
k(Lθ − x)2 +

1

2
Kx2 (7)

The last term incorporates the gravitational potential energy and buoyancy forces.

The Lagrangian then is

L =
1

2
Mẋ2 +

1

6
ML2θ̇2 − 1

2
k(Lθ − x)2 − 1

2
Kx2 . (8)

We will actually parametrize the motion by y = Lθ yielding our Lagrangian

L =
1

2
Mẋ2 +

1

6
Mẏ2 − 1

2
k(y − x)2 − 1

2
Kx2 . (9)

Computing the equation of motion we find

Mẍ =k(y − x)−Kx , (10)
1

3
Mÿ =− k(y − x) . (11)
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Dividing by M we have
(
1 0
0 1

3

)(
ẍ
ÿ

)
= −

(
ω2
0 + Ω2 −ω2

0

−ω2
0 ω2

0

)(
x
y

)
(12)

where we introduced ω2
0 = k

m
and Ω2 = K

m
.

We from now on set ω0 = 1 and define κ = Ω2/ω2
0. The system of equations to be solved

is
(
ẍ
ÿ

)
= −

(
1 + κ −1
−3 3

)(
x
y

)
(13)

Looking for the eigen solutions of the form
(
x(t)
y(t)

)
= e−iωtX⃗ , (14)

we can find non-trivial solutions if

det

(
−λ+ (1 + κ) −1

−3 3− λ

)
= 0 , (15)

where λ = ω2.

Thus

(3− λ)(−λ+ (1 + κ)) + 3 =0 (16)

Expanding out the quadratic and solving the equation (carefully).

λ± =
1

2

(
(4 + κ)±

√
(4 + κ)2 − 12κ

)
(17)

Restoring units

λ± = ω2
± =

1

2

(
(4ω2

0 + Ω2)±
√
(4ω2

0 + Ω2)2 − 12Ω2ω2
0

)
(18)

(c) In the stiff spring limit, we take κ→ 0. Intuitively this means that the length of the
spring is fixed. It corresponds to the equation of motion

(
ẍ
ÿ

)
=−

(
1 −1
−3 3

)(
x
y

)
(19)

We find

λ+ ≃4 (20)
λ− ≃0 (21)
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Of course the zero mode is an artifact of the limit κ→ 0. More generally we can expand the
result of part (b) yielding

λ− ≃ 3

4
κ (22)

Or restoring units

λ− ≃ 3

4

K

M
(23)

The eigen-modes are the zero mode

X⃗− =

(
1
1

)
(24)

which leaves the length of the spring unchanged.

There is also a non-zero mode where the spring is oscillating

X⃗+ =

(
−1

3

1

)
(25)

The non-zero mode can be inferred from the orthogonality condition. Specifically, the
eignemodes are orthogonal with respect to the mass matrix given in eq. 12 which forms
a generalized eigenvalue problem, i.e.

X⃗T
−

(
1 0
0 1

3

)
X⃗+ = 0 (26)

(d) The time averaged rate of dissipation

dE

dt
= ⟨ẋFD⟩ = η ⟨ẋ2⟩ (27)

The kinetic energy of the system is

T =
1

2
Mẋ2 +

1

6
Mẏ2 (28)

The average kinetic energy and potential energies are equal leading to

E =M⟨ẋ2⟩+ 1

3
M⟨ẏ2⟩ (29)

So the fraction rate of energy loss is

1

E

dE

dt
=

η

M

⟨ẋ2⟩
⟨ẋ2 + 1

3
ẏ2⟩ (30)

So for the zero mode (
1

E

dE

dt

)

−
=

η

M

1

1 + 1
3

=
η

M

3

4
. (31)

For the non-zero mode (
1

E

dE

dt

)

+

=
η

M

1
9

1
9
+ 1

3

=
η

M

1

4
(32)
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Classical Mechanics 3
Elastic Rod

Consider a thin elastic rod of length L with one end clamped horizontally and the other
end free. Let s denote the length along the rod and let y(s) denote the position of the rod
below the horizontal at position s, as shown in the figure.

y(s)s

There are two contributions to the potential energy, from the curvature of the rod and
from gravity, so that:

U [y(s)] =

∫ L

0

ds

[
1

2
k (∂2sy(s))

2 − g y(s)ρ(s)

]
, (1)

where k is related to the Young’s modulus of the rod material, g > 0 is the acceleration due
to gravity, and ρ(s) is the linear mass density of the rod at position s. Note, as usual, ∂2sy(s)
denotes ∂2y(s)

∂s2
.

(a) [8pts] Using the calculus of variations, derive a fourth-order differential equation for
the stationary configuration of the rod, y(s), that minimizes the potential energy, in
terms of the parameters in Eq. (1).

(b) [8pts] State four boundary conditions can be used to integrate the equation you found
in part (a) and explain their origin. Your explanation can be mathematical or physical.

(c) [4pts] Consider the special case of a rod with uniform density, ρ(s) = ρ0. Solve the
equation you found in part (a) using your specified boundary conditions from part (b).
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Solution

(a) [8pts] Using the calculus of variations, derive a fourth-order differential equation for
the shape of the rod, y(s), that minimizes the potential energy, in terms of the parameters
in Eq. (1).

If y(s) minimizes U [y(s)], then for any small deviation y(s) → y(s)+δ(s), U [y(s) + δ(s)]−
U [y(s)] = 0. From Eq. (1),

U [y(s) + δ(s)] =

∫ L

0

ds

[
1

2
k (y′′(s) + δ′′(s))

2 − g (y(s) + δ(s)) ρ(s)

]

= U [y(s)] +

∫ L

0

ds [ky′′(s)δ′′(s)− gδ(s)ρ(s)] +O(δ′′
2
), (2)

where the prime notation indicates a derivative with respect to s, i.e., y′′(s) = ∂2sy(s). Thus,
when y(s) minimizes U [y(s)], the integral must vanish. Integrating by parts twice:
∫ L

0

ds [ky′′(s)δ′′(s)− gδ(s)ρ(s)] = [ky′′(s)δ′(s)]
L
0 +

∫ L

0

ds [−ky′′′(s)δ′(s)− gδ(s)ρ(s)] (3)

= [ky′′(s)δ′(s)]
L
0 − [ky′′′(s)δ(s)]

L
0 +

∫ L

0

ds [ky′′′′(s)− gρ(s)] δ(s)

(4)

Since the above integral must vanish for any small deviation δ(s), it must be that

ky′′′′(s) = gρ(s) (5)

(b) [8pts] State four boundary conditions can be used to integrate the equation you
found in part (a) and explain their origin. Your explanation can be mathematical or physical.

For Eq. (4) to vanish also requires:

y′′(L)δ′(L) = 0 (6)
y′′(0)δ′(0) = 0 (7)
y′′′(L)δ(L) = 0 (8)
y′′′(0)δ(0) = 0 (9)

Physically, since the rod is fixed to the wall, y(0) = 0, which requires δ(0) = 0; hence,
the last equation vanishes. Further, since the rod must emerge perpendicular to the wall,
y′(0) = 0, which requires δ′(0) = 0; hence, the second equation also vanishes. Since the
first and third equations must hold for any small variation δ(s), we find the following four
boundary conditions:

y(0) = y′(0) = y′′(L) = y′′′(L) = 0 (10)
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(c) [4pts] Consider the special case of a rod with uniform density, ρ(s) = ρ0. Solve the
equation you found in part (a) using your specified boundary conditions from part (b).

From Eq. (5) with uniform density, we are faced with the fourth-order differential equa-
tion:

y′′′′(s) =
g

k
ρ0 (11)

The solution to this equation takes the form

y(s) =
g

24k
ρ0

[
s4 + c3s

3 + c2s
2 + c1s+ c0

]
, (12)

where c3,2,1,0 are determined by the boundary conditions in Eq. (10), yielding

y(s) =
g

24k
ρ0

[
s4 − 4Ls3 + 6L2s2

]
(13)
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Electromagnetism 1
Charge inside a conducting sphere

Consider a point charge q outside a hollow, conducting and grounded sphere of radius a.,
as illustrated in the figure below

(a) (7 points)

Use the image construction shown in the figure to show that the triangles Oas′ and Oas
are similar triangles and determine the appropriate image charge. Derive the potential
everywhere around the charge q.

(b) (5 points)

Find the induced surface charge density on the surface of the sphere.

(c) (5 points)

Find the magnitude and direction of the force acting on the charge.

(d) (3 points)

How does the answer change if the sphere is at fixed potential V or fixed total charge
Q?
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Solution

a. If q at position s⃗ is outside, q′ at position s⃗′ its image is inside, for otherwise the potential
is twice singular outside With this in mind, the potentia is

φ(r⃗) =
q

|r⃗ − s⃗| +
q′

|r⃗ − s⃗′| (1)

The hollow conductor is grounded, so the surface is at zero potential, i.e

φ(⃗a) =
q

|⃗a− s⃗| +
q′

|⃗a− s⃗′| = 0 (2)

Since the triangle Oas′ and Oas are similar (share two same angles) it follows that the sides
are similar,

|⃗a− s⃗′|
|⃗a− s⃗| =

a

s
= −q

′

q
(3)

When the points are lined up, ss′ = a2 (harmonic) which implies for the charges aq+sq′ = 0.

b. The electric field is given by

E⃗(r⃗) =
q(r⃗ − s⃗)

|r⃗ − s⃗|3 +
q′(r⃗ − s⃗′)

|r⃗ − s⃗′|3 (4)

The induced charge density is

σ(⃗a) =
1

4π
a⃗ · E⃗ (⃗a) = q

4πa

(a2 − s⃗2)

|⃗a− s⃗|3 (5)

which is of opposite sign to the charge q. The total induced charge is

Q(a) =
q

4πa

∫ π

0

2πsinθ dθ
a2 − s2

(a2 + s2 − 2acosθ)
3
2

= −qa
s

= q′ (6)

which is the image charge as expected.

c. The Force on the charge due to the induced charge on the hollow surface is that of
the image charge

F⃗ = −q2 as⃗

(a2 − s2)2
(7)

d. If we add a second image charge Q at the center of the sphere, the surface of the
sphere is still an equipotential, and the ensuing electric potential satisfies Laplace equation
everywhere outside. By choosing this charge to be Q = aV , this amounts to solving the
problem for a fixed potential V on the hollow sphere. By choosing this charge to be Q− q′,
this amounts to solving the problem for a hollow sphere with a net surface charge Q.
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Electromagnetism 2
A small sphere and a wire

1. (2 points) Determine the Lorentz invariants quadratic in the field strength tensor, Fµν .
Evaluate these invariants in terms of E and B.

2. (8 points) Consider a Lorentz frame O where a long straight wire on the x-axis carries
a steady current I0.

(i) (1 point) Determine the field strength tensor Fµν in the xy plane in O.

(ii) (3 points) Using the covariant form of the transformations law of Fµν and the
four-current Jµ, determine the electromagnetic field and four-current in the xy
plane of a frame O moving with velocity v along the x-axis relative to O.

(iii) (2 points) Working entirely in O show explicitly that the electric field is consistent
with the Maxwell equations.

(iv) (2 points) Using notions of Lorentz invariance explain why the electric and mag-
netic fields are orthogonal in O.

Now consider a small, solid and neutral metal sphere of radius a, moving non-relativistically
with velocity vo in a Lorentz frame O. The trajectory of the sphere is parallel to the long
straight wire with current I0 of part (b), but displaced by a distance Y (see below).

3. (7 points) Determine the force (magnitude and direction) between the sphere and the
wire.

Hint: Analyze the situation in the rest frame of the sphere. Express the force in terms
of the induced electric dipole moment p = αEE, and then compute the susceptibility,
αE.

4. (3 points) Without changing frames, qualitatively explain the direction of the force
between sphere and the wire in the frame O.
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Solution

The solution uses Heaviside-Lorenz units.

(a) We have FµνF
µν = −2(E2 −B2) and FµνF̃

µν = 4E ·B. We have used the metric

ηµν = (−1, 1, 1, 1) (1)

and followed the convention that

−F0i = F 0i = Ei F ij = ϵijkBk (2)

(b) (i) The magnetic field is

B =
I/c

2πρ
eϕ (3)

and the electric field vanishes. For definiteness we examine B in the x, y plane where we
find

Bz =
I/c

2πy
(4)

So the only nonzero components are

F xy = −F yx =
I/c

2πy
(5)

(ii) The Lorentz transformation is

F µν(x) = Λµ
ρΛ

ν
σF

ρσ (6)

Ei = Λ0
ℓΛ

i
mF

ℓm (7)

The only nonzero components is

Ey = Λ0
xΛ

y
yF

xy = −γvI0/c
2πy

(8)

The transverse coordinates are unchanged by the boost and we have

Ey = Λ0
xΛ

y
yF

xy = −γβI0/c
2πy

(9)

The current is
Jµ = Λµ

νJ
ν (10)

So

ρc =Λ0
xJ

x (11)
Jx =Λx

xJ
x (12)

(13)
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Here Jx = I0δ(y)δ(z) so the charge per length is

λ = −γβI0/c (14)

and the current is
I0 = γI0 (15)

(iii) Clearly the electric field is consistent with the maxwell equations. It can be written

Ey =
λ

2πy
(16)

This is just the electric field from a line of charge

(iv) According to part (a), E ·B is a lorentz invariant. In the frame O the electric field
is zero and E ·B = 0. Thus in any other frame the electric field maybe non-zero, but it will
always be orthogonal to B.

(c) In the frame of the sphere there is an electric field

E =
λ

2πy
(17)

and a small stationary metal sphere. The electric field is nearly constant over the dimensions
of the sphere

E =
λ

2πR
ŷ (18)

Then according to a familiar problem of electrostatics (see Griffith’s chapter 2) which will
not be reproduced here, the induced dipole moment of a metal sphere in a constant electric
field is

p = 4πa3E0 ŷ (19)

So αE = 4πa3. We then use the fact that the potential energy of the induced dipole moment
is

Udip = −1
2
αEE

2 (20)

The force is F i = −∂iUdip

F y =− ∂y

[
−1

2
αE

(
λ

2πy

)2
]

(21)

=−
(
λ

2π

)2
4πa3

y3
(22)

Expressing the result in terms of O frame quantities we have in the non-relativistic limit

F y = −
(v
c

)2
(

I

2πc

)2
4πa3

y3
(23)

The force is attractive.
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(d) The Lorentz force F = qvB causes the charges in the metal to separate, with the
positive charges in the sphere moving closer to the wire and the negative charges moving
farther from the wire. This continues until the electrostatic forces in the metal balance the
magnetic lorentz force (see figure). Then theseparated positive charges are closer to the wire,
and feel an attractive Lorentz force. The negative charges are farther from the wire, and feel
a repulstive, and smaller, lorentz force. The force is smaller since the magnetic field from
the wire decreases with distance. The net force on the sphere is thus attractive.
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Electromagnetism 3
Decay of a surface current:

A long cylindrical shell of radius a and thickness ∆ ≪ a has conductivity σ as shown
below. Inside and outside of the shell is vacuum. The shell carries a surface current K(ϕ) =
ẑKo sinϕ.

current going out of
the page

current going into
the page

Side View Top View

(a) (6 points) Determine the Coulomb gauge vector potential everywhere. Possibly useful
formulas are given below.

(b) (4 points) Determine the magnetic field everywhere and sketch the magnetic field lines.

(c) (2 points) What is the electric field in the shell? You may consider the current to be
uniform across the shell.

At time t = 0 the battery driving the surface current is switched off.

(d) (6 points) Determine K(t, ϕ) at subsequent times using a quasi-static approximation.

Hint: Determine the induced electric field in the shell due to a time dependent current
of the form K(t, ϕ) = ẑK(t) sinϕ.

(e) (2 points) Estimate the decay time numerically for a centimeter sized copper shell with
∆/a ∼ 0.1. The resistivity of copper is ρ ≡ 1/σ = 1.7× 10−8Ω ·m.
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Cylindrical Coordinates

ρ =
√
x2 + y2 ϕ = tan−1(y/x) (1)

Gradient, Divergence, Curl, and Scalar Laplacian

∇ψ =
∂ψ

∂ρ
ρ̂+

1

ρ

∂ψ

∂ϕ
ϕ̂+

∂ψ

∂z
ẑ (2)

∇ ·A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aϕ

∂ϕ
+
∂Az

∂z
(3)

∇×A =

(
1

ρ

∂Az

∂ϕ
− ∂Aϕ

∂z

)
ρ̂+

(
∂Aρ

∂z
− ∂Az

∂ρ

)
ϕ̂+

(
1

ρ

∂

∂ρ
(ρAϕ)−

1

ρ

∂Aρ

∂ϕ

)
ẑ (4)

∇2ψ =
1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1

ρ2
∂2ψ

∂ϕ2
+
∂2ψ

∂z2
(5)

Vector Laplacian

∇2 acting on components of A (e.g. ∇2Az) indicates the scalar Laplacian in the cylindrical
coordinate system.

∇2A =

(
∇2Aρ −

Aρ

ρ2
− 2

ρ2
∂Aϕ

∂ϕ

)
ρ̂+

(
∇2Aϕ −

Aϕ

ρ2
+

2

ρ2
∂Aρ

∂ϕ

)
ϕ̂+∇2Az ẑ
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Solution

The solution is presented in Heaviside-Lorenz units

(a) In the Coulomb gauge we are are to solve

−∇2A =
J

c
(6)

Given the symmetry of the problem we try a solution of the form Az(ρ, ϕ). Then inside and
outside of the sheet we have

−∇2Az = 0 (7)

So [−1

ρ
∂ρ(ρ∂ρ) +

1

ρ2
∂2

∂ϕ2

]
Az = 0 (8)

The separated solutions take the form

Az(ρ, ϕ) =
∑

m

Cm(ρ) cos(mϕ) +Dm(ρ) sin(mϕ) (9)

Since the current only is ∝ sin(ϕ), we will make a trial ansatz

Az = D(ρ) sin(ϕ) (10)

Leading to an equation for D
−1

ρ
∂ρ(ρ∂ρD) +

D

ρ2
= 0 (11)

This is easily solved

B(ρ) =
C1

ρ
+ C2ρ (12)

Demanding regularity as ρ→ 0 and ρ→ ∞ gives

D(ρ) =

{
C2ρ ρ < a
C1

ρ
r > a

(13)

Demanding continuity we get

D(ρ) =

{
C1

ρ
a

ρ < a
C1a
ρ

ρ > a
(14)

We compute from this solution

B =
1

ρ

∂Az

∂ϕ
eρ −

∂Az

∂ρ
eϕ (15)

=
D

ρ
cosϕeρ −D′(ρ) sinϕeϕ (16)
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where away from ρ = a we have

−D′(ρ) =

{
−C1

a
ρ < a

C1a
ρ2

ρ > a
(17)

From the boundary conditions

Bϕ|ρ=a+ − Bϕ|ρ=a−
=
Kz

c
(18)

We find
2C1

a
=
K0

c
C1 =

K0a

2c
(19)

Leading to the final form of the solution

Az =

{
K0ρ
2c

sin(ϕ) ρ < a
K0a2

2cρ
sin(ϕ) ρ > a

(20)

(b) Using the solution of the previous parts we find

Bρ =

{
K0

2c
cos(ϕ) ρ < a

K0a
2cρ2

cos(ϕ) ρ > a
(21)

Bϕ =

{
−K0

2c
sin(ϕ) ρ < a

K0a
2cρ2

sin(ϕ) ρ > a
(22)

Since

eρ =cosϕ ex + sinϕ ey (23)
eϕ =− sinϕ ex + cosϕ ey (24)

we see that

B =
K0

2c
ex (25)

i.e. the magnetic field is constant in the shell. Outside of the shell, the magnetic field takes
a simple dipole form. Putting together these ingredients leads to Fig. 1

(c) The electric field is given by Ohm’s Law, J = σE. So we have

E =
K(t, ϕ)

σ∆
(26)

(d) After the field is current is switched off the current begins to decay. Working with
the ansatz

Kz = ẑK(t) sin(ϕ) (27)
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Figure 1: Magnetic field lines from a surface current

Then the vector is the same as before

Az =

{
K(t)ρ
2c

sin(ϕ) ρ < a
K(t)a2

2cρ
sin(ϕ) ρ > a

(28)

The induced electric field is

Ez(t, ρ, ϕ) = −1

c
∂tA

z(t, ρ, ϕ) , (29)

This electric field supports the current through Ohm’s Law. The current in the sheet

Kz(t, ϕ)

∆σ
= Ez(t, ρ, ϕ)|ρ=a (30)

Leading to an equation for K(t)
K(t)

∆σ
= −aK̇

2c2
(31)

with solution
K(t) = K0e

−2c2t/(∆ aσ) (32)

with a characteristic decay time

τ =
∆ a σ

2c2
(33)

(e) The quantity D0 ≡ c2/σ is known as the magnetic diffusion coefficient, as the mag-
netic fields in a conductor obey a diffusion equation in a quasi-static approximation. For
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copper this is of order D0 ∼ cm2/millisec In MKS units we have

σMKS

ϵ
= σ (34)

We evalute
D0 =

c2

σ
= c2ϵ0 ρMKS =

c

Z0

ρMKS (35)

where Z0 = 376.Ω =
√
µ0/ϵ0 is the impedance of free space. Plugging in the numbers

D0 = 0.13
cm2

ms
(36)

Taking a centimeter device and ∆ = 0.1 we find

τ ∼ 0.4ms (37)
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Quantum Mechanics 1
Coherent States

Consider a harmomic oscillator

H =
p2

2m
+

1

2
mω2

0x
2 .

A coherent stae |α⟩ is an eigenstate of the annihilation operator

a|α⟩ = α|α⟩, (1)

with α a complex number. Coherent states are the closest quantum analog of classical
states with well-defined amplitudes and phases. They are extremely important in, e.g., laser
physics, quantum optics, radio cavities, Bose-Einstein condensates, and just about everything
else that’s both macroscopic and quantum.

(a) (4 points) Show that a coherent state |α⟩ can be written in the form

|α⟩ = Ceαâ
†|0⟩, (2)

where C is a (complex) normalization constant.

(b) (2 point) Calculate C.

(c) (2 point) Calculate the probability of finding a coherent state |α⟩ in the quantum
harmonic oscillator’s |n⟩ state

(d) (2 points) Calculate the average energy of the coherent state |α⟩.

(e) (5 points) Calculate ∆x and ∆p. What is the total uncertainty of a coherent state?
Comment on the physical consequences of the result obtained.

(f) (5 points) By examining eq. (1) in coordinate space, determine the wave function of the
coherent state in a coordinate representation, ψα(x) ≡ ⟨x|α⟩. Use this wave function
to determine the Wigner transform of the coherent state

W (x0, p0) ≡
∫ ∞

−∞
dy eiyp0 ψ∗

α(x0 + y/2)ψα(x0 − y/2) .

What is the interpretation of W (x0, p0) and the parameter α?
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Solution

(a) We note that commutators obey a Leibniz like rule

[A,BC] = [A,B]C +B[A,C] , (3)

like the differentiation of a product

d

dx
(b(x)c(x)) =

db

dx
c(x) + b(x)

dc

dx
. (4)

Given this, we may intuit and also prove (by repeatedly the commutator rule in Eq. (3))
that

[a, (a†)n] = n(a†)n−1 . (5)

Thus
a(a†)n|0⟩ = n(a†)n−1|0⟩ . (6)

Thus acting with â, acts like a derivative:

aeαa
†|0⟩ = ∂

∂a†
eαa

†|0⟩ = αeαa
†|0⟩ . (7)

Thus we have the following relations, which are used repeatedly below

a |α⟩ = α |α⟩ , ⟨α| a† = ⟨α|α∗ . (8)

(b) We need to evaluate
1

|C|2 = ⟨0|eα∗aeαa
†|0⟩ . (9)

Take the first exponent and write it as a power series, and repeatedly use the eigenvalue
conditions in (8) to find

⟨0|e|α|2eαa† |0⟩ = e|α|
2 ⟨0| eαa† |0⟩ = e|α|

2 ⟨0| 0⟩ = e|α|
2

. (10)

In the last step we noticed that since a† raises the state to an excited state, only the ground
state contributes to the matrix element. Thus

C = e−|α|2/2 . (11)

(c) We have

⟨n| eαa† |0⟩ = αn

n!
⟨n| (a†)n |0⟩ = αn

√
n!
, . (12)

So we find that the probability distribution Pn is Poissonian with mean n̄ = |α|2

Pn = ⟨n|α⟩|2 = |α|2ne−|α|2

n!
=
n̄n

n!
e−n̄ . (13)

We note that ∑

n

Pn = 1 (14)
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(d) We must evaluate
⟨H⟩ = ⟨α| ℏω0(a

†a+ 1
2
) |α⟩ , (15)

which is easily found (using (8)) to be

⟨H⟩ ≃ ℏω0(|α|2 + 1
2
) . (16)

(e) Let us set m = ω0 = ℏ = 1. The units of x and p are

[x] =

√
ℏω0

mω2
0

[p] =
√
ℏω0m (17)

so the numbers quoted below are in these units. Now express x and p in a and a†

x =
1√
2

(
a+ a†

)
p =

1√
2i
(a− a†) . (18)

So using (8)

x̄ ≡ ⟨x⟩ = 1√
2
(α + α∗) p̄ ≡ ⟨p⟩ = 1√

2i
(α− α∗) . (19)

It is understood that in physical units, x̄ = (α + α∗)[x]/
√
2 . We note that

α = (x̄+ ip̄)/
√
2 . (20)

Then to find the variance we evaluate
〈
x2
〉
=

1

2

〈
(a+ a†)(a+ a†)

〉
=

1

2

〈
aa+ (a†a+ aa†) + a†a†

〉
. (21)

Making the following replacement

a†a+ aa† = 2a†a+ 1 , (22)

to make a to the last operator before the ket, and liberally using the eigenstate conditions
in Eq. (8), we find

〈
x2
〉
=

1

2

(
α2 + 2α∗α + (α∗)2

)
+

1

2
= x̄2 + 1

2
. (23)

Similarly
〈
p2
〉
=

1

2i2
〈
(a− a†)(a− a†)

〉
=

1

2i2
(α2 − 2αα∗ + (α∗)2) +

1

2
= p̄2 + 1

2
. (24)

So the coherent state satisfies the minimal uncertainty condition
〈
∆x2

〉 〈
∆p2

〉
=

1

4
, (25)

where for instance ∆x2 ≡ ⟨x2⟩ − x̄2.

Discussion: The uncertainty theorem says that ⟨∆x2⟩ ⟨∆p2⟩ ≥ ℏ2/4 . In fact it is not
too difficult to show that the only wave function for which this actually equals ℏ2/4 is a
Gaussian function. Indeed, we will find below that the coherent state is essentially a shifted
Gaussian form multiplied by a phase.

27



(f) The coherent state in coordinate space satisfies

1√
2
(x+ ip)ψα(x) = αψα(x) (26)

where p = −i d/dx. This equation is readily solved by substituting a form1 ψ = eS(x) and
solving for S(x)

ψα = Ce
√
2αxe−

1
2
x2

= Ceip̄xex̄xe−
1
2
x2

, (27)

In the final step we used (20). The wave function is then normalized yielding

ψα = eip̄x
e−

1
2
(x−x̄)2

π1/4
. (28)

Thus the coherent state is a shifted gaussian multiplied by a phase, dictating the mean
momentum.

So defining δx0 ≡ x0 − x̄ and δp0 = p0 − p̄, the Wigner transform reads

W (x0, p0) =
1√
π

∫ ∞

−∞
dy eiyp0

(
e−ip̄ye−

1
2
(δx0+y/2)2−1

2
(δx0−y/2)2

)
, (29)

=
1√
π
e−δx2

0

∫ ∞

−∞
eiy(p0−p̄)e−y2/4 , (30)

=2 e−δx2
0 e−δp20 . (31)

Discussion: The Wigner transform W (x0, p0) provides an approximation for the phase
space probability density P (x, p), i.e. the probability density of finding the particle with
position x and momentum p. The coherent state with parameter α = (x̄+ ip̄)/

√
2 describes

a particle wave function localized in phase space at (x̄, p̄) within the limits of the uncertainty
principle, i.e. W (x0, p0) ≃ δ(x0− x̄) δ(p0− p̄) smeared out over a phase space cell of order ℏ.

1This substitution is motivated by the WKB approximation and is always a good form to try.
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Quantum Mechanics 2
Identical Particles

Two quantum particles of massesm1 andm2 interact with each other via the three-dimensional
harmonic potential V (r1, r2) = k(r1 − r2)

2/2.

(a) [3 points] Write down the Hamiltonian of the system and change variables to r = r2−r1
and R = m1r1+m2r2

m1+m2
.

(b) [4 points] Find the energy spectrum and the eigenfunctions of the system with degen-
eracy of the different energy levels.

(c) [3 points] Find the energy spectrum and the eigenfunctions of the system with degen-
eracies, when the particles are identical bosons each of mass m.

(d) [3 points] Find the energy spectrum and the eigenfunctions of the system with de-
generacies, when the particles are identical fermions each of mass m. Assume that
fermions are “spinless” (i.e., spin-polarized).

(e) [3 points] Argue what the total angular momentum of the ground state is in (c) and
(d)?

(4) [4 points] Now assume that the fermions have spin 1/2 and are not spin-polarized.
Moreover, they have nonvanishing spin-spin interaction V = uσ⃗1 · σ⃗2, where σ⃗ is the
vector of Pauli matrices. Find the energy spectrum and the eigenfunctions in this case.



Solution

(a) The Hamiltonian of the system is given by

H = − ℏ2

2m1

∂2

∂r2
1

− ℏ2

2m2

∂2

∂r2
2

+
k(r1 − r2)

2

2
, (1)

We consider the center of mass frame, i.e.

R =
m1r1 +m2r2

M
, (2)

r = r2 − r1 , (3)

where M = m1 +m2, so that ∂/∂r1,2 = (m1,2/M)∂/∂R∓ ∂/∂r.
The Hamiltonian in these coordinates is given by

H = − ℏ2

2M

∂2

∂R2
− ℏ2

2µ

∂2

∂r2
+
kr2

2
, (4)

where µ = m1m2

m1+m2
.

(b) The eigenstates of the Hamiltonian are given by

ψnx,ny ,nz ,K(r,R) = eiK·RψHO
nx,ny ,nz

(r) , (5)

where the oscillator wave functions (not normalized) are given by

ψHO
nx,ny ,nz

(r) = Hnx(x/λ)Hny(y/λ)Hnz(z/λ)e
− r2

2λ2 , (6)

and λ =
(

ℏ2
kµ

)1/4

is the oscillator length. The corresponding eigenenergies

Enx,ny ,nz ,K =
ℏ2K2

2M
+ ℏω

(
N +

3

2

)
, (7)

where

N = nx + ny + nz , nx,y,z = 0, 1, 2, . . . (8)

where ω =
√
k/µ. It is easy to see that the degeneracy of the state with quantum number

N is (N + 1)(N + 2)/2
(c) However if particles are spinless bosons, then the wavefunction has to be symmetric

with respect to the interchange of two particles, i.e., r → −r, which means that either all
values of nx, ny, nz are even, or two are odd, which yields nx + ny + nz = 2k, where k is a
non-negative integer. So for bosons the energy spectrum is

E
(bosons)
k,K =

ℏ2K2

4m
+ ℏω

(
2k +

3

2

)
, (9)



where K ∈ (−∞,+∞) and k = 0, 1, 2, . . .. and the degeneracy of the eigenenergy with given
K, k is (2k + 1)(k + 1).

(d) Similarly for fermions either all three integers are odd or there is only one of them is
odd and nx + ny + nz = 2k + 1

E
(fermions)
k,K =

ℏ2K2

4m
+ ℏω

(
2k +

5

2

)
, (10)

where K ∈ (−∞,+∞) and k = 0, 1, 2, . . .. The degeneracy of the eigenenergy with given
K, k is (2k + 3)(k + 1).

(e) The total angular momentum can only be even for bosons and odd for fermions.
Therefore, the total angular momentum of the ground state is 0, 1 in (c), (d), respectively.

(f) Rewriting the spin scalar product of the spin operators in terms of squares of these
operators:

σ⃗1 · σ⃗2 =
1

2
[(σ⃗1 + σ⃗2)

2 − σ⃗2
1 − σ⃗2

2]

and using the properties of the spin-1/2 operators we express the spin-spin interaction like
this:

V =
u

2
[(σ⃗1 + σ⃗2)

2 − 6]

. This means that the eigenstates of the spin-spin interaction are the sates with the definite
values of the total spin of the two fermions. If the total spin is 1, the eigenstate |ψ1⟩ is an
arbitrary superposition of the “triplet” states symmetric with respect to exchange of the two
spins:

|ψ1⟩ = c1| ↑↑⟩+ c2| ↓↓⟩+ c3(| ↑↓⟩+ | ↓↑⟩) .
If the total spin is 0, the eigenstate |ψ0⟩ is the “singlet” state antisymmetric with respect to
exchange of the two spins:

|ψ0⟩ =
1√
2
(| ↑↓⟩ − | ↓↑⟩) .

The corresponding eigenvalues are u and −3u.
Thus, if the spin part of the wavefunction is a triplet state, the orbital part of the

wavefunction should be antisymmetric and the energies are

E
(triplet)
k,K = E

(fermions)
k,K + u ,

with the orbital part of the wavefunction the same as in Sec. (d). If the spin part of the
wavefunction is the singlet, the orbital part of the wavefunction should be symmetric and
the energies are

E
(singlet)
k,K = E

(bosons)
k,K − 3u ,

with the orbital part of the wavefunction the same as in Sec. (c).



Quantum Mechanics 3
Decay rates in a 3D spherical-shell potential

A quantum particle of mass m moves in a 3D “spherical-shell” potential V (r) which has
the delta-functional dependence on the distance r to the center O of a spherical coordinate
system:

V (r) = U0δ(r − a),

Assume that the particle has vanishing angular momentum, l = 0, relative to O, and energy
E.

(a) (4 pts) What is the dependence of the particle wavefunction ψ(r⃗) on the angular
coordinates θ and ϕ of the spherical coordinate system with the center O? Write down the
radial part of the stationary Schrödinger equation for the radial wavefunction ψ(r) of the
particle, and the general form of ψ(r) that satisfies (1) the Schrödinger equation for r < a
and r > a, and (2) the appropriate boundary conditions at r = 0 and r → ∞, assuming that
there are no particles in the problem that are incident on the potential from infinity.

(b) (4 pts) What are the boundary conditions the wavefunction should satisfy at r = a?
Transform them to obtain the equation for the wavevector p that determines the energy
E = ℏ2p2/2m of the particle.

(c) (4 pts) Derive the form the boundary conditions from part (b) reduce to in the limit
of the infinitely strong potential U0 → ∞. In this limit, find the wavevectors pn, the energies
E

(0)
n , and normalized wavefunctions ψn(r, θ, ϕ) of the stationary states of the particle inside

the shell.

(d) (6 pts) For finite U0, the states in the shell are not completely stationary. This fact
can be accounted for by allowing the wavevector p to be complex:

p = k − iκ , κ > 0 .

Solve the equations derived in part (b) for such p and large but finite potential strength U0

by perturbation expansion in 1/U0. Keep the terms up to (and including) the second order
in 1/U0. Find the decay rates γn and energies En, E = En − iℏγn/2, of the quasistationary
states inside the shell.

(e) (2 pts) When the wavevector p is complex, the wavefunctions diverge at r → ∞:
ψ(r) ∝ eκr. Provide a brief physical explanation why this feature of the wavefunction is
natural and does not disqualify it.



Solution

(a) The states with vanishing angular momentum, l = 0, are spherically symmetric, and
the particle wavefunction ψ(r⃗) is independent of the angular coordinates θ and ϕ, i.e., reduces
to the function ψ(r) of the radial coordinate r only. The stationary Schrödinger equation
for this function has the standard form

− ℏ2

2m

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+ V (r)ψ = Eψ(r) .

Introducing an auxiliary function u(r) by the relation ψ(r) = u(r)/r, one reduces this
equation to the 1D Schrödinger equation:

− ℏ2

2m
u′′ + V (r)u = Eu(r) .

If there are no particles incident on the potential from infinity, u(r) should contain only
the wave that propagates towards infinity at r > a, i.e., u(r) ∝ eipr at r → ∞. Next, to
keep ψ(r) sufficiently well-behaved at r = 0, the function u(r) should vanish at r = 0. With
these boundary conditions, the usual solutions of the 1D Schrödinger equation for u(r) give
for ψ(r):

ψ(r) =
1

r

{
A sin(pr), r < a,
Beipr, r > a,

where A and B are some constants.

(b) At r = a the function u(r) should satisfy the standard boundary condition that
describes the delta-functional potential. Since the factor 1/r is continuous at r = a, this
condition is not changed by the transition between u(r) and ψ(r). This means that the
wavefunction ψ(r) satisfies the following conditions at r = a:

ψ(a+ 0) = ψ(a− 0) , ψ′(a+ 0)− ψ′(a− 0) =
2mu

ℏ2
ψ(a) .

Applying these conditions to the wavefunction from part (a) we get:

A sin pa = Beipa, ipBeipa − pA cos pa =
2mu

ℏ2
Beipa.

Dividing the first equation by the second one, we get the following equation for the wavevector
p:

tan pa =
p

ip− λ
, λ ≡ 2mu

ℏ2
.

(c) In the limit of the infinitely strong potential u→ ∞, the boundary condition at r = a
reduces to:

ψ(a) =
ℏ2

2mu
[ψ′(a+ 0)− ψ′(a− 0)]|u→∞ = 0 .



This means that B = 0, i.e., the wavefunctions vanish outside of the shell. Inside the shell:

sin pa = 0 .

This gives:

p = pn =
π

a
n , E(0)

n =
ℏ2p2n
2ma

, ψn(r, θ, ϕ) =
1√
2πa

sin pr

r
.

(d) For strong potential, λ ≫ 1, and the equation for the wavevector p derived in part
(b) can be expanded in 1/λ with the required accuracy like this:

tan pa = −p
λ
− i

p2

λ2
.

Solving this equation by iterations, we get:

p = pn −
pn
λa

+
pn
λ2a2

− i
p2n
λ2a

.

From this, we get the energy E = ℏ2p2/2m, and therefore the decay rates:

γn =
2ℏp3n
mλ2a

and the energies of the quasistationary states:

En = E(0)
n (1− 2

λa
+

3

λ2a2
) .

The obtained expression for the decay rate can be interpreted qualitatively as the trans-
mission probability Dn = |tn|2 of the weakly-transparent delta-functional barrier with the
transmission amplitude |tn| = 2pn/λ times the attempt frequency f = ℏpn/(2ma) = vn/(2a).

(e) The outgoing wave towards infinity carries the probability density away from the po-
tential region, thus reducing the probability inside the shell. Consistent with this, increasing
wavefunction amplitude at larger distances r represents the larger wavefunction amplitudes
of the quasistationary state at the earlier times in the decay process.



Statistical Mechanics 1
N electrons and N sites

A system contains N independent sites and N electrons at temperature T . At a given site
there is one accessible orbital, but that orbital can be empty, occupied by one electron of
either spin, or occupied by two electrons of opposite spin. The electrons can hop from site
to site.

The site energy is zero if the site is either empty or singly occupied, and ∆ if it is doubly
occupied.

(a) (4 points) List all states and determine the grand partition function of the system.

(b) (8 points) Determine the chemical potential as a function of temperature. Check your
work.

(c) (8 points) Calculate the mean energy and heat capacity of the sites.



Solution

(a) For every site there are four states e labelled s = 0, s = 1u, s = 1d, and s = “double”.

state s Es Ns

0 0 0
1u 0 1
1d 0 1

double ∆ 2

The grand partition function of a site is

ZG =1 + eβµ + eβµ + e2βµe−β∆, , (1)
=1 + 2z + z2e−β∆ . (2)

where z ≡ eβµ is the fugacity.
In the grand partition function the sites are all independent so the states are labelled by

an independent si for every site (i labels the site). The states are simply S = {si}, where
each si runs over the possiblities given above. The energy of a state S is ES =

∑
iEsi and

the number of electrons in a state S is NS =
∑

iNsi . The grand partition function of M
sites is

ZG =
∑

{si}

e−β(ES−µNS) = ZM
G . (3)

We will work with a single site from now on.

(b) From the problem statement there is on average one electron per site ⟨n⟩ = 1. The
chemical potential is such that this condition (one per site) is fulfilled.

We evaluate the mean number of particles in a site as follows:

⟨n⟩ =
∑

states

PsNs , (4)

The probability of being in a state is

Ps =
eβµNse−βEs

ZG

, (5)

leading to

⟨n⟩ = 2z + 2z2e−β∆

1 + 2z + z2e−β∆
. (6)

Requiring that ⟨n⟩ = 1 yields

⟨n⟩ = 2z + 2z2e−β∆

1 + 2z + z2e−β∆
= 1 , (7)

or
1 = z2e−β∆ . (8)

So, we find
z = eβ∆/2 or µ = ∆/2, . (9)



(c) The energy is the derivative of the grand partition function at fixed z. Here we
procede directly

⟨ϵ⟩ =
∑

s

PsEs . (10)

Thus
⟨ϵ⟩ =

∑

s

PsEs =
∆

1 + 2eβµ + e−β(∆−2µ)
→ ∆

2 + 2eβ∆/2
, (11)

where in the last step we replace µ with the result of part (b), µ = µ⋆(T,N). The total mean
energy of the N sites is

U(T,N) = ⟨E⟩ = N∆

2 + 2eβ∆/2
(12)

The heat capacity of N sites is the derivative of this at fixed N , leading to

CV =

(
∂U

∂T

)

N

= −NkBβ2

(
∂U

∂β

)

N

= NkB
(β∆)2eβ∆/2

(2 + 2β∆/2)2
. (13)

Discussion: Generally for a fixed number of electrons Ne, the chemical potential of the
electrons is a function of temperature and Ne. It happens, somewhat artificially, that µ is
independent of T in this problem. Thus, it is generally incorrect with fixed Ne to write,
cv = ∂ ⟨ϵ(T, µ)⟩ /∂T . The correct procedure is to replace µ with the result of part (b), i.e.
µ⋆(T,Ne), before differentiating, ϵ(T,Ne) = ϵ(T, µ⋆(T,Ne)).



Statistical Mechanics 2

Quark/baryon phase transition

Nucleons (protons and neutrons) are bound states of three quarks. Each nucleon carries
one unit of conserved baryon number, while each quark carries (1/3). Quarks and nucleons
have spin-1/2 and obey Fermi statistics.

When nucleons are compressed to high density, some may dissociate into a gas of quarks.
In this problem, we will construct a simple model of such phase transition neglecting all
internal quantum numbers of the nucleons and quarks, except their 1/2-spins. We will
assume that nucleons with mass m are nonrelativistic and do not interact, while quarks are
relativistic with kinetic energies εkin

q = c|p⃗|, where c is the speed of light.

(a) (6 points) We will consider only zero temperature, where the nucleon and quark gases
are degenerate.

i) Calculate the number density n = N/V of spin-1
2

fermions from the Fermi momentum
pF .

ii) Find the mean kinetic energy of non-relativistic nucleons εkin
n and express it using nn.

iii) Find the mean kinetic energy of relativistic quarks εkin
q and express it using nq.

(b) (6 points) We will need chemical potential µ = ε + P/n to study the phase transition
and equilibrium. Here P = −

(
∂E
∂V

)
S=0

≡ −
(
∂E
∂V

)
T=0

is the pressure at zero temperature and
entropy.

i) Show that the pressure can be calculated as P = n2
(
∂ε
∂n

)
S=T=0

.

ii) Using this formula, calculate the pressure of the degenerage nucleon gas.

iii) Show that the chemical potential for the nucleon gas is µn = εnF = p2nF/(2m).

(c) (8 points) In our model, quarks are nucleon-bound at low density nq because the quark
gas has additional energy B > 0 per unit volume, or ∆εq = BV/Nq = B/nq per quark. Since
the temperature is zero, at any density nB the system will prefer the state with the lowest
total energy (assume that the system is maintained at constant volume).

i) Calculate the pressure Pq of the quark gas. Can the pressure Pq be zero or negative?
Explain, qualitatively, the meaning of Pq = 0 point.

ii) Sketch the energies of both gases as functions of baryon density nB = nn = 3nq. Show
that at low density the nucleon gas has lower energy, whereas the quark gas has lower
energy at high density.



iii) Write the equation determining the transition density nT between the two phases.
Describe and sketch the condition at which nucleons dissociate into a gas of quarks.



Solution

(a)
The relation between the Fermi momentum and the fermion density at zero temperature is

n = gs

∫

|p⃗|≤pF

d3p⃗

(2πℏ)3
=

gsp
3
F

6π2ℏ3
(1)

where gs = 2 is the spin degeneracy. Applying the same to the nonrelativistic fermion gas
to find the kinetic energy density of the nucleons

Ekin
n

V
= gs

∫

|p⃗|≤pnF

d3p⃗

(2πℏ)3
p2

2m
=

gsp
5
nF

10π2ℏ3m
=

3

5
nn

p2nF
2m

=
3

5
nn εnF , (2)

so that the mean energy per nucleon is

εkin
n =

Ekin
n /V

nn

=
3

5
εnF =

3

5

p2nF
2m

=
3

10m

(
6π2ℏ3nn

gs

)2/3

∝ n2/3
n . (3)

For a relativistic gas of quarks, the kinetic energy density is

Ekin
q

V
= gs

∫

|p⃗|≤pqF

d3p⃗

(2πℏ)3
c|p| = gscp

4
qF

8π2ℏ3
=

3

4
nq cpqF =

3

4
nq εqF , (4)

and the mean quark kinetic energy is thus

εkin
q =

Ekin
q /V

nq

=
3

4
εqF =

3

4
cpqF =

3c

4

(
6π2ℏ3nq

gs

)1/3

∝ n1/3
q . (5)

The relation between the density and the Fermi momentum n ∝ p3F is universal, so if
nT = nn = 1

3
nq then

pnF
pqF

=

(
nn

nq

)1/3

= (1/3)1/3 ≈ 0.693 . (6)

(b)
The pressure can be computed from the per-particle energy using the chain rule and switching
the variable V → n using nV = N = const, hence N

(
∂n
∂V

)
N
= −N2/V 2 = −n2:

P = −
(
∂E

∂V

)

S,N

= −N
(
∂ε

∂V

)

S,N

= −N
(
∂n

∂V

)

N

(
∂ε

∂n

)

S,N

= n2

(
∂ε

∂n

)

S

(7)



Differentiation of the mean energy is greatly simplified by observing that εn ∝ n
2/3
n , hence

∂εn
∂nn

=
2

3nn

εn =
2

5nn

εnF , and Pn =
2

5
nnεnF . (8)

and the nucleon chemical potential, as expected, is

µn = εn +
Pn

nn

=
3

5
εnF +

2

5
εnF = εnF . (9)

(c)
Using the per-quark mean energy

εq =
3

4
εqF +

B

nq

, (10)

and observing that εkin
q ∝ n

1/3
q one obtains the pressure

Pq = n2
q

(
∂εq
∂nq

)

S=T=0

=
1

4
nqεqF −B . (11)

neqq /3 nT
nB

εn(nB)

3εq(3nB)

The negative pressure contribution results from the quark gas interaction energy propor-
tional to the volume, irrespective of the number of particles. As the gas with smaller volume
(larger density) will have lower interaction energy, this interaction leads to gas compression,
somewhat similar to van der Waals gas. On the other hand, higher density leads to larger
mean kinetic energy εkin

q = 3
4
εqF ∝ n

1/3
q . The equilibrium point at which Pq = 0

Pq = 0 ⇔ neq
q ∝ B3/4 (12)



corresponds to the minimal energy of the quark gas, where the pressure of degenerate Fermi
gas equalizes the tension of bulk energy density.

The sketches of nucleon and quark energies per unit baryon number are shown in Fig(left).
The general behavior of the total energy of the nucleon gas and the quark gas is

εn = Cn2/3
n ,

εq = An1/3
q +Bn−1

q = A′n1/3
n +B′n−1

n ,

where A,C are some constants. In the second line, we have assumed that nq = 3nn and
A′, B′ are scaled constants. For nn → 0, the quark gas energy will grow ∝ 1/nn while the
nucleon gas energy will decrease ∝ nn. For nn → ∞, the leading term in Eq ∝ n

1/3
n while in

En ∝ n
2/3
q and En ≥ Eq for n ≥ nT for some nT .

The equation for the equilibrium corresponds to the intersection of the curves on the
plot,

εn(nT ) = 3ε(3nT ) . (13)



Statistical Mechanics 3

Electron bands in two-dimensional semiconductor

Consider a non-interacting electron gas in a 2d semiconductor. In crystalline solids, the
electrons can be described as fermions with electronic charge but effective “band mass”, with
energy dispersion following:

E(p) =




p2/2mc +∆ if E > 0

−p2/2mv if E ≤ 0

Here mc and mv are the effective masses of the electron in the corresponding conduction and
valence bands. ∆ is the energy gap between the two bands.

(a) (4 points) What is the energy dependent density of states of this 2d electron gas?

(b) (6 points) Assume that at zero temperature T = 0 the Fermi energy is ED above the
gap: EF = ∆ + ED, and the total number of electrons in the system is fixed. Find
out the equation which allows determination of the temperature dependence of the
chemical potential µ(T ). (The equation should not contain any integral).

(c) (4 points) Assume the simple case of “intrinsic semicondctor” where ED = 0 (i.e.,
the valence band (E < 0 ) is completely filled and the conduction band is completely
empty at T = 0 ). Qualitatively how does the chemical potential change with increasing
temperature for mc > mv?

(d) (6 points) Now still with ED = 0 and further simply the problem by assuming electron-
hole symmetry (i.e. mc = mv), calculate the temperature dependence of the density of
the electrons in the conduction band (E > ∆) and holes in the valence band (E < 0).
Calculate the specific heat of the entire electron gas (electrons and holes) in the 2d
semiconductor at low temperature T ≪ ∆.

Hint: You may find the following integral useful:
∫

1

1 + eβ(ϵ−µ)
dϵ = − 1

β
ln
[
1 + e−β(ϵ−µ)

]
+ const



Solution (a) The density of states D is such that:

2

4π2ℏ2
d2p = D(E)dE (1)

From the dispersion of the conduction band, this is:

1

2π2ℏ2
2πprdpr = D(E)

pr
mc

dpr (2)

which leads to
D(E > ∆) =

mc

πℏ2
(3)

Similarly, for the valence band:

D(E ≤ 0) =
mv

πℏ2
(4)

In the band gap, there is no state so

D(∆ > E > 0) = 0 (5)

(b) The total number of electrons is fixed, so the number of electrons excited should be
equal to the number of holes at finite temperatures.

∫ ∞

EF

f(E)D(E)dE =

∫ EF

−∞
(1− f(E))D(E)dE (6)

mc

πℏ2

∫ ∞

∆+ED

1

1 + eβ(E−µ)
dE =

mc

πℏ2

∫ ∆+ED

∆

1

1 + e−β(E−µ)
dE +

mv

πℏ2

∫ 0

−∞

1

1 + e−β(E−µ)
dE (7)

Using the given integral this is:

mc

πℏ2
1

β
ln
[
1 + e−β(∆+ED−µ)

]
=

mc

πℏ2
1

β
ln
[1 + eβ(∆+ED−µ)

1 + eβ(∆−µ)

]
+
mv

πℏ2
1

β
ln
[
1 + e−βµ

]
(8)

The equation for the chemical potential is then, after simplifications:

mc ln
[
e−β(∆+ED−µ)

(
1 + eβ(∆−µ)

)]
= mv ln

[
1 + e−βµ

]
,

or − βmcED +mc ln
[
1 + eβ(µ−∆)

]
= mv ln

[
1 + e−βµ)

]

(c) A purely qualitative argument can be made as follows. If mc > mv, then the conductance
band has larger density of states than the valence band, i.e. there is more phase space for



electrons than for holes. Therefore, at any finite temperature the holes must be spread wider
in energy compared to electrons. This necessarily means that with increasing temperature,
the half-filled state (equally probable to be an electron or a hole) must shift down in energy
so that the “Boltzmann tail” of the distribution (|E −mu| ≫ T ) has larger overlap with the
valence band.

Alternatively, the equations above with ED = 0 take the form

mc ln
[
1 + eβ(µ−∆)

]
= mv ln

[
1 + e−βµ

]
(9)

For β → ∞ (low temperature), the chemical potential must be 0 < µ < ∆ so that eβ(µ−∆),
e−βµ ≪ 1 and one can expand the logarithms to get

mce
β(µ−∆) ≈ mve

−βµ =⇒ (µ−∆/2) ≈ 1

2β
ln
mv

mc

→ 0 (10)

thus µ→ (∆/2) as T → 0. Note that at T > 0 the chemical potential is below (∆/2), which
can be shown using inequality

ln
[
1 + eβ(µ−∆)

]

ln
[
1 + e−βµ

] =
mv

mc

< 1 =⇒ eβ(µ−∆) < e−βµ =⇒ µ <
1

2
∆ , (11)

meaning that with increasing temperature the chemical potential will decrease.
(d) For mc = mv, this equation for the chemical potential further simplifies to

β(µ−∆) = −βµ (12)

and the chemical potential is independent from the temperature:

µ =
∆

2
(13)

The electron density is then
∫ ∞

∆

f(E)D(E)dE =
mc

βπℏ2
ln
[
1 + e−β(∆−µ)

]
=
mcT

πℏ2
ln
[
1 + e−∆/(2T )

]
(14)

and it is equal to the density of holes. The change of total energy of the electrons in the



system from zero temperature to a finite temperature is:

∆U =

∫ 0

−∞
E[f(E, T )− 1]D(E)dE +

∫ ∞

∆

Ef(E, T )D(E)dE

=
m

πℏ2
[
−

∫ 0

−∞

E

1 + e−β(E−∆/2)
dE +

∫ ∞

∆

E

1 + eβ(E−∆/2)
dE

]

=
m

πℏ2
[ ∫ ∞

0

E

1 + eβ(E+∆/2)
dE +

∫ ∞

0

E +∆

1 + eβ(E+∆/2)
dE

]

=
m

πℏ2

∫ ∞

0

2E +∆

1 + eβ(E+∆/2)
dE

Here m = mc = mv. Effectively, this is equivalent to equilibrium of electron and hole Fermi
gases. Electron-hole pairs can be created or recombine with energy ∆ per pair, or ∆/2 per
each. At low temperature, eβ(E+∆/2) ≫ 1, and one can neglect the unity in the denominator

m

πℏ2

∫ ∞

0

2E +∆

1 + eβ(E+∆/2)
dE ≈ m

πℏ2

∫ ∞

0

(2E +∆) e−β(E+∆/2) dE =
m

πℏ2
e−β∆/2

(∆
β

+
2

β2

)

and the specific heat (per unit area) is

c =
d∆U

dT
≈ m

πℏ2
d

dT

[
e−

∆
2T

(
T∆+ 2T 2

)]
=

m

πℏ2
e−

∆
2T

[
2∆ + 4T +

∆2

2T

]
, (15)

and has dimension [Area−1].


