
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

Fall 2024 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Use one exam book for each problem, and label it carefully with the problem topic and num-
ber and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1
Two beads on a rotating circle tied by a spring

Consider two particles of equal mass m tied by a massless spring on a circle of radius R in the
yz-plane. The spring constant is k and the length of the spring at rest is 2ℓ with ℓ < R. The
beads slide on the circle without friction. The circle rotates about the z-axis with uniform
circular velocity ω, as illustrated in the figure below. Gravity acts in the x-direction.
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(a) (5 points) Use z(t) as a generalized coordinate and derive the Lagrangian for this
system.

(b) (5 points) Use the Lagrangian to derive the equilibrium position(s) as a function of
frequency, z0(ω). Determine the conditions when these position(s) are stable.

(c) (5 points) Determine the frequencies of small oscillations about the stable equilibrium
points.

(d) (5 points) The axis of rotation is turned by a small angle α about the y-axis (see
below). Determine how the stable equilibria of part (b) are shifted by α. Which of the
equilibrium positions represent local and global equilibria respectively?
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Solution

a. Since the CM is on the z-axis, there is no effect of gravity which is acting along the x-axis.
With this in mind, the Lagrangian in cylindrical coordinates is

L = m(ṙ2 + r2ϕ̇2 + ż2)− 2k(r − l)2 (1)

with r2 = R2 − z2 and constant circular velocity ϕ̇ = ω. Substituting these values give

L =
1

2
µż2 − V (z) (2)

with

µ = 2m(1− z2/R2) V (z) = 2k(
√
R2 − z2 − l)2 −mω2(R2 − z2) (3)

b. At equilibrium dV/dz = 0

dV

dz
= 4klz

(
1√

R2 − z2
− 1

r(ω)

)
= 0 r(ω) =

2kl

2k −mω2
(4)

which amounts to three real roots

z(ω) = 0,±
√
R2 − r2(ω) (5)

If r(ω) > R or r(ω) < 0 there is only a single equilibrium point z(ω) = 0. The critical
velocity is fixed by the condition r(ωc) = R. For ω < ωc there are three equilibrium points,
whereas for ω > ωc there is only one.

Their stability follows from

V ′′(z) =
d2V

dz2
= 4kl

(
R2

(R2 − z2)
3
2

− 1

r(ω)

)
(6)

which is symmetric under z → −z. It follows that V ′′(0) < 0 (for ω < ωc) is unstable, but
V ′′(0) > 0 (for ω > ωc) is stable. The equilibrium points z(±

√
R2 − r2(ω)) for ω < ωc are

stable.

d. Around the equilibrium points, the effective spring constant is

kE(ω) =4kl

(
1

R
− 1

r(ω)

)
z(ω) = 0 ω > ωc

kE(ω) =4kl

(
R2

r3(ω)
− 1

r(ω)

)
z(ω) = ±

√
R2 − r2(ω) ω < ωc (7)

The angular frequencies of small oscillations are given by
√
kE(ω)/µ.
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c. If the axis of rotation is tillted by an angle α, then the potential V (z) acquires a contri-
bution from gravity

Ṽ (z) = V (z) + 2mgzsinα (8)

which we can recast in dimensionless form

Ṽ (z)

2kR2
=

(√
1− z2

R2
− r(ω)

R

)2

−
(
1− r(ω)

R

)(
ω

ωc

)2(
1− z2

R2

)
+
mgzsinα

kR2
(9)

Gravity breaks z → −z symmetry. When ω < ωc, Ṽ (z) has a global minimum (old negative
root) and a local minimum (old positive root). When ω > ωc there is only one global
minimum (old null root).
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Classical Mechanics 2
Unwinding a cord from a cylinder

A point particle of mass m is attached to a massless thin cord whose other end is wound
around a fixed cylinder of radius R in two spatial dimensions. (There are no external forces
and no gravity in this problem.) Initially the cord is snugly and completely wound around
the cylinder so that the mass touches the cylinder at point P as shown below. At t = 0
an impulse directed radially outward gives the mass an initial velocity of magnitude v0.
This starts the unwinding of the cord from the cylinder. Point Q, also shown below, is the
instantaneous contact point between the cord and the cylinder.

(a) (5 points) Find the Lagrangian and equation of motion in terms of the generalized
coordinate θ as a function of time, satisfying the initial conditions.

(b) (3 points) Using the solution of (a), find the angular momentum of the mass about
the center of the cylinder. Is angular momentum conserved? Explain. Is the energy
conserved? Explain.

Now consider a new situation in which the cylinder is hollow and of mass M and can
spin freely around its axis as the cord and cylinder unwind. The new angle ϕ measures the
position of P (the place where the mass was at rest) with respect to the vertical axis as
shown below.
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(c) (6 points) Write down the Lagrangian in terms of the generalized coordinates θ and ϕ.
Identify two conserved quantities and express them as functions of θ and ϕ.

(d) (6 points) Solve for θ(t). Which way does the cylinder spin? Explain.
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Solution

(a) One can write a Lagrangian using Cartesian coordinates and express it as a function
of θ. However, noticing that the length of the unwound string is Rθ and it unwinds with
angular velocity θ̇ we can immediately write a Lagrangian, which is just a kinetic energy in
this case

L =
1

2
mR2θ2θ̇2 (1)

The equation of motion is then:
d

dt
(θ2θ̇)− θ̇2θ = 0 (2)

or
θ2θ̈ + θ̇2θ = 0 (3)

for θ ̸= 0, this is

d

dt
(θ̇θ) =

1

2

d2

dt2
(θ2) = 0 (4)

The solution is simply θ2 = At+B. From the initial condition θ(0) = 0 and

L(0) = 1

2
mv20 (5)

i.e., θ(0)θ̇(0) = v0/R, we get B = 0 and A = 2v0/R. Hence:

θ =
√

2v0t/R (6)

(b) The angular momentum L about the center of the cylinder is given by:

L = mr⃗ × v⃗ = mRθv0ẑ = mR
√
2v0t/Rẑ (7)

The angular momentum is not conserved because there is a torque from the cord connected to
the cylinder. The energy is conserved because the tension of the cord is always perpendicular
to the velocity of the mass.

E = L =
1

2
mv20 (8)

(c) Here again we use the fact that the cord is always perpendicular to the radius of the
cylinder at the point of contact. Consider the velocity of the mass in relation with point Q
and the (orthogonal) velocity of the cord at point Q, we can write the Lagrangian in the
form

L =
1

2
mR2ϕ̇2 +

1

2
mR2θ2(ϕ̇+ θ̇)2 +

1

2
MR2ϕ̇2 (9)

From this equation, we can immediately obtain the integrals of motion. An angular
momentum which is now conserved is

L =
dL
dϕ̇

(10)
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This is initially zero, and since the initial impulse does not give the system any angular
momentum, it will be zero for all time. So we have

(m+M)ϕ̇+mθ2(ϕ̇+ θ̇) = 0 (11)

Energy is also conserved:

1

2
(m+M)R2ϕ̇2 +

1

2
mR2θ2(ϕ̇+ θ̇)2 =

1

2
mv20 (12)

(d) From equation (11) we can express ϕ̇ in terms of θ and θ̇:

ϕ̇ = − θ̇θ2

θ2 + 1 + (M/m)
(13)

Substituting this into (12) we have:

(1 +
M

m
)

θ̇2θ4

[θ2 + 1 + (M/m)]2
+ θ2[θ̇ − θ̇θ2

θ2 + 1 + (M/m)
]2 =

v20
R2

(14)

After some algebra this becomes:

θ̇2θ2

θ2 + 1 + (M/m)
=

v20
R2[1 + (M/m)]

(15)

hence
θ̇θ√

θ2 + 1 + (M/m)
=

√
v20

R2[1 + (M/m)]
(16)

Integrating this equation results in

√
θ2 + 1 + (M/m) =

√
v20

R2[1 + (M/m)]
t+ C (17)

Therefore:

θ2 =
v20t

2

R2[1 + (M/m)]
+ 2

√
v20

R2[1 + (M/m)]
Ct+ C2 − 1− (M/m) (18)

With the initial condition θ(0) = 0, we get C2 = 1 + (M/m), so

θ =

√
v20t

2

R2[1 + (M/m)]
+

2v0t

R
(19)

For M/m → ∞ (i.e., a fixed cylinder), this result reduces to that obtained in (6). It is
obvious from angular momentum conservation that the cylinder would spin in the opposite
direction from that of the unwinding cord. Indeed, from (13) we see that θ̇ and ϕ̇ have
opposite signs.
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Classical Mechanics 3
Physics in discretized maps

Consider a one-dimensional physical system with canonical coordinates (q, p) evolving
according to Hamilton’s equations of motion.

(a) (3 points) Show that the phase space area is preserved by the time evolution.

Now consider a model for the evolution of a chaotic physical system evolving in phase space
in discrete time steps, t = 0, ∆, 2∆, . . . . Let (qn, pn) denote the canonical cooridnates after
n steps of the evolution. In each time step the canonical coordinates are updated according
to the following non-linear map:

qn+1 =1− q2n + pn (1)
pn+1 =qn (2)

(b) (3 points) Show that the map is area preserving.

(c) (2 points) Find the fixed points of the map.

(d) (6 points) Find the Lyapunov exponents of the map near the fixed points of map1.
What constraint does part (b) place on these exponents? Explain.

(e) (6 points) Find the directions of the stable and unstable lines (or manifolds) near the
fixed points. Draw a schematic picture of these lines in the (q, p) plane, indicating the
stable and unstable directions. Based on the behavior near the fixed points, sketch a
flow diagram in phase space for the system’s time evolution2.

1The Lyapunov exponent is the rate of exponential growth (or decay) of a perturbation (δq(t), δp(t))
asymptotically close to the fixed points under iterations of the map.

2i.e. sketch the streamlines in the (q, p) plane for how the points evolve in phase space
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Solution

(a) Do this infinitesimally. Then the absolute value of the Jacobian is one.

(b) Put qn+1 = qn and pn+1 = pn. This gives (1,1) and (-1,-1).

(c) Follows from the eigenvalues of the linearized map at the fixed point, qk = q∗ + δqk,
pk = p∗ + δpk. This gives (

δqn+1

δpn+1

)
=

(
−2q∗ 1
1 0

)(
δqn
δpn

)
(3)

The secular equation is λ2 + 2q∗λ − 1 = 0. This gives eigenvalues
√
2 − q∗ and −

√
2 − q∗,

which are the Lyapunovs at the fixed point. Because the map is area preserving, the absolute
value their product is equal to one (not that q∗ = ±1).

(d) They are given by the eigenvectors of the linearized map at the fixed point. The
eigenvector for eigenvalues

√
2− q∗ and −

√
2− q∗ are given by(

1√
2 + q∗

) (
−
√
2 + q∗

)
(4)

respectively.
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Electromagnetism 1
A charge in a rectangular tube

A point charge is placed in an infinitely long grounded rectangular tube as shown below.
The sides of the square cross section of the tube have length a.

b

a

(a) (5 points) Show that the solutions to the homogeneous Laplace equation (i.e. without
the extra point charge) are linear combinations of functions of the form

Φ(kxz) Φ(kyy) e
±κzz where Φ(u) =

{
cos(u) or sin(u) (1)

for specific values of kx, ky and κz. Determine the allowed the values of kx, ky and κz
and their associated functions.

(b) (8 points) Now consider a point charge displaced from the center of the tube by a
distance b in the x direction (see above). Use a series expansion in terms of the
solutions of part (a) to determine the potential from the point charge described.

(c) (7 points) Far from the charge, z ≫ a, determine the surface charge density and the
force per area on the walls of the rectangular tube.
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Solution

(a) The Laplace equation is
−∇2φ = 0 (2)

Separating variables with φ = X(x)Y (y)Z(z) we must have

−d
2X

dx2
=k2xX (3a)

−d
2Y

dy2
=k2yY (3b)

−d
2Z

dz2
=k2zZ (3c)

In order to satisfy Eq. (2), the separation constants satisfy

k2x + k2y + k2z = 0 (4)

and thus
d2Z

dz2
= κ2Z with κ =

√
k2x + k2y (5)

The solutions to Eq. (3a) may be either sin or cos

X(x) = Φ(kxx) , (6)

with kx at this point still arbitrary. In order to satisfy the boundary conditionsX(±a/2) = 0,
we require for the cos functions that

kxa/2 = (n+ 1
2
)π . (7)

Similarly, for the sin functions
kxa/2 = nπ . (8)

Thus, the general form is

Xn(x) = Φn(knx) n = 0, 1, . . . (9)

with kn = (n+ 1)π/a and

Φn(u) =

{
cos(u) n even
sin(u) n odd

. (10)

The Y (y) direction follows by analogy

Ym(y) Φm(kmx) m = 0, 1, . . . (11)

with km = (m+ 1)π/a The solutions to the z direction are

Z(z) = e±κz κ =
√
k2n + k2m (12)
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(b) For the potential at r due to a point charge at ro = (b, 0, 0), we expand the potential
as

ϕ(r; ro) =

(
2

a

)2 ∞,∞∑
n,m=0

Xn(x)Xn(b)Ym(y)Ym(0) gn,m(z) (13)

and substitute into the Poisson equation

−∇2φ(r; ro) = qδ(x− b)δ(y)δ(z) . (14)

The leading factors (2/a)2 arise from the fact that we have not normalized the eigenfunctions
X and Y ∫ a/2

−a/2

dxXn(x)Xn′(x) =
a

2
δn,n′ (15)∫ a/2

−a/2

dy Ym(y)Ym′(y) =
a

2
δm,m′ (16)

If gn,m(z) satisfies (
k2n + k2m − ∂2

∂z2

)
gn,m(z) = qδ(z) , (17)

then using the completeness relation

2

a

∑
n

Xn(x)Xn(xo) =δ(x− xo) (18)

2

a

∑
m

Ym(x)Ym(xo) =δ(y − yo) (19)

it is not difficult to show that Eq. (14) is satisfied.

The solution to Eq. (17) is

gn,m(z) =

{
Ae−κn,mz z > 0

Aeκn,mz z < 0
(20)

Integrating across the δ-fcn in Eq. (17) we have

− dg

dz

∣∣∣∣
z=0+

+
dg

dz

∣∣∣∣
0−

= q (21)

With this requirement A = q
2κn,m

and

ϕ(r; ro) =
4q

a2

∞,∞∑
n,m=0

Xn(x)Xn(b)Ym(y)Ym(0)
e−κn,m|z|

2κn,m
(22)
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(c) At asymptotic distances the terms with the smallest κn,m dominate the sum. We
then have only the contribution from n = m = 0 mode, and

κ0,0 =
√
2π/a . (23)

The potential reads

ϕ(r; ro) ≃
4q

a2
cos(πx/a) cos(πb/a) cos(πy/a)

e−κ0,0|z|

2κ0,0
(24)

or

ϕ(r; ro) ≃
√
2q

πa
cos(πx/a) cos(πb/a) cos(πy/a)e−

√
2π|z|/a (25)

Let us calculate the charge density on the bottom plate

σ = n ·E = −∂yϕ|y=−a/2 , (26)

=−
√
2q

a2
cos(πx/a) cos(πb/a) e−

√
2π|z|/a . (27)

Finally, the force per area on the bottom plate is

F y

A
=
σ2

2
, (28)

=
q2

a4
cos2(πx/a) cos2(πb/a) e−2

√
2π|z|/a . (29)

The direction of the force is into the tube. The other walls of the tube have the same force
per area.
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Electromagnetism 2
Coaxial transmission line

Consider a radio-frequency wave propagating in a long and straight coaxial cable. The
cable consists of two concentric cylindrical conductors of inner and outer radii R1 and R2

respectively. The space between the conductors is vacuum.
The conductors carry currents in opposite directions along the cable (±ẑ) and have oppo-

site local charge densities, so the electromagnetic fields are contained between the conductors.
Assume the conductors have negligible resistance.

(a) (4pt) Use the Mawell equations to show that the coaxial cable supports wave solutions:

E(t, r⃗, z) =E⃗(r⃗) eikz−iωt ,

B(t, r⃗, z) =B⃗(r⃗) eikz−iωt .

Here r⃗ = (x, y) is a transverse position vector. E⃗(r⃗) and B⃗(r⃗) are time independent
transverse vector fields, e.g. E⃗(r⃗) = (Ex(r⃗), Ey(r⃗)). Show that:

(i) E⃗ and B⃗ satisfy the equations of electro and magneto-statics respectively.

(ii) The waves propagate at the speed of light with E⃗ orthogonal to B⃗.

(b) (3pt) Calculate the capacitance C0 = ∆C/∆x per unit of length of the coaxial cable
assuming that the charge densities are constant and uniform (e.g., if the wavelength is
very long).

(c) (3pt) Now calculate the inductance L0 = ∆L/∆x per unit length under the same
assumptions as (b).

The complex impendance Z(z, ω) at position z along the cable is defined as the ratio between
the voltage and the current for a sinusoidal frequency ω

Z(z, ω) ≡V (z, ω)

I(z, ω)
. (1)

Here V (z, ω)e−iωt is the voltage drop from the inner to the outer radius, and I(z, ω)e−iωt is
the current in the z direction on the inner conductor. In general, the electromagnetic fields
in the cable are a superposition of right and left moving waves with frequency ω.
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(d) (5pt) For a right moving wave (and not a superposition), determine the impedance Z0

and estimate Z0 numerically in Ohms for a typical coaxial cable (R2/R1 ≈ 5).

(e) (5pt) Now consider a superposition of waves travelling in a transmission line of length
ℓ. The line is connected to a load (e.g. an antenna) located at the end of the line,
z = 0. If the impedance at the load is purely real Z(0, ω) = R, then:

(i) Find the impedance at the start of the transmission line.

(ii) For a specific value of load impedance Zmatch, the impedance at the start of the
line will remain real for any length ℓ. Determine Zmatch. Explain why having
Z(0, ω) = Zmatch is desirable from a engineering perspective.
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Solution

(a) The Maxwell’s equations without currents and charges (inside the cable) applied to the
transverse fields yield the following:

(∇⃗ × E⃗)z = ∂xEy − ∂yEx = −∂Bz

∂t
= 0 ,

∇⃗ · E⃗ = ∂xEx + ∂yEy = 0 ,

(∇⃗ × B⃗)z = ∂xBy − ∂yBx =
1

c2
∂Ez

∂t
= 0 ,

∇⃗ · B⃗ = ∂xBx + ∂yBy = 0 ,

These two equations show that the two-dimensional fields (Ex, Ey) and (Bx, By) have zero
divergence and curl, i.e., satisfy electro- and magnetostatic equations in vacuum. They
can only be nonzero if there are charges and currents on the boundary (inner and/or outer
conductors).

Further, the relation between k and ω can be found from the other components of, e.g.,
∇⃗ × B⃗,

∇⃗ × (∇⃗ × B⃗) = ∇⃗ × (−ikBy, ikBx, 0)e
ikz−iωt = (k2Bx, k

2By, 0)e
ikz−iωt

= − 1

c2
∂2

∂t2
(Bx, By, 0)e

ikz−iωt =
ω2

c2
(Bx, By, 0)e

ikz−iωt

so that the phase velocity ω/k = c is the speed of light in vacuum. Finally, the electric and
magnetic fields are orthogonal since

∇⃗ × E⃗ = − ∂

∂t
B⃗

ik(−Ey, Ex, 0)e
ikz−iωt = iω(Bx, By, 0)e

ikz−iωt

or Ey = −cBx, Ex = cBy and E⃗ ⊥ B⃗.
(b) [3pt]
The capacitance per unit length is easily calculated from the axial-symmetric electrostatic
fields between two cylinders of length ∆x carrying charges ±λ∆x, where λ is the linear charge
density. From the Gauss theorem, the electric field is radial (fringe effects are neglected)

E⃗(r) =
λ

2πϵr
r̂ (2)

so that the voltage is

V =

∫ R2

R1

dr Er(r) =
λ

2πε
log

R2

R1

(3)

and the capacitance per unit length is

C0 =
∆C

∆x
=
λ∆x/V

∆x
=

2πε

log R2

R1

(4)
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Note that the electric field is radial.
(c) [3pt]
One can compute the inductance, e.g., from the energy stored in the magnetic fields between
the conductors (there are no fields outside of the larger cylinder). If the conductors carry
currents ±I, the magnetic field is tangential (along φ̂) and from the Green’s theorem are

B⃗ =
µI

2πr
φ̂ (5)

and their energy per unit length is

∆Em

∆x
=

∫ R2

R1

2πr dr
1

2µ
[B⃗(r)]2 =

µI2

4π
log

R2

R1

(6)

Therefore, the inductance can be easily found from the relation ∆Em = 1
2
∆LI2, and the

inductance per unit length is

L0 =
∆L

∆x
=

∆Em/(I
2/2)

∆x
=

µ

2π
log

R2

R1

(7)

Note that the magnetic field is tangential (along vector φ̂).
(d) [5pt]
Finding the impedance of a cable requires connecting the voltage between the conductors to
the current on the surface. Since the electric field Eρ ∝ 1/ρ, the voltage is

V =

∫
Eρ(R1)

∫
dρ
R1

ρ
= R1Eρ(R1) log

R2

R1

(8)

where Eρ(R1) is the radial electric field near the inner conductor. The total current at the
central conductor is

I = 2πR1K1 =
2π

µ0

R1Bφ(R1) (9)

where K1 is the surface current on the inner conductor and Bφ(R1) is the magnetic field
created by it. Finally, using the relation Eρ = cBφ between the electric and magnetic fields
in the EM wave propagating in the positive ẑ direction,

Z0 =
V

I
=
R1Eρ(R1) log(R2/R1)

2π
µ0
R1Bφ(R1)

=
µ0c

2π
log

R2

R1

. (10)

Plugging in the numbers,
Z0 ≈ 96.6Ω . (11)

Note that the actual coaxial cable will have smaller impedance due to dielectric material,
not vacuum, filling the space between the conductors.
(d) [5pt]
In case there are two waves propagating in opposite directions, if their voltages add with the
same sign (convention choice), then their currents must add with the opposite signs:

Z(z) =
VR(z) + VL(z)

IR(z)− IL(z)
=
VR(0)e

ikz + VL(0)e
−ikz

IR(0)eikz − IL(0)e−ikz
, (12)
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and the impedance depends on the position along the cable z as well as the ratio S =
VL(0)/VR(0) of the left- and right-moving wave amplitudes. These waves can be thought of
as the reflected and the incident waves (or vice-versa), respectively. Also, for each of the
waves we have VL(z)/IL(z) = VR(z)/IR(z) = Z0, so that

Z(z) = Z0
1 + Se−2ikz

1− Se−2ikz
. (13)

Note that Z(0) = R because it is the load at the end of the cable, from which we can find
the reflection coefficient S,

R = Z(0) = Z0
1 + S

1− S
⇐⇒ S =

R/Z0 − 1

R/Z0 + 1
(14)

and the impedance at the other end of the cable is

Z(l) = Z0
R cos(kl) + iZ0 sin(kL)

Z0 cos(kl) + iR sin(kl)
(15)

which is real only if R = Z0 = Zmatch, leading to zero (S = 0) reflection. Such condition is
desirable because all the radiowave power is transmitted to the load.
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Electromagnetism 3
Three-phase transmission line

Three wires are arranged in an equilateral triangle with side b = 10 m as shown in the
picture, forming a three-phase alternating-current (AC) power line of length L = 5 km. The
voltages and currents in the wires are

I1(t) = I0 cos(ωt) , V1(t) = V0 cos(ωt) ,

I2(t) = I0 cos(ωt−
2π

3
) , V2(t) = V0 cos(ωt−

2π

3
) ,

I3(t) = I0 cos(ωt−
4π

3
) , V3(t) = V0 cos(ωt−

4π

3
) ,

(1)

(note that I1 + I2 + I3 = 0, V1 + V2 + V3 = 0) where I0 is the amplitude of the current and
ω = 2πν, ν = 60 Hz, is the frequency. Each wire in the transmission line has Vrms = 110
kV r.m.s. voltage and the total transmitted power is P = 10 MW. Assume that the wires
are straight (no sagging) and there is no absorption or reflection from the ground and the
atmosphere. Some useful formulas are given below.

(a) [1pt] Find the amplitude of the currents I0.

(b) [5pt] Show that these currents create a magnetic dipole vector rotating in the (xy) plane,

m⃗(t) = m0

[
x̂ cos(ωt+ ϕ) + ŷ sin(ωt+ ϕ)

]
, (2)

and find its amplitude m0 (in [A ·m2]) and phase ϕ.

(c) [4pt] Calculate the electric field E⃗(x, y, z) far from the transmission line, but still short
compared to λ, i.e. b, L≪ |x|, |y|, |z| ≪ λ = c/ν.

Now we will study radiated electromagnetic fields at distances r ≫ L, r ≫ λ = c/ν.

(d) [2pt] How do the radiated fields E and B depend on the distance r and frequency ω?

(e) [4pt] What is the polarization (direction of E⃗, B⃗) at points on x̂ axis ? ŷ axis? ẑ axis?

(f) [4pt] Find the total power radiated from this transmission line.
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Vacuum permittivity : ε0 = 8.85 · 10−12 F/m, magnetic constant : µ0 = 4π · 10−7H/m.
Power emitted by a linear oscillating magnetic dipole m⃗(t) = (m0ẑ) cos(ωt) : d⟨P ⟩

dΩ
=

µ0m2
0ω

4 sin2 θ

32π2c3
.
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Solution

(a) [1pt] The total transmitted power is evenly divided between the wires, so each is carrying
P/3 ≈ 3.33 MW. For the AC current, the power is given by the product of r.m.s voltage and
current carried by the wire (assuming no phase shift), so the amplitudes are

I0 =
√
2Irms =

√
2P

3Vrms

≈ 42.9A. (3)

(b) [5pt] The three currents add up to zero at any moment, but they are not in the same
plane. However, they can be thought of as a superposition of three closed-loop currents,
each comprised by one of the wires and by the ”return current” flowing in the opposite
direction in the center of the triangle. These return currents will cancel each other because
I1(t) + I2(t) + I3(t) = 0 at any moment. The area of each loop is A = bL/

√
3. Using the

right-hand rule and reading the directions off the figure,

m⃗1 = AI1(t)
(
+ x̂

)
m⃗2 = AI2(t)

(
− 1

2
x̂+

√
3

2
ŷ
)

m⃗3 = AI3(t)
(
− 1

2
x̂−

√
3

2
ŷ
) (4)

Adding these contributions, and using trigonometric identities (or vector diagrams),

m⃗ = m⃗1 + m⃗2 + m⃗3

= A
(
I1 −

1

2
I2 −

1

2
I3
)
x̂+ A

√
3

2

(
I2 − I3

)
ŷ

=
3

2
AI0

(
cos(ωt)x̂+ cos(ωt− π

2
)ŷ
)

=

√
3

2
bLI0

(
cos(ωt)x̂+ sin(ωt)ŷ

)
(5)

and thus m0 =
√
3
2
bLI0 and ϕ = 0.

(c) [4pt] The electric field can be calculated from the vector potential of the magnetic dipole,
which in the near zone can be treated as static:

A⃗(r, t) =
µ0m⃗(t)× r̂

4πr2
(6)

so that the electric field is

E⃗(r, t) = −∂A⃗
∂t

=
µ0m0ω

4πr2
[
sin(ωt)x̂− cos(ωt)ŷ

]
× r̂ . (7)

(d) [2pt] Electromagnetic fields radiated by a compact sources have to fall off inversely
proportional to the distance, so that the Poynting vector satisfies the inverse-square law:
|E|, |B| ∝ 1

r
. Also, their amplitude must increase ∝ ω2. No proof was required for this

question.
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(e) [4pt] The rotating dipole is a superposition of two magnetic dipoles linearly oscillating
along x̂ and ŷ axes, respectively. They do not radiate fields only along x̂ and ŷ axes,
respectively. In other directions, their radiated magnetic fields will be aligned with their
dipole orientation (x̂ and ŷ, respectively), while their radiated electric fields will be transverse
both to the dipole orientation and the radial direction. Combining together,

• x̂ axis : only ŷ dipole radiates an EM wave polarized linearly in the ẑ direction (Ez ̸= 0,
By ̸= 0)

• ŷ axis : only x̂ dipole radiates an EM wave polarized linearly in the ẑ direction (Ez ̸= 0,
Bx ̸= 0)

• ẑ axis : both x̂, ŷ dipoles radiate but with a π
2

phase shift; the EM wave is circularly
polarized in the x̂ŷ plane (Ex,y ̸= 0, Bx,y ̸= 0).

(f) [4pt] The total radiated power will be twice the total power radiated by a linear dipole.
Integrating the provided expression over the solid angle,

Ptot = 2

∫
dΩ

µ0m
2
0ω

4 sin2 θ

32π2c3
=
µ0m

2
0ω

4

8πc3

∫
d cos θ sin2 θ =

µ0m
2
0ω

4

6πc3
. =

µ0b
2L2I20ω

4

8πc3
. (8)

Substituting the numbers,
Ptot ≈ 1.72 · 10−10 W . (9)

Of course, the real losses in a real AC powerline are much higher due to absorbtion of the
EM energy in the near zone as well as wire resistance.

23



Quantum Mechanics 1
Two electron atoms

The wave function of two electron atoms, e.g. He, Mg, Ca, etc., are not the same as for
one-electron atoms, e.g. H, Na, K, etc. The single-electron wave functions in the Coulomb
field of the nucleus are labeled by |nlms⟩. Here n = 1, 2, . . . is the principal quantum num-
ber labeling the single-particle energy, ℓ and m label the magnitude and z-component of the
electron’s orbital angular momentum, and finally s = ± labels the z-component of its spin.

In two electron atoms, the states are labeled by quantum numbers indicating the total
orbital angular momentum by (L,M) and the total spin by (S, Sz).

(a) (3 points) For an independent (or non-interacting) electron approximation, write down
the ground state wave function of the He atom in terms of tensor products of single-
particle states |n1ℓ1m1s1⟩⊗|n2ℓ2m2s2⟩. What are the quantum numbers (n1, n2, L,M, S, Sz)
of the ground state?

(b) (3 points) For such an independent electron approximation with one electron in the
first excited energy level, list the possible states and their the quantum numbers
(n1, n2, L,M, S, Sz). What is the total number of states with one electron in the first
excited energy level?

(c) (3 points) For the first excited states of part (b) write the wave-functions using tensor
products of single-particle states |n1ℓ1m1s1⟩ ⊗ |n2ℓ2m2s2⟩.

(d) (6 points) The Coulomb interaction between the atomic electrons partly removes the
degeneracies of part (b). Consider how the exchange symmetry of the electrons affects
the interaction energy and qualitatively sketch an energy level diagram of the He atom
(an example is shown below). In your diagram include the states corresponding to
parts (a) and (b) .

(i) For each energy level indicate the quantum numbers (L, S) and their degeneracy.

(ii) For each level, explain why you chose the energy to be higher or lower relative to
the other energy levels in the diagram.

(e) (5 points) Indicate the allowed optical transitions on the energy level diagram of part
(c).

(i) For each allowed transition write down a matrix element squared which is pro-
portional to the transition rate between the energy levels.

(ii) For each forbidden transition explain (with formulas) why the relevant matrix
element vanishes.
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Figure 1: An energy level diagram showing energy on the y-axis and total orbital angular
momentum on the x-axis. Fill in the remaining levels.

25



Solution:

(a) The single electron quantum numbers are |n, ℓ,mℓ, s,ms⟩ so when each of two elec-
trons knows nothing about the other one, the wave function is denoted as |n1, ℓ1,mℓ,1, s1,ms,1⟩⊗
|n2, ℓ2,mℓ,2, s2,ms,2⟩. For the ground state with two non-interacting electrons this becomes
|n, L,Mℓ, S,Ms⟩ = |1, 0, 0, 0, 0⟩ since the values for ms must have opposite signs. However,
if there is truly zero interaction, meaning they’re totally independent, this condition on the
ms values vanishes so S can be 0 or 1 and for S = 1, Ms can be -1, 0, 1.

(b) For one electron having n = 2 (it doesn’t matter which one but we’ll choose #2), the
condition on s,ms vanishes because the n-values are different. So S can be 0 or 1 as above.
Moreover, for n = 2 it’s possible to have ℓ = 1 (or, of course, 0) so there are 4 possible
arrangements. These are |n1, ℓ1,mℓ,1, s1,ms,1⟩ ⊗ |n2, ℓ2,mℓ,2, s2,ms,2⟩. For ℓ1 = 0 = ℓ2 and
s1 = 0 = s2 both M and Sz are zero so there’s only one state. But if ℓ2 = 1(ℓ1 can only be
0 because n1 = 1) there are three values for M . Similarly for s2 = 1. If both ℓ2 and s2 are
equal 1, there are three values for each M and Sz so there are 9 ways these can be arranged.
The total number of possible arrangements is 16.

(c) Now for ℓ2 = 0, s2 = 0, the wave functions is |1, 0, 0, 0, 0⟩ ⊗ |2, 0, 0, 0, 0⟩, and for
simplicity we’ll always write the n = 1 electron’s ket as A ≡ |1, 0, 0, 0, 0⟩. Thus for ℓ2 =
1, s2 = 0 we have {A⊗ |2, 1,−1, 0, 0⟩, A⊗ |2, 1, 0, 0, 0⟩, A⊗ |2, 1, 1, 0, 0⟩} making 3 more.
Similarly for s2, sz we have |2, 0, 0, 1,±1or0⟩, making 3 more so we have 7 in all. Now, with
both ℓ2 and s2 both = 1, there are 3 x 3 possible arrangements of M and Sz making 9 more,
and 9+7=16 as in part (b) above.

(d) Figure (not to scale):
S = 0 S = 1

l = 0          l = 1 l = 0                   l = 1
M = 1

M = 0

M = -1

M = 1

M = 0

M = -1

S = -1
Z

S = 0
Z

S = 1Z

(e) There are no transitions that cross the wiggly line. This is because the transition
matrix element ⟨n′, L′,M ′, S,ms|eE⃗ · r⃗|n, L,M, S,ms⟩ has no spin dependence so spin can’t
change. Said another way, singlet ↔ triplet transitions are forbidden. On each side, all
∆ℓ = ±1 transitions are allowed but no ∆ℓ = 0 transitions. If the spin-orbit interactions
had been included in this problem, there would be a different basis set and different selection
rules.
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Quantum Mechanics 2
Spin Hamiltonian

Consider the following spin Hamiltonian

H = −DS2
z − ε(S2

x − S2
y) ,

where Sx,y,z are conventional spin operators.

a) (5 points) For the total spin S = 1 find exact eigenenergies of the above Hamiltonian.

b) (5 points) For general spin S > 1 and ε = 0 find the eigenenergies and eigenstates of the
Hamiltonian. What is the degeneracy of the ground state for D > 0?

c) (5 points) Using perturbation theory in ε, compute the first non-vanishing correction to
the ground state energy found in b).

d) (5 points) Notice that in a) for D > 0 and ε small the ground state degeneracy was lifted
in the first order in ε. In what order in ε you expect the lifting of degeneracy of the ground
state for an arbitrary S > 1?

Hint: you can use the following matrix elements of spin operators in the eigenbasis of Sz

⟨m|Sz|m⟩ = ℏm, ⟨m+ 1|S+|m⟩ = ℏ
√
S(S + 1)−m(m+ 1) ,

where S+ = Sx + iSy and m = −S,−S + 1, . . . , S.
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Solution:

a) We find
H = −DS2

z −
ε

2
(S2

+ + S2
−)

and
⟨m+ 2|S2

+|m⟩ = ℏ2
√
S(S + 1)−m(m+ 1)

√
S(S + 1)− (m+ 1)(m+ 2)

For S = 1 the Hamiltonian becomes explicitly in the basis | − 1⟩, |0⟩, |1⟩

H = −ℏ2
 D 0 ε

0 0 0
ε 0 D

 .

Its eigenenergies are
E = ℏ2(−D − ε,−D + ε, 0)

b) We have
Em = −ℏ2Dm2 , m = −S,−S + 1, . . . S

corresponding to the eigenstates of Sz denoted as |m⟩. The ground state E = −ℏ2DS2 is
twofold degenerate for D > 0 and the eigenestate is given by any superposition of |−S⟩ and
|S⟩.
c) The perturbation V does not have a non-vanishing matrix element between two ground
states | − S⟩ and |S⟩ and no diagonal elements in the |m⟩ basis. Therefore, we can compute
the correction in the second order of non-degenerate perturbation theory. Let us consider
one of the ground states | − S⟩.

E
(2)
−S =

∑
m ̸=−S

∣∣∣⟨m|V | − S⟩
∣∣∣2

E
(0)
−S − E

(0)
m

=

∣∣∣⟨−S + 2|V | − S⟩
∣∣∣2

E
(0)
−S − E

(0)
−S+2

=
(ε
2

)2

∣∣∣⟨−S + 2|S2
+| − S⟩

∣∣∣2
E

(0)
−S − E

(0)
−S+2

= ℏ2
(ε
2

)2 [(S(S + 1)− S(S − 1))(S(S + 1)− (S − 1)(S − 2)]

−DS2 −D(−S + 2)2

= −ℏ2
ε2

2D
S
1− 1

2S

1− 1
S

(1)

or

E−S ≈ −ℏ2DS2 − ℏ2
ε2

2D
S
1− 1

2S

1− 1
S

. (2)

The correction to the energy ES is identical and the degeneracy of the ground state is still
twofold within this order of perturbation theory.

d) It is clear that the perturbation V has only matrix elements between states separated by
two, i.e. between |m⟩ and |m+ 2⟩. The number of steps between ground states is 2S.
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If S is integer, the matrix element of the perturbation ⟨S|V S| − S⟩ ≠ 0 and degenerate
perturbation theory will lift the degeneracy in the order εS.

If S is half-integer, the subspace | − S⟩, | − S + 2⟩, . . . , |S − 1⟩ is not coupled by the
perturbation with the other half of the states. In this case, the twofold degeneracy of
the ground state is exact and is not lifted by the perturbation neither perturbatively nor
nonperturbatively.

The latter statement also follows from the Kramers theorem for half-integer spin.
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Quantum Mechanics 3

Coulomb excitation

The nucleus of a hydrogen atom is fixed at the origin O of a coordinate system. A heavy
point-particle of charge Ze, whose motion we treat classically, is projected with speed V
along the trajectory R(t) = V t ex + D ey , as shown in the figure, where {ex, ey, ez} are
basis vectors for a Cartesian coordinate system. The point of closest approach of the heavy
particle to the hydrogen atom’s nucleus occurs at time t = 0, at which time the distance
between the heavy particle and the nucleus is D.

O

D R(t)

  

  

   New Section 1 Page 1    

(a) (2 points) The electron orbiting the atom’s nucleus has charge −e and position r. State
the operator Ĥ1(t) that describes the Coulomb interaction at time t between the heavy
particle and the electron. Give your answer in terms of Z, e, R(t), the electron position
operator r̂ , and any other necessary factors.

(b) (6 points) Regard the heavy particle as creating a time-dependent perturbation of the
hydrogen atom. By starting with the time-dependent Schrödinger equation, derive
a formula for the first-order probability, Pn→m , that if the electron is in the atomic
eigenstate |n⟩ (which has energy eigenvalue ϵn) at time T0 then it will be found in an
orthogonal eigenstate |m⟩ (which has energy eigenvalue ϵm) at the later time T1 . At
this stage, you should not attempt to evaluate any integrals.

(c) (6 points) By assuming that D2 is large compared with the mean square radius of
the atomic eigenstates |n⟩ and |m⟩ (which justifies a Taylor expansion of the Coulomb
interaction), show that the leading-order contribution to Pn→m takes the form

Pn→m ≈ C1

∣∣∣∣ ∫ T1

T0

dt
(C2 t)xmn + ymn[
(C3 t)2 + 1

]3/2 exp
(
iωmnt

) ∣∣∣∣2 ,
and specify the requisite constants C1, C2 and C3 . Note the definitions ℏωmn ≡ ϵm−ϵn,
xmn ≡ ⟨m|x̂|n⟩ and ymn ≡ ⟨m|ŷ|n⟩, and that x̂ and ŷ are Cartesian components of r̂ .



(d) (6 points) Now introduce the characteristic time-scale τ ≡ D/V and focus on the
situation in which T0 ≪ −τ and T1 ≫ τ . For the eigenstates in question, consider the
limit where |ωmnτ | ≪ 1.

(i) What is the physical meaning of the condition |ωmnτ | ≪ 1? Explain.

(ii) Show that in this limit Pn→m ≈ C4 |⟨m|ŷ|n⟩|2 for a suitable constant C4 that you
should specify.



Solution: Coulomb excitation.

a) The Coulomb interaction operator Ĥ1(t) is given by:

Ĥ1(t) = − Ze2

4πϵ0

1

|R(t)− r̂| .

b) Start with the time-dependent Schrödinger equation,

iℏ
d

dt
|ψ(t)⟩ = [Ĥ0 + Ĥ1(t)]|ψ(t)⟩,

where Ĥ0 is the (time-independent) atomic Hamiltonian and Ĥ1(t) is the time-dependent
perturbation due to the heavy charged particle. The (complete, orthonormal) set of
atomic eigenstates {|n⟩} and eigenvalues {ϵn} obey the time-independent Schrödinger
equation Ĥ0|n⟩ = ϵn|n⟩. Introduce the interaction picture:

|ψ(t)⟩ → |ψ̃(t)⟩ ≡ exp
(
iĤ0t/ℏ

)
|ψ(t)⟩ .

Then, straightforward algebra shows that the time-dependent Schrödinger equation
becomes:

iℏ
d

dt
|ψ̃(t)⟩ = exp

(
iĤ0t/ℏ

)
Ĥ1(t) exp

(
−iĤ0t/ℏ

)
|ψ̃(t)⟩,

where the operator on the right-hand side is the interaction-picture version of the time-
dependent perturbation due to the heavy charged particle. Now integrate term-by-term
from time T0 to time T1 to obtain:

|ψ̃(T1)⟩ = |ψ̃(T0)⟩+
1

iℏ

∫ T1

T0

dt exp
(
iĤ0t/ℏ

)
Ĥ1(t) exp

(
−iĤ0t/ℏ

)
|ψ̃(t)⟩ .

Then iterate once, truncate at first order in Ĥ1 , and apply the initial condition
|ψ̃(T0)⟩ = |n⟩ or |ψ̃(T0)⟩ = exp

(
iĤ0t/ℏ

)
|n⟩ = exp (iϵnt/ℏ) |n⟩ to obtain:

|ψ̃(T1)⟩ ≈ eiϵnT0/ℏ|n⟩+ 1

iℏ

∫ T1

T0

dt exp
(
iĤ0t/ℏ

)
Ĥ1(t) exp

(
−iĤ0t/ℏ

)
exp (iϵnt/ℏ) |n⟩ .

Reverting to the Schrödinger picture we obtain:

|ψ(T1)⟩ = e−iĤ0T1/ℏ|ψ̃(T1)⟩

≈ e−iϵn(T1−T0)/ℏ|n⟩+ 1

iℏ

∫ T1

T0

dt eiĤ0(t−T0)/ℏĤ1(t)e
−iĤ0(t−T0)/ℏ|n⟩ .

Now compute the amplitude ⟨m|ψ(T1)⟩ to be in an eigenstate |m⟩ of Ĥ0 at time T1 ,
dropping the zeroth-order term using the the orthogonality of |m⟩ to the initial state
|n⟩ :

⟨m|ψ(T1)⟩ ≈ 1

iℏ

∫ T1

T0

dt eiϵm(t−T0)/ℏ ⟨m|Ĥ1(t)|n⟩ e−iϵn(t−T0)/ℏ

=
1

iℏ
e−i(ϵm−ϵn)T0/ℏ

∫ T1

T0

dt ⟨m|Ĥ1(t)|n⟩ei(ϵm−ϵn)t/ℏ .



Then the probability Pn→m to be in an eigenstate |m⟩ of Ĥ0 orthogonal to |n⟩ at time
T1 is given by:

Pn→m = |⟨m|ψ(T1)⟩|2 ≈
1

ℏ2

∣∣∣∣ ∫ T1

T0

dt ⟨m|Ĥ1(t)|n⟩ exp
(
i(Em − En)t/ℏ

) ∣∣∣∣2 .
Inserting the particular form of the time-dependent perturbation due to the Coulomb
interaction with the heavy charged particle gives:

Pn→m ≈ 1

ℏ2

(
Ze2

4πϵ0

)2 ∣∣∣∣ ∫ T1

T0

dt ⟨m| |R(t)− r̂|−1 |n⟩ exp
(
i(Em − En)t/ℏ

) ∣∣∣∣2 .
c) Now Taylor-expand the Coulomb interaction, in effect assuming that the position op-

erator r̂ is small:

|R(t)− r̂|−1 =
(
|R(t)− r̂|2

)−1/2 ≈
(
|R(t)|2− 2r̂ ·R(t)

)−1/2

≈ 1

|R(t)| +
r̂ ·R(t)

|R(t)|3 .

The necessary matrix elements then become (using the orthogonality of |m⟩ and |n⟩):

⟨m||R(t)− r̂|−1|n⟩ ≈ ⟨m|
(

1

|R(t)| +
r̂ ·R(t)

|R(t)|3
)
|n⟩ ≈ ⟨m|n⟩

|R(t)|(= 0) +
⟨m|r̂|n⟩ ·R(t)

|R(t)|3 .

Next, we insert the specific form of the trajectory of the heavy particle, i.e., R(t) =
V tex +Dey, to obtain:

⟨m||R(t)− r̂|−1|n⟩ ≈ V txmn +Dymn

[(V t)2 +D2]3/2
=

1

D2

(V t/D)xmn + ymn

[(V t/D)2 + 1]3/2
,

where xmn ≡ ⟨m|x̂|m⟩ and ymn ≡ ⟨m|ŷ|m⟩ are matrix elements of the Cartesian
components x̂ and ŷ of the position operator r̂. Using these matrix elements, the
probability Pn→m becomes:

Pn→m ≈ 1

ℏ2

(
Ze2

4πϵ0

)2 ∣∣∣∣ 1

D2

∫ T1

T0

dt
(V t/D)xmn + ymn[
(V t/D)2 + 1

]3/2 eiωmnt

∣∣∣∣2
= C1

∣∣∣∣ ∫ T1

T0

dt
(C2t)xmn + ymn[
(C3t)2 + 1

]3/2 eiωmnt

∣∣∣∣2,
where C1 ≡ 1

ℏ2

(
Ze2

4πϵ0

1

D2

)2

, C2 ≡ V/D, and C3 ≡ V/D .

d-i) The condition |ωmnτ | ≪ 1 means that for the atomic states in question, namely |n⟩ and
|m⟩, the energies are close, compared with the uncertainty energy ℏ/(D/V ) associated
with the time D/V it takes for the heavy particle to pass the atom.

d-ii) We may set the integration limits T0 and T1 respectively to −∞ and ∞ and drop the
phase factor eiωmnt. Then the term associated with the matrix element xmn vanishes
(by the oddness in time of the integrand), leaving the one remaining contribution:

Pn→m ≈ C1 |ymn|2
∣∣∣∣ ∫ ∞

∞
dt

1[
(C3t)2 + 1

]3/2 ∣∣∣∣2 .



To evaluate the remaining integral, make the substitution t→ θ such that C3 t = tan θ.
Then the transition probability becomes:

Pn→m ≈ C1

C2
3

|ymn|2
∣∣∣∣ ∫ π/2

−π/2

dθ
sec2 θ[

tan2 θ + 1
]3/2 ∣∣∣∣2= C1

C2
3

|ymn|2
∣∣∣∣ ∫ π/2

−π/2

dθ cos θ

∣∣∣∣2= 4C1

C2
3

|ymn|2 .

Thus, we have Pn→m ≈ C4 |ymn|2, where:

C4 = 4C1/C
2
3 = 4

(
Ze2

4πϵ0D

1

ℏV

)2

.



Statistical Mechanics 1
Condensation in a deformed trap

Consider a gas of N non-interacting bosons of mass m and temperature T in an isotropic
harmonic trapping potential:

V (x, y, z) =
mΩ2

2
(x2 + y2 + z2) . (1)

Some integrals are given below.

(a) (4 points) Show that the density of single-particle states g(ε) dε (i.e. the number of
single-particle states with energy between ε and ε+ dε) is

g(ε)dε =
ε2dε

2(ℏΩ)3
(2)

Assume that the energy ε is large compared to the ℏΩ.

(b) (4 points) The gas will experience condensation and macroscopic occupation of the
ground state of the trap at Tc, representing the critical temperature for Bose-Einstein
condensation. Calculate Tc.

(c) (4 points) Calculate the condensation fraction (the number of bosons in the condensed
phase versus the total number of bosons) at a given temperature T .

(d) (4 points) Calculate the entropy per particle of the gas for T < Tc.

(e) (4 points) The trap potential is adiabatically modified as shown below. At some point
the new dip in the potential contains a single bound state of energy −U . Calculate
the new critical temperature.

Statistical mechanics COMP EXAM

May 15, 2024

Consider a gas of N bosons, with mass m, in the anisotropic harmonic trap
potential

V (x, y, z) =
m

2
(!2

xx2 + !2
yy2 + !2

zz2). (1)

(a) ( 3 points) Calculate the density of states.
(b) (3 points) The gas will experience condensation and macroscopic occupa-

tion of the ground state of the trap at Tc, representing the critical temperature
for Bose-Einstein condensation. Calculate Tc.

(c) (3 points) Calculate the condensation fraction (the number of bosons in
the condensed phase versus the total number of bosons) at a given temperature
T .

(d) (3 points ) Calculate the entropy per particle of the gas.
(e) (3 points) Based on the result of (d), what should be the optimal route

toward Bose-Einstein condensation of bosons in a harmonic trap?
(d) (5 points ) At some point, the potential is adiabatically modified as

shown in Fig. 1. The new dip in the potential contains a single bound state of
energy �U . Calculate the new critical temperature.

Harmonic trap Locally-modified Harmonic trap

V(r)

-U

V(r)

Figure 1: By deforming locally the trapping potential that the bosons feel, one
can modify the Bose-Einstein properties of the system.

1



Integrals:

The following integrals may be useful

gν(z) ≡
1

Γ(ν)

∫
xν−1dx

z−1ex − 1
(3)

• Here Γ(ν) is the gamma function

Γ(ν) ≡
∫ ∞

0

dx xν−1e−x (4)

The Γ-function has the reccurrence relation Γ(ν + 1) = νΓ(ν) and the special values

Γ(1) = 1 Γ(1
2
) =

√
π (5)

• The gν(z) function has the Taylor series

gν(z) ≃ z +
z2

2ν
+
z3

3ν
+
z4

4ν
. . . (6)

• The value at z = 1 is given by the Riemann zeta function ζ(ν)

gν(1) =
∞∑
n=1

1

nν
≡ ζ(ν) ν > 1 (7)

Special values of the zeta function are

ζ(2) =
π2

6
≃ 1.64493 ζ(4) =

π4

90
≃ 1.08232 ζ(6) =

π6

945
≃ 1.01734

ζ(3
2
) ≃ 2.6123 ζ(5

2
) ≃ 1.34149 ζ(7

2
) ≃ 1.12673

(8)

and finally
ζ(3) ≃ 1.20206 ζ(5) = 1.03693 ζ(7) ≃ 1.00835 (9)



Solution

(a) The single particle energy is

ϵ = ℏΩ(nx + ny + nz +
3

2
) ≃ ℏΩ(nx + ny + nz) . (10)

The number of states less than ϵ is Σ(ϵ):

Σ(ϵ) =

∫ ϵ

0

g(ϵ′)dϵ′ =

∫ ϵ/ℏΩ

0

dnx

∫ nx

0

dny

∫ ny

0

dnz =
1

6

ϵ3

(ℏΩ)3
(11)

Differentiating with respect to ϵ produces the result.

(b) he critical temperature Tc is found when NT (z = 1, Tc) = N where

NT (z, Tc) =

∫ ∞

0

g(ϵ)dϵ

z−1eβϵ − 1
. (12)

Taking into account the density of states from (a), we find

N =
ζ(3)

β3
c (ℏΩ)3

, (13)

and

kBTc = ℏΩ
N1/3

ζ(3)1/3
(14)

(c) Below the critical temperature, the number of bosons in an excited state is given by

Nex = NT (1, T ) =

∫ ∞

0

g(ϵ)dϵ

eβϵ − 1
=

ζ(3)

β3(ℏΩ)3
, (15)

and comparing this wit Eq.(4), we find

Nex = N

(
T

Tc

)3

(16)

(d) The total energy of the gas in a BEC phase is

E =

∫ ∞

0

ϵg(ϵ)dϵ

eβϵ − 1
=

π4

30β4(ℏΩ)3
, (17)

and the specific heat is given by

Cv =
∂E

∂T
= 4

E

T
. (18)

On the other hand Cv = T ∂S
∂T

, and hence

S =
4

3

E

T
(19)



(e) In this case ϵ0 = −U , so the fugacity at the critical point is z = e−βU , and the condition
for the BEC reads as

NT (e
−βU , Tc) =

(
kBTc
ℏΩ

)3

g3(e
−U/kBTc) = N. (20)



Statistical Mechanics 2
Classical Thermodynamics of Diatomic Molecules

Consider an ideal gas in contact with a reservoir at temperature T consisting of N diatomic
molecules, consisting of two non-identical atoms of similar mass. The total mass of the
molecule is M and the moment of inertia I. The Langrangian of an individual molecule is
thus

L =
1

2
MṘ2

0 +
1

2
Iθ̇2 +

1

2
I sin2 θ ϕ̇2 (1)

Here R0 is the position of the center of mass and θ and ϕ are the angular coordinates of the
rotation (shown below).

(a) (8 points)

(i) Determine the classical Hamiltonian for a single molecule.

(ii) Determine the classical rotational partition function by integrating over the ap-
propriate phase space. Determine the corresponding rotational contribution to
the free energy, energy, and entropy of the gas.

(b) (8 points) Next treat the rotations of the molecule quantum mechanically as opposed
to classically.

(a) Determine the quantum rotational partition function of the diatomic molecule.

(b) Approximately evaluate the sum over rotational states with using the Euler-
Maclurin formula:

n∑
i=m

f(i) ≃
∫ n

m

dxf(x) +
f(n) + f(m)

2
+O(f ′(n)) (2)

What is the condition on the temperature, so that replacing the sum by an integral
is approximately valid?

(c) Find the first quantum correction to the classical result for the energy of the
diatomic gas.



(c) (2 points) Now suppose the molecule has a small permanent electric dipole moment d,
directed along the axis of the molecule (see above). This adds an interaction term to
the classical Hamiltonian in the presence of an electric field

∆U = −d ·E. (3)

Here E = E ẑ is uniform external field, which can be considered weak. As a function of
the applied field, determine the electrical polarization of the gas, defined as P ≡ N ⟨d⟩.

(d) (2 points) If the electric field is slowly increased from zero to Emax, how much heat
flows into or out of the gas. Give a qualitative explanation for the sign of the heat
flow.



Soluton

(a) The Hamiltonian is

H =
P 2

0

2m
+

(
p2θ
2I

+
p2ϕ

2I sin2 θ

)
= Htrans +Hrot (4)

The partition function is

Z =
ZN

1

N !
Z1 =

∫
d3R0d

3P0

(2πℏ)3

∫
dθdpθ
(2πℏ)

∫
dϕdpϕ
(2πℏ)

e−βH = Z1transZ1rot . (5)

The single particle rotational partition function is just the last piece

Z1rot =

∫
dθdpθ
(2πℏ)

∫
dϕdpϕ
(2πℏ)

e−βHrot , (6)

where the Hrot is the part that depends on θ and ϕ. Minus free energy (by T ) is lnZ:

−F
T

= lnZ = ln(ZN
1trans/N !) +N lnZ1rot ≃ N ln(Z1trans/N) +N lnZ1rot (7)

The first term is the translational free energy and the rotational contribution is the last
term. The rotational free energy per particle is

F1rot = −T lnZ1rot (8)

Performing the integrals and pθ and pϕ using the results for Gaussian integrals∫ ∞

−∞
e−x2/2σ2

=
√
2πσ2 , (9)

we find
Z1rot =

1

(2πℏ)2

∫
dθdϕ

√
2πIT

√
2πI sin2 θT =

IT

ℏ2

∫
sin θdθ =

2IT

ℏ2
(10)

In the last part of this probelem the integral over θ is modified. Then we can evaluate the
contribution to the rotational free energy from a single particle

F1rot = = −T ln

(
2IT

ℏ2

)
. (11)

For N particles, you can just multiply by N as the free energy is extensive and the particles
are independent.

The mean rotational energy of one particle is given by

⟨ϵrot⟩ = −∂ lnZ1rot

∂β
= T (12)



For N particles, just multiply by N .

Differentiating we find the rotational entropy from a single particle

S1rot =−
(
∂F1rot

∂T

)
, (13)

= lnZ1rot + T
∂

∂T
lnZ(T ) , (14)

= ln

(
2IT

ℏ2

)
+ 1 . (15)

Again for N particles, you can just multiply by N .

(b) If we treat the rotations quantum mechanically

Z1rot =
∑
ℓ,m

e−βϵℓ =
∑
ℓ

(2ℓ+ 1)e−βℏ2ℓ(ℓ+1)/2I , (16)

where the energy levels of a rigid rotor are

ϵℓ =
ℓ(ℓ+ 1)ℏ2

2I
. (17)

Using the required summation formula

Z1rot =

[∫ ∞

0

(2ℓ+ 1)e−βℏ2ℓ(ℓ+1)/2I

]
+

1

2
(18)

= −2Ie−βℓ(ℓ+1)

ℏ2β

∣∣∣∣∞
0

+
1

2
(19)

=
2I

βℏ2
+

1

2
(20)

Then using for large a, log(a+ b) ≃ ln(a) + b/a,

lnZrot ≃ log

(
2I

βℏ2
+

1

2

)
= log

(
2I

βℏ2

)
+
βℏ2

4I
(21)

Then evaluating the shift we find

⟨ϵrot⟩ = −∂ lnZ
∂β

≃ T − ℏ2

4I
. (22)

The classical approximation is valid when the spacing between energy levels is small com-
pared to T . For this to be valid we need

T ≫ ℏ2

2I
, (23)

i.e. the correction to ϵrot of part (a) should be small.



(c) The integral over θ in part (a),
∫
sin θdθ = 2 is replaced with

Zθ =

∫
sin θdθ eβdE cos θ (24)

stemming from the additional interaction Hamiltonian, Hθ = −dE cos θ. This partition
function describes the orientation θ of the molecule and all other coordinates can be ignored.

We expanded Zθ to quadratic order in the electric field and use that〈
cos2 θ

〉
=

1

3
, (25)

to find
Zθ(E) ≃ 2(1 +

(βdE)2

6
) lnZθ(E) ≃ const +

(βdE)2

6
. (26)

The polarization is related to the mean energy

⟨ϵθ(E)⟩ = −⟨dz⟩E . (27)

So computing the mean energy

⟨ϵθ(E)⟩ = −∂ lnZ
∂β

= −(dE)2

3T
. (28)

The polarization is thus

Pz(E) =
N

3T
d2E . (29)

(d) Then
∆U = Qin +W . (30)

We have the change in energy per particle

∆U = ⟨ϵθ⟩ = − 1

3T
(dEmax)

2 . (31)

The work done per particle is

W = −
∫ Emax

0

dz(E)dE = − 1

6T
(dEmax)

2 , (32)

and then
Qin = −(dEmax)

2

6T
. (33)

Qualitatively the entropy goes down as the molecule becomes increasingly locked towards
the pole of the sphere, rather than fully exploring the angular phase space. Thus the heat
flow Qin = T∆S is negative.
Discussion: We offer two ultimately equivalent ways to solve this problem.
(i) The work done on the gas is the change in its free energy at constant temperature:

W = ∆F = −T (lnZθ(Emax)− lnZθ(0)) = −(dE)2

6T
. (34)

Then Q = T∆S = ∆U −∆F = −(dEmax)
2/6T , reproducing the same result.

(ii) By computing T∆S = −T∂∆F/∂T = −(dEmax)
2/6T we find the same result.



Statistical Mechanics 3
Brownian motion of a Cylinder

A vertical cylinder with the walls kept at a constant temperature T , is closed with a
heavy piston of mass M , as shown in the Figure, and contains N ≫ 1 atoms of an ideal
monatomic gas. All other notations in the Figure are self-explanatory.
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Heavy piston 

 

 A vertically positioned cylinder, whose walls are kept at constant 
temperature T, is closed with a very heavy piston of mass M (see Fig. on the 
right), and contains N >> 1 molecules of an ideal gas. Neglecting the 
external pressure, and the friction between the piston and the cylinder’s 
walls, calculate: 

 A (1 point) the equilibrium position x0 of the piston; 

 B (2 points) the frequency of small oscillations of the piston near x0; 

 C (3 points) the r.m.s. value x of the piston’s thermal fluctuations. 

 D (4 points) Now let the piston, moving with velocity u, also experience a drag force with the 
statistical average F = -u. Use this relation and the fluctuation-dissipation theorem to re-derive the 
answer to question C. 

 E (6 points) The drag force, mentioned in question D, may arise due to the molecules reflecting 
from the moving piston. Assuming that the velocity u of the piston is much lower than the typical 
molecular velocity, use the elementary kinetics and statistics of the ideal gas to calculate the drag 
coefficient .  

 F (2 points) Formulate quantitatively the conditions of validity of your results. In particular, what 
is the condition that the oscillation process is isothermal? 

 

g

M

A

x

T

N

Neglecting external (atmospheric) pressure and the friction between the piston and the cylin-
der’s walls, calculate:

(a) (2 pts) Equilibrium position x0 of the piston.

(b) (4 pts) Frequency ω0 of small oscillations of the piston around the equilibrium position
assuming that the gas maintains the temperature T during the oscillations.

(c) (4 pts) R.m.s. value ∆x of thermal fluctuations of the piston’s position under the
isothermal assumption as in part (b).

(d) (5 pts) If the piston moves with a small but finite velocity u, reflection of the gas
atoms from it produces the friction force F = −ηu acting on the piston. Find the friction
coefficient η. (Hint: An atom of mass m with the x-component vx of velocity that approaches
the slow-moving heavy piston, changes the piston momentum by ∆p = 2m(vx − u) upon
reflection. Average this result over the Maxwell distribution.)

(e) (5 pts) As derived in previous parts, the piston moves as a damped harmonic oscillator.
In equilibrium at finite temperature T , in addition to the “usual” forces discussed above,
collisions with individual atoms create a random time-dependent force f(t) on the piston
with zero average. The force is δ-correlated in time in the relevant low-frequency range:

⟨f(t)⟩ = 0 , ⟨f(t)f(t′)⟩ = Kδ(t− t′) .

Solve the corresponding equation of motion of the piston in Fourier components. Convert
back to the time domain to find the r.m.s. value ∆x of fluctuations of the piston’s position in
terms of the magnitude K of the random force. Comparing to ∆x found in part (c) establish
the “fluctuation-dissipation” relation between K and the friction coefficient η.



Solution

(a) In equilibrium, from the ideal gas equation

Mg = kBTN/x0 , i.e., x0 = kBTN/Mg .

(b) The oscillation frequency depends on the gas compressibility

ω0 = (κ/M)1/2 , κ = −dF
dx

= −∂P
∂V

A2 .

Under the isothermal conditions,

−∂P
∂V

=
P

V
=

Mg

A2x0
, i.e., κ =

Mg

x0
,

and
ω0 = (g/x0)

1/2 = (M/kBTN)1/2g .

(c) The simplest way to find the magnitude of fluctuations of the piston position is to
take into account that for small fluctuations the piston is effectively a harmonic oscillator
with frequency ω0 and spring constant κ. We know that in equilibrium at temperature T
the average potential and kinetic energies of the oscillator are both equal to kBT/2. Thus,

κ(∆x)2

2
=
kBT

2
,

i.e.,

∆x =
(kBT

κ

)1/2

=
kBT

√
N

Mg
= x0/

√
N .

and we see that, as usual for thermodynamical systems, fluctuations are smaller than the
average values by the factor

√
N .

(d) The total force F produced on the piston can be written as the sum of the forces
F (vx) produced by atoms moving towards the piston with the component of velocity vx:

F =

∫ ∞

0

dvxF (vx) .

Note that one integrates only over the positive values of vx because only those atoms move
towards the piston, not away from it, as the atoms with vx < 0. The force F (vx) is the
change of piston momentum due to collisions over some small time interval ∆t:

F (vx) =
∆pC

∆t
, ∆p = 2m(vx − u) ,

where ∆p is momentum change in one collision, and C is the number of collisions for atoms
moving with vx:

C = nAρ(vx)vx∆t ,



where n is the total gas concentration, vx∆t is the length of the interval of coordinate x from
which the atoms with vx reach the piston during an arbitrary time interval of duration ∆t,
and ρ(vx) is the Maxwell distribution which gives the fraction of the atoms with vx out of
the total n:

ρ(vx) =
(λ
π

)1/2

e−λv2x , λ ≡ m

2kBT
.

Since the quantities we need to average depend only on the x-component of velocity, we can
keep in mind only that part of the Maxwell distribution.

Collecting everything and evaluating the standard simple integrals, we have:

F = 2mnA

∫ ∞

0

dvx(vx − u)vxρ(vx) = nkBTA− unA
(2mkBT

π

)1/2

.

The first term here is the usual static pressure of an ideal gas, whereas the second term
describes the dissipative force with the friction coefficient

η =
N

x0

(2mkBT
π

)1/2

=Mg
( 2m

πkBT

)1/2

.

(e) Equation of motion of the damped harmonic oscillator has the usual from in the
frequency domain:

−ω2x− iνωx+ ω2
0x =

f(ω)

M
, ν ≡ η/M ,

where f(ω) is the Fourier transform of the random time-dependent force on the oscillator:

f(ω) =

∫
dtf(t)e−iωt , ⟨f(ω)f(ω′)⟩ = 2πKδ(ω + ω′) ,

where the last relation follows directly from the force correlator in the time domain. Imme-
diate solution of the equation of motion gives:

x(ω) =
f(ω)

(−ω2 − iνω + ω2
0)M

we find the magnitude of the fluctuations of x:

⟨x2(t)⟩ = 1

4π2

∫
dω⟨x(ω)x(ω′)⟩ei(ω+ω′)t =

K

2π

∫
dω

|ω2 + iνω − ω2
0|2

.

Evaluating this integral with the residue theorem, one gets:

⟨x2⟩ = K

2νM2ω2
0

=
K

2ηMω2
0

.

Comparing this expression for coordinate fluctuations to the equilibrium result obtained in
part (c) one gets the following fundamental relation between the magnitude of the random
“Brownian” force and the friction coefficient:

K = 2kBTη .


