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Introduction 

Ignoring model uncertainties, epistemic and/or aleatory, may overestimate the goodness-

of-fit or, validity of a groundwater model. As a remedy, multiple models should be developed 

and their validity be assessed. Typically, validation involves quantifying the level of agreement 

between the deterministic observed data and their corresponding model-simulated values. Here, 

an alternative, non-deterministic approach called the “area metric” was adopted for the validation 

assessment. This metric quantifies the level of disagreement between the distributions of the 

observed data and that of the model-simulated values. The application of the area metric-based 

multi-model validation assessment was demonstrated using a case study of groundwater flow 

simulation model of the municipal landfill in the Town of Brookhaven, NY. 

Model Uncertainties  

Models offer a powerful, low-cost learning environment to test theories that enhance our 

understanding of the real-world systems (Bredehoeft, 2005). In the field of hydrogeology, 

models are commonly used either (i) to characterize the hydrogeologic regime of the study area, 

(ii) to augment conceptual understanding of its functioning, (iii) to organize the different types of 

data collected about the hydrogeologic system, (iv) to make predictions about its future behavior, 

and/ or (v) to gauge its response to changes in the normal conditions, to extreme or sudden 

stresses, or to remedial measures (Anderson and Woessner 1994, p. 4-5). 

 

A key challenge in the modeling of groundwater flow systems is to deal with the 

uncertainties associated with their configuration. Model uncertainty is not only associated with 

the inputs and the parameter values that enter into a model, but also with the model’s conceptual 

and mathematical structure (Neuman, 2003). Likewise, model uncertainty is divided into three 

classes – input uncertainty, parameter uncertainty, and conceptual uncertainty (Beven, 2012; 

Refsgaard et al., 2006). Another type of classification is based on the nature of uncertainty and it 

focuses on the thematic causes of the rise of different uncertainties. Here, the model uncertainty 

is divided into two classes – epistemic uncertainty and aleatory uncertainty.  

 

1. Epistemic uncertainty (EU) arises because of the absence or incompleteness of knowledge 

about the characteristics and the behavior of hydrogeologic system being modeled. The 

knowledge deficiency could result from measurement uncertainty, non-detects, data 

censoring, missing values, use of surrogate data, imperfections in scientific understanding, 

rounding error, intermittent measurement of periodic processes, subjective judgments, and / 

or, ambiguities (Oberkampf et al., 2002).  

 

2. Aleatory uncertainty (AU) arises because of the effect of chance and it is a function of 

natural stochasticity of the system. The natural stochasticity in the system could result from 

the inherent variability of the system, or environmental or structural variations across space 
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or thorough time, or heterogeneity among components, external input data and functions, 

parameters, and / or model structures (Oberkampf et al., 2002).   

Multi-Model Validation Assessment 

Given model uncertainties, restricting the modeling exercise to a fixed, singular model 

limits the model’s ability as a decision-support tool. Instead, multiple models, based on varying 

combinations of the inputs, parameters, and conceptualizations should be developed and 

evaluated. This reduces the chances of model over-fitting that, in turn, reduces the chances of 

rejecting a valid model (Type I error) as well as the chances of failing to reject an invalid model 

(Type II error) (Neuman and Wierenga, 2003).  

 

Given a set of multiple models, a modeler can perform “multi-model analysis” to 

evaluate the models’ goodness-of-fit, to the real-world system or, their representativeness. The 

process of evaluation of a model’s representativeness is generally referred to as model 

“validation” (Law and Kelton, 2000, p. 264). The simplest form of model validation is to 

measure the level of agreement between the scalar, deterministic, observed data and their 

corresponding model-simulated values. Different multi-model analyses, such as information 

criteria-based techniques (Poeter and Anderson, 2005), multi-model averaging (Ye et al., 2010), 

multi-objective optimization (Yapo et al., 1998), multi-objective clustering (Handl and Knowles, 

2005), and Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Freer, 2001) 

have been adopted in the literature.  

 

An alternative validation assessment approach called the “area metric” facilitates non-

deterministic validation assessment. In this approach, the level of disagreement is calculated 

between the “distributions”, specifically, the empirical cumulative distribution function (ECDF) 

derived from the observed data and the ECDF derived from the model-simulated values. For 

instance, Figure 1 shows four ECDFs; three represent the ECDFs derived from the model-

simulated data from three different models of the same system, while one ECDF (with solid 

circles) represent the observed data. Notice that the model ECDFs occupy different positions on 

the horizontal axis; some are placed closer to the observed data ECDF than others. 

Correspondingly, the value of the area metric (A), that is, the area of the space between a model 

ECDF and the observed data ECDF is different for different models. In this figure, AModel 1 < 

AModel 2 < AModel 3. 
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Figure 1: The ECDF of the observed data (solid circle) and the ECDF of the simulated output 

from 3 distinct models; Model 1 is represented by hollow circles, Model 2 by hollow 

triangles, and Model 3 by hollow squares 

The area metric approach disaggregates both types of model uncertainties, epistemic and 

aleatory. The spread of distributions along the horizontal axis represents epistemic uncertainty, 

while the dispersion within a given ECDF represents aleatory uncertainty; the aleatory 

uncertainty is embedded within each distinct ECDF, as seen in the figure above. The area metric 

is mathematically well-behaved and is expressed in the same units as that of the observed data 

(Ferson et al., 2008). 

Objective and Scope  

I adopted an area matric-based multi-model validation assessment to evaluate the 

representativeness of groundwater flow simulation models. I hypothesized that this approach 

facilitates a robust multi-model analysis that allows selection of, from a model space, those 

models that are better representations of the real-world groundwater flow system. The 

application of this approach was demonstrated for a case study of groundwater flow simulation 

model being developed for the municipal landfill site in the Town of Brookhaven in Suffolk 

County, New York (“the landfill model”).  

Methods 

361 different versions of the landfill model, with varying model configurations, were 

generated. Each model was a unique combination nine, pre-selected variable model features 

(Table 1). 8 of these variable features represented epistemic model uncertainties. The variations 

in these features were represented by different states, usually two or three in number. The 

remaining variable feature represented the aleatory uncertainty associated with the landfill 

model, that is, it represented the natural fluctuation of water table from high, to median, to low 

levels. Explanation of these variables was beyond the scope of this study. 
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Code Variable Feature  State 1 State 2 State 3 

A Bottom of layer 1  Uniform 

thickness 

Interpolated surface -- 

B Bottom of layer 2  Constant slope Interpolated surface -- 

C Extent of the PSU  2-zone 3-zone -- 

D Recharge (regional) Yes No -- 

E Recharge (local) Natural Via Recharge Basins Zero recharge 

F Stream segmentation Yes No -- 

G Kh – UGA (ft/d) High Medium Low 

L1 300 250 200 

L2 250 200 150 

L3 200 150 100 

H* Constant head boundary at 

the northern edge  of the 

model (feet) 

42 40 38 

I Top surface of the PSU  Constant slope Interpolated surface -- 

Table 1: Variable features and their states (*represents aleatory uncertainty; UGA = Upper 

Glacial aquifer, PSU = potentially semi-confining unit)  

The models were simulated as three dimensional, steady-state, finite-difference 

groundwater flow simulations using Visual MODFLOW v. 4.2.  

 

The observed data was derived from the 133 head observation wells distributed across the 

study area and screened in different aquifer units (the Upper Glacial aquifer or the Magothy 

aquifer) at different depths. The ECDFs of the observed data were discrete step functions with 

three steps. These steps represented the maximum, the median, and the minimum head 

observations made at each well. 133 observation data ECDFs were generated in this manner.  

 

The simulated data ECDF was generated by simulating each model three times for three 

water table conditions – high, median, and low. The model configurations remained fixed, only 

the values of the aleatory variable (H) were changed from 42’ to 40’ to 38’ feet to represent the 

fluctuation in the water table. Three simulated head values were generated upon simulation, one 

per model iteration. These values were then collated to form the simulated data ECDF for a 

given well. This process was repeated for all 133 head observation wells. 133 simulated data 

ECDFs, one for each observation well, were generated in this manner.  

 

The value of the area metric (A) was calculated by comparing the observed data ECDF 

with its corresponding simulated data ECDF for a given well. This process was repeated for each 

of the 133 individual head observation wells for a given model. The resultant 133 A values were 

then collated into a model ECDF. Each model ECDF was compared with a reference model 

ECDF to generate an overall area metric (A*) value (the reference model is a hypothetical model 

where A= 0 for all the head observation wells). This process was repeated for all 361 models to 

generate 361 A* values. The models were then arranged in an ascending order (from smallest to 

largest) of their A* values.  
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Results 

The results were graphically summarized in a meta-distribution whose elements are the 

362 model ECDFs, including 361 model-ECDFs (in black) and the reference ECDF depicted as a 

spike distribution at 0 feet (in red) (Figure 2a). Each model-ECDF is generated from 133 A 

values calculated of the 133 head observation wells for the given model. 159 models were 

rejected due to the violation of condition of monotonicity, while 202 models were retained for 

further analysis. Discussion on montonicity is beyond the scope of this paper. The following 

results are derived from the retained (202) models. For example, Figure 2b shows the revised 

meta-distribution after the removal of rejected models’ ECDFs. It can be observed that certain 

model ECDFs appear to be closer to the reference ECDF. Also, the dispersion within an 

individual model ECDF indicates that different A values were calculated for different head 

observation wells.  

 

   
Figure 2: Meta-distribution of (a) the model ECDFs (in black) and the reference model (in red), 

(b) revised meta-distribution (horizontal axis in feet, vertical axis is cumulative probability) 

The smallest A* value was 0.79 feet (model #266), while the largest A *value was 7.39 

feet (model #287). The median A* value was 1.66 feet, the mean A* value was 3.17 feet with 

one standard deviation of 2.55 feet. Models with smaller A* value show less disagreement with 

the observed data and therefore were deemed to have higher validity than the models with larger 

A* values. 

 

Figure 3 shows the vertical distribution of the average of the A values with respect to the 

screen depth of the head observation wells. The figure shows that the average A* values of the 

shallow wells were spread between 0 and 5 feet with clustering of values between 3 and 4 feet. 

The intermediate and deep wells had average A values between 2 and 4 feet. 70 of the 133 HOB 

wells were screened at the depths between 20 and -20 feet to the mean sea level (msl), and a 

dense cluster of values was observed at those depths. This figure indicated that the A values 

showed a noticeable geo-spatial distribution along the vertical extent of the model domain.  
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Figure 3: Vertical distribution of the average A values relative to well depths (values in feet) 

The differences between the A* values of different states of a given variable were 

statistically compared using one factor unbalanced ANOVA. For example, out of 202 models, 

133 models contained state 1 of variable feature A (A1) in their configuration, while 69 models 

contained state 2 of the same variable (A2). The one-way ANOVA indicated that the difference 

between the A* values of the A1 models and the A2 models was not statistically significant. The 

test indicated that the difference between/among the A* values were statistically significant for 

the variable features B, D, and E (Table 2). This suggests that certain state-variable feature 

combinations influenced the representativeness of the model more than other combinations. 

Sates of variable features F value Pr (>F) 

A1A2 0.793 0.3743 

B1B2 9.3931 0.002479*** 

C1C2 1.3803 0.2415 

D1D2 2638.2 2.2e-16*** 

E1E2E3 28.291 1.53e-11*** 

F1F2 1.1236 0.2904 

G1G2G3 0.9196 0.4004 

I1I2 0.7059 0.4018 

Table 2: Results of the one-way unbalanced ANOVA (*= p<0.5, **=p<0.01, ***=p<0.0001) 

Table 3 shows the model configurations of the top 10 models whose A* values were the 

smallest. Table 4 shows the sort of these top 10 models according to their constituent state-

variable feature combinations for each variable feature. For example, 3 out of the top 10 models 

contained state 1 of the variable feature A, while 7 models contained state 2 of the variable 

feature. It was found that – A2 > A1 models, C2 > C1 models, D1 >> D2 models, and F1 > F2 
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models. No noticeable difference was found in other state-variables. This result suggests that 

certain state-variable feature combinations appeared more commonly in the top 10 models than 

certain other combinations. This is useful in streamlining the pool of potential model 

configurations.  

Model Variable feature combinations A* (ft) 

266 A1 B1 C1 D1 E1 F1 G1 I1 0.7907 

252 A2 B2 C2 D1 E3 F1 G3 I1 0.9226 

240 A2 B2 C2 D1 E2 F1 G3 I1 0.9279 

257 A2 B2 C2 D1 E3 F2 G2 I2 0.9493 

245 A2 B2 C2 D1 E2 F2 G2 I2 0.9494 

228 A2 B2 C2 D1 E1 F1 G3 I1 0.9570 

154 A2 B1 C2 D1 E1 F1 G1 I2 0.9747 

49 A1 B1 C2 D1 E2 F1 G1 I1 0.9966 

27 A1 B1 C1 D1 E3 F1 G2 I1 0.9972 

172 A2 B1 C2 D1 E2 F2 G1 I2 0.9992 

Table 3: Configuration of the top 10 models with smallest A* values  

Variable 

feature 

States of the variable feature 

State 1 State 2 State 3 

A 3 7 -- 

B 5 5 -- 

C 2 8 -- 

D 10 0 -- 

E 3 4 3 

F 7 3 -- 

G 4 3 4 

I 6 4 -- 

Table 4: Sorting of the top 10 models on the basis of their constituent state-variable feature 

combinations for each variable feature  

Discussion 

A common drawback of the traditional model validation methods is that they assume that 

the simulated and the observed data are deterministic quantities that are devoid of uncertainties. 

In the above approach, instead of making this unjustifiable assumption, model uncertainty has 

been explicitly incorporated using multiple model conceptualizations and the representativeness 

of these multiple models is tested over a range of observed data in a tangible manner. In addition, 

the area metric approach acts as a confidence building exercise that helps to reduce the model 

users’ uncertainty about the usefulness of the model because smaller values of the area metric 

increase our confidence about the operational-replicative validity of the model that, in turn, 

increases our confidence about the conceptual validity of the model. Also, the area metric 

approach enables the modeler to calibrate the concept rather than the commonly used, one-
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dimensional model calibration approach that can only calibrate the parameter to achieve a close 

agreement between the observed and the simulated data. 

 

The area matric does not indicate absolute validity of the model and it is a measure of 

representativeness with respect to the application domain for which the model has been 

developed. Incomplete, infrequent, missing, and potentially erroneous data make it difficult to 

identify the unique model from the model space, even if theoretically such a model exists. Also, 

it is necessary to separate model’s accuracy from the model’s adequacy to maintain the 

objectivity of the area metric. The area metric approach is applied to a select pool of multiple 

models specified by the modeler. Therefore, the modelers’ knowledge of the numerical methods 

and the hydrogeology of the study area are of seminal importance in configuring these models. 

 

Future work includes (i) using probability bounds analysis (PBA) for further assessment 

of the results, (b) acknowledge and incorporate recognizable errors as models uncertainties, and 

(iii) developing multi-system response quantity validation assessment.  
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