
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Seminars in Cell & Developmental Biology 20 (2009) 1048–1054

Contents lists available at ScienceDirect

Seminars in Cell & Developmental Biology

journa l homepage: www.e lsev ier .com/ locate /semcdb

Review

Proteasomal degradation in plant–pathogen interactions

Vitaly Citovsky a,1, Adi Zaltsman a,1, Stanislav V. Kozlovsky a,
Yedidya Gafni b, Alexander Krichevsky a,∗

a Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
b Department of Genetics, Agricultural Research Organization, P.O. Box 6, Bet Dagan 50250, Israel

a r t i c l e i n f o

Article history:
Available online 6 June 2009

Keywords:
26S proteasome
Ubiquitination
Plant–pathogen interaction
Plant immunity

a b s t r a c t

The ubiquitin/26S proteasome pathway is a basic biological mechanism involved in the regulation of a
multitude of cellular processes. Increasing evidence indicates that plants utilize the ubiquitin/26S pro-
teasome pathway in their immune response to pathogen invasion, emphasizing the role of this pathway
during plant–pathogen interactions. The specific functions of proteasomal degradation in plant–pathogen
interactions are diverse, and do not always benefit the host plant. Although in some cases, proteasomal
degradation serves as an effective barrier to help plants ward off pathogens, in others, it is used by the
pathogen to enhance the infection process. This review discusses the different roles of the ubiquitin/26S
proteasome pathway during interactions of plants with pathogenic viruses, bacteria, and fungi.
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1. Introduction

Plants are constantly exposed to pathogenic microorganisms,
such as bacteria, viruses, and fungi. Like animals, they have evolved
immune responses to combat infection. However, a fundamental
difference between plant and animal immunity is the lack of a

Abbreviations: PCD, programmed cell death; TMV, Tobacco mosaic virus; VIGS,
virus-induced gene silencing; SCF complex, Skp1/Cullin/F-box protein complex;
R protein, resistance protein; RISC, RNA-induced silencing complex.
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somatic adaptive response system and mobile responder cells in
the former: instead, the plant makes use of the innate immune
mechanisms of individual cells and utilizes systemic signals origi-
nating from the site of infection (reviewed in [1]). When a pathogen
invades plant tissue, its components, proteins or nucleic acids,
are recognized by various disease–response mechanisms, such as
antiviral immunity based on small RNAs (reviewed in [2]) or a net-
work of plant disease resistance (R) proteins (reviewed in [1,3]).

Increasing evidence implicates the ubiquitin/26S proteasome
pathway (reviewed in [4])—a basic biological mechanism involved
in the regulation of many of cellular processes, including animal
immunity [5]—in the R-protein-mediated plant immune response
[6–8]. However, the ubiquitin/26S proteasome defense mechanism
does not always function for the benefit of the plant that wields it.

1084-9521/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.semcdb.2009.05.012
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Some pathogens have evolved the ability to subvert the host’s pro-
teasomal degradation pathway to enhance their infection. Here, we
discuss different aspects of the involvement of the ubiquitin/26S
proteasome pathway in interactions of plants with pathogenic
viruses, bacteria, and fungi.

2. Overview of the ubiquitin/26S proteasome pathway

Cellular processes require the removal of proteins that are mis-
folded or foreign, or whose function is no longer required. These
proteins are targeted to proteolytic degradation by tagging them
with polymeric chains of ubiquitin. Ubiquitin is a small protein
composed of 76 amino acids, which is highly conserved among
eukaryotes. Its name reflects its ubiquitous expression in essen-
tially all eukaryotic cells. Ubiquitin tagging and polymerization
occur at lysine residues. The first ubiquitin monomer in the polyu-
biquitin chain attaches to a lysine residue on the target protein,
followed by attachment of additional ubiquitin subunits to lysine
48 of the previously attached monomer. While attachment of ubiq-
uitin monomers through lysine residues 29 and 63 during the
process of polyubiquitination has been reported, it is believed that
this alternative polyubiquitin chain structure is intended for cellu-
lar processes other than protein degradation [9]. Polyubiquinated
proteins are recognized and degraded by the 26S proteasome, con-
sisting of the 19S regulatory particle that recognizes, selects and
binds the polyubiquitinated proteins, cleaves the polyubiquitin
chains and forwards the targeted polypeptide into the lumen of the
20S core particle, where proteolytic degradation takes place [10,11].

Polyubiquitination of a target protein requires ubiquitin-
activating (E1) and ubiquitin-conjugating (E2) enzymes, as well
as ubiquitin ligase (E3) (reviewed in [12]). E1 activates ubiquitin
monomers and transfers them to the conjugating enzyme E2, which
either attaches them to the target protein by itself or is directed to
do so by the E3 ligase. E3 ligases represent the largest and most
diverse group of ubiquitinating enzymes. This diversity makes bio-
logical sense. E3 ligases have evolved to target a wide spectrum of
cellular as well as foreign, e.g., pathogen-derived, proteins destined
for degradation by the 26S proteasome. This diversity of targets
requires a comparable diversity of the E3 ligases that recognize
them. Presently, there are four known E3 ligase families: HECT, SCF,
APC, and RING/U-box, classified based on their subunit composi-
tion and mechanism of action (reviewed in [12,13]), which include
hundreds of protein species. The Arabidopsis genome, for example,
encodes over 1200 different components of the E3 ligase complexes
[13,14]. The base function of E2 enzymes is to carry the activated
ubiquitin moiety to the target polypeptide, and they are therefore
frequently referred to as ubiquitin-carrier (UBC) proteins. Because
E2 enzymes are often targeted to their substrates by the E3 ligases,
they need not be significantly diversified, and only a few dozen
of them are found in the genome of Arabidopsis [13,14]. Finally,
only two genes coding for the E1 enzymes, which catalyze ATP-
mediated ubiquitin activation, are found in the Arabidopsis genome
[13,14], placing the ubiquitin-activating E1 enzymes at the apex
of the E-enzyme hierarchy of diversity, followed by more diverse
E2 enzymes and the highly diverse components of the E3 ligase
complex.

One of the better studied E3 ligases (reviewed in [12]) is the
Skp1/Cullin/F-box protein (SCF) complex [15,16]. Yeast SCF com-
plexes have been extensively characterized, and they consist of a
scaffold protein, Cdc53 or Cullin, a ubiquitin-conjugating enzyme
Cdc34, Rbx1 which helps recruit and activate Cdc34, and Skp1
which recruits the F-box protein (reviewed in [16,17]). F-box
proteins—a highly diversified type of polypeptide with almost 700
predicted members in the Arabidopsis proteome [18]—are respon-
sible for substrate recognition of the SCF complex. The F-box motif
is typically located in the protein’s N-terminal region, and it medi-

ates interaction with the rest of the SCF complex via Skp1, while the
highly variable C terminus of F-box proteins mediates interaction
with the target protein. Thus, by associating with different F-box
proteins, SCF complexes can be targeted to different and specific
substrate proteins [17].

In plants, F-box proteins have been shown to play a key role
in a variety of cellular functions and developmental processes
[15,19–22], and they are also beginning to emerge as a crucial
factor in plant immunity and defense mechanisms [23,24]. A num-
ber of ubiquitin/26S proteasome pathway-related genes are now
known to be involved in plant–pathogen interactions. Below, we
focus on specific examples of how proteasomal degradation is
involved in plant defense responses to pathogens and how some
plant pathogens can take over this component of the host defense
system (summarized in Fig. 1).

3. Proteasomal degradation and plant viral infection

3.1. Proteasomal degradation and R-protein-mediated defense

The plant response to pathogens often relies on the conserved
network of R-proteins (reviewed in [1,3]). Most R-proteins fall into
five distinct classes based on their structural motifs. The N gene of
tobacco (Nicotiana tabacum), mediating the innate plant response
to Tobacco mosaic virus (TMV) [6,25,26], encodes a class 3 R-protein,
defined by leucine-rich repeats, a putative nucleotide-binding site
and an N-terminal region with similarity to the Toll-Interleukin 1
Receptor (TIR) proteins [3,27]. The N gene confers resistance to TMV
by inducing a hypersensitive response and necrosis, which confines
the virus to the local site of infection [26].

One of the key components acting downstream of multiple R-
proteins, including the tobacco N gene product, and upstream of
peroxide-induced cell death, is RAR1, implicated in defense mech-
anisms in a variety of plant species [28–30]. The RAR1 gene of
Nicotiana benthamiana is required for functionality of the N-gene-
mediated defenses [6]. RAR1 interacts with SGT1, a conserved
component of the SCF complex, which binds to Skp1 [31,32]. All
three proteins, RAR1, SGT1 and SKP1, are also present in a sin-
gle complex in planta [6]. Both RAR1 and SGT1 interact in vivo
with CSN4, one of the components of the COP9 signalosome, a
complex involved in protein degradation via the ubiquitin/26S
proteasome pathway [33]. SCF and COP9 complexes act in con-
cert, and COP9 has been shown to play a key role in mediating
the E3 ubiquitin ligase activity of SCF [34]. Suppression of either
SGT1, SKP1—and thus the entire SCF complex—or the COP9 sig-
nalosome using virus-induced gene silencing (VIGS) in transgenic
N. benthamiana plants carrying the tobacco N gene abolished the
normal N-gene-mediated response to viral infection. Since the SCF
and COP9 complexes are directly involved in the ubiquitin/26S
proteasome pathway, it is likely that the resistance mediated
by the N gene is based on SCF/COP9 targeting of specific cel-
lular proteins, such as negative regulators of defense response
and/or apoptosis inhibitors, directing them to proteasomal degra-
dation and allowing initiation of the anti-pathogen response and
programmed cell death (PCD) of the infected cells. Notably, the
N-gene-mediated resistance mechanism may be conserved among
different plant species, as overexpression of Arabidopsis SGT1 was
able to rescue N-gene responses in SGT1-suppressed N. benthamiana
plants [6].

3.2. Proteasomal degradation of viral movement proteins

Plant viruses spread from cell to cell via the plasmodesmata, the
plant’s intercellular connection. Viral movement through plasmod-
esmata is facilitated by virus-encoded movement proteins (MPs)
(reviewed in [35–37]). While MP sequences are not significantly
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Fig. 1. Summary of the key processes involving proteasomal degradation in plant–pathogen interactions. Viruses: Tobacco mosaic virus (TMV) intrusion activates the N gene-
mediated response, which involves the SCF complex. The TMV movement protein (MP) and misfolded coat protein (CP) are polyubiquitinated and degraded by the proteasome.
The TMV coat protein (CP) is also monoubiquitinated, but the role of this monoubiquitination remains obscure. Poleroviral RNA silencing suppressor P0 is an F-box protein
that targets AGO1, a key component of the RISC complex, and destabilizes via the SCFP0 pathway, thereby inhibiting silencing of the viral RNA by the host. Bacteria: uncoating
of the Agrobacterium T-complex prior to T-DNA integration and/or expression is promoted by the bacterial F-box protein VirF, exported into the host cell with via the type
IV secretion system (T4SS). VirF binds the host VIP1 protein which, in turn, associates with the T-complex packaging protein VirE2, these interactions direct VIP1 and VirE2
to degradation by the 26S proteasome via the SCFVirF pathway. Pseudomonas syringae AvrPtoB effector protein, exported into the host cell via the type III secretion system
(T3SS), is detected by the plant cell Pto resistance protein, conferring resistance. In susceptible plants which lack Pto, AvrPtoB interacts with ubiquitin and, presumably, the
host proteasomal degradation machinery to inhibit PCD response and promote disease progression. An additional P. syringae effector protein, HopM1, destabilizes a vesicle
trafficking-related protein AtMIN7, contributing to suppression of host responses to the infection. Fungal pathogens are counteracted by a general immune defense F-box
protein OsDRF1, which likely functions in the SCFDRF1 complex. For further details, see text.

conserved among different viral families [38], many MPs possess
a set of common properties, including the ability to bind single-
stranded nucleic acids, interact with the cytoskeleton and increase
the size-exclusion limit of plasmodesmata to allow transport of
MP-viral genomic RNA complexes through these intercellular con-
nections (reviewed in [35–37]). One of the models for MP function
involves binding to the viral genome, docking it to plasmodes-
mata, and then facilitating its transport into the neighboring cell
by increasing the plasmodesmal size-exclusion limit (reviewed in
[35–37]).

MPs of several plant viruses may be targeted by the proteaso-
mal degradation machinery of the host cell. For example, treatment

of virus-infected tobacco protoplasts with proteasomal inhibitors
MG115 or clasto-lactacystin-�-lactone resulted in the accumula-
tion of polyubiquitinated forms of MP, indicating involvement of
the 26S proteasome in MP turnover [39]. Similarly, MP of Turnip
yellow mosaic virus (TYMV) has been shown to be a substrate for
polyubiquitination [40].

What remains unclear, however, is whether it is the plant
defense response or the virus itself that triggers proteasomal degra-
dation of MPs. On the one hand, the MP is central for the spread of
viral infection, which makes it an obvious target for the host defense
machinery. On the other hand, MP accumulation is detrimental to
the host, for example, due to its deposition in and interference
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with plasmodesmata [41] and/or disruption of the cell endoplas-
mic reticulum [42]. Removal of excess MP, therefore, is important
to maintain host viability, which is required for persistent viral
infection. In this case, targeting of excess MP to the ubiquitin/26S
proteasome pathway may represent an example of exploitation of
the host cellular pathway by the virus for effective invasion. Inter-
estingly, suppression of the host ubiquitination machinery leads to
increased plant resistance to TMV infection, supporting the notion
that MP-targeted proteolysis is beneficial to the pathogen. Pertur-
bation of the plant ubiquitin system by expression of a ubiquitin
variant with a lysine-to-arginine substitution at position 48 inhib-
ited TMV infection [43], suggesting that the host ubiquitin/26S
proteasome pathway may, in fact, assist viral attack.

While plant viruses move locally from cell to cell via plas-
modesmata in non-vascular tissues, systemic, long-distance viral
transport occurs though the phloem (reviewed in [35,44]). This
systemic movement is impaired by inhibition of the 26S protea-
some. Specifically, VIGS-mediated silencing of RPN9, one of the
26S proteasome subunits, has been shown to inhibit the sys-
temic spread of two taxonomically distinct viruses, TMV and Turnip
mosaic virus (TuMV), in N. benthamiana [45]. RNP9 is involved in
auxin transport and brassinosteroid signaling, two processes that
are crucial for vascular tissue formation. Thus, the effect of the ubiq-
uitin/26S proteasome on viral systemic movement may be indirect,
via developmental disruption of the viral spread conduit, the host
vasculature [45].

Unlike TMV MP, TMV coat protein (CP) is only monoubiqui-
tinated [46]. Because just a minute portion of the total TMV CP
that accumulates in the infected cells undergoes monoubiquitina-
tion [46], and poly-, rather than monoubiquitination, is required
for protein targeting to proteasomal degradation, CP monoubiq-
uitination may not be important for CP turnover. Instead, it may
play a regulatory role in an as-yet undetermined event during the
TMV–host interaction. At the same time, misfolded TMV CP is mas-
sively polyubiquitinated in tobacco cells, apparently directing it to
the conventional proteasomal degradation pathway [47].

3.3. Involvement of proteasomal degradation in the activity of
viral RNA-silencing suppressors

In addition to R-protein-mediated immunity, plants have
evolved another innate immune response to invading viruses,
which is based on post-transcriptional RNA silencing [48–51]. In
most cases, this response is induced by viral genomic or transcript
RNA molecules, and it involves conversion of single-stranded RNA
into double-stranded RNA by RDR6 (reviewed in [52–54]). Double-
stranded RNAs are then processed by the cellular machinery to
produce small interfering (si) RNAs that are incorporated into RNA-
induced silencing complexes (RISCs), within which siRNAs direct
the cleavage of the complementary viral transcripts [55,56].

To counteract the plant’s antiviral response, many viruses
encode suppressor proteins that block host RNA silencing by target-
ing different steps of the silencing pathway [57–60]. One of these
viral RNA-silencing suppressors, the P0 protein of poleroviruses,
is an F-box protein that interacts with the host cell’s SKP1 pro-
tein. This interaction occurs via the P0 F-box domain, and it is
required for the biological activity of P0 [61], indicating that this
viral silencing suppressor may function within an SCFP0 complex.
P0 also interacts directly with the key component of the RISC, ARG-
ONAUTE1 (AGO1), destabilizing it [62,63]. Surprisingly, however,
the P0-induced degradation of AGO1 is not affected by the pro-
teasomal inhibitor MG132 [62], leaving the question of the 26S
proteasome’s involvement in P0 activity unresolved. Nevertheless,
the fact that a plant virus has evolved an F-box protein to hijack
the host SCF complexes for suppression of antiviral defense sug-
gests that the cellular SCF pathway not only acts to protect the plant

against viruses (as in the case of the N gene), but is also exploited
by the invading virus to facilitate infection.

4. Proteasomal degradation in fungal and bacterial
infection

4.1. Proteasomal degradation in antifungal defense

Recently, the rice (Oryza sativa) defense-related F-box 1
(OsDRF1) protein has been identified and shown to participate in
plant antifungal defenses [64]. Expression of OsDRF1 is induced
by treatment with benzothiadiazole, a general inducer of the plant
defense response [65–67], as well as by inoculation with the
rice blast fungus Magnaporthe grisea [64]. Importantly, when the
OsDRF1 gene was introduced into the genome of a heterologous
plant species, tobacco the resulting transgenic plants exhibited
enhanced resistance to viral (Tomato mosaic virus, ToMV) and bac-
terial (Pseudomonas syringae) pathogens, indicating the general
nature of OsDRF1’s function in plant defense [64]. OsDRF1 could
potentially represent one of the key regulators of plant immu-
nity, for example, by destabilizing a conserved inhibitor(s) of the
defense response. This idea gains support from the observations
that, in response to salicylic acid treatment or ToMV inoculation,
the expression levels of two general defense-related genes, PR-1a
and Sar8.2b [68], were elevated to a higher degree in OsDRF1-
transgenic tobacco than in the wild-type plants, suggesting that
OsDRF1 enhances the overall responsiveness of plant defense [64].
However, because expression of OsDRF1 was not induced by gen-
eral stress factors, this F-box protein is most likely specific to the
plant’s immune, rather than general, stress responses [64].

4.2. Proteasomal uncoating of Agrobacterium T-DNA

Both animal and plant bacterial pathogens use type III and/or
type IV secretion systems to inject host cells with effector pro-
teins, which often mimic the functions of the eukaryotic factors that
are required for infection and provided by the host cells (reviewed
in [69]). One of Agrobacterium tumefaciens’ effector proteins is an
F-box protein that insinuates itself into the host ubiquitin/26S pro-
teasome pathway and subverts it to enhance infection (reviewed in
[5,69]).

Agrobacterium is a phytopathogenic gram-negative soil bac-
terium that causes crown-gall disease in plants, manifested by
neoplastic growths resulting from integration of transferred DNA
(T-DNA), derived from the bacterial tumor-inducing (Ti) plasmid,
into the plant nuclear genome (reviewed in [70–72]). Besides being
a natural phytopathogen, Agrobacterium is perhaps the most com-
monly used vector for gene transfer into plants, in both research and
biotechnology applications [73], representing a unique example
of natural trans-kingdom DNA transfer. Furthermore, under lab-
oratory conditions, Agrobacterium has the capacity to genetically
transform virtually any eukaryotic cell [74].

Agrobacterium T-DNA transfer is induced by plant-specific sig-
nals, usually wound-released phenolic compounds, that activate
the virulence (vir) gene region on the Ti plasmid. The T-DNA is then
mobilized from the Ti plasmid as a single-stranded DNA molecule
(T-strand) by the VirD1/VirD2 helicase/endonuclease protein com-
plex. The effectors of the T-strand, with a single molecule of VirD2
covalently attached to its 5′ end as well as several Vir proteins,
are introduced into the plant cell via the type IV secretion sys-
tem. In the host-cell cytoplasm, the T-strand is packaged by the
bacterial single-stranded DNA-binding protein VirE2. The resulting
transfer (T) nucleoprotein complex is imported into the host-cell
nucleus via the cellular importin � pathway. The T-complex is
then targeted to the host chromatin and stripped of its protein
components, and the T-strand integrates into the host genome
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(reviewed in [71–73,75,76–79]). The native Agrobacterium T-DNA
encodes a set of plant oncogenes [80] which promote uncontrolled
division of the transformed cells, as well as genes specifying the
production of opines—amino acid and sugar phosphate derivatives
secreted by the transformed cells and utilized almost exclusively by
the Agrobacterium as a carbon and nitrogen source [81]. Different
Agrobacterium strains are classified as octopine or nopaline types,
according to the class of opines encoded by their T-DNA [81].

Nuclear import of the T-complex and its chromatin targeting
are facilitated by the host VirE2 Interacting Protein 1 (VIP1), which
binds to VirE2, importin � and nucleosomes, acting as a molecu-
lar adaptor between the T-complex and, first, the nuclear import
machinery and then, the chromatin [82–86]. Whereas the protein
components of the T-complex, such VirE2 and its associated VIP1,
are critical for its intracellular movement, they become a liability
before integration as they physically mask the DNA molecule. Thus,
once the T-complex reaches the host chromatin, its proteins must be
removed. Recent evidence suggests that another exported Agrobac-
terium effector, VirF, may promote this uncoating. VirF is an F-box
protein that interacts with the plant SKP1 proteins [87,88]. VirF also
binds VIP1 and destabilizes it in plant and yeast cells [88], which are
known to be genetically transformed by Agrobacterium [89,90]. Fur-
thermore, VirF, which does not recognize VirE2, can promote VirE2
destabilization in the presence of VIP1 [88], suggesting that VirF
can destabilize the entire VIP1–VirE2 complex. In yeast, VIP1 and
VirE2 destabilization by VirF is Skp1-dependent as it does not occur
in a skp1-4 mutant [91], indicating that this destabilization occurs
via the SCFVirF pathway [88]. That VirF may help to uncoat the T-
complex docked at the host chromatin is supported by the ability of
VirF to associate simultaneously with purified VIP1, VirE2, single-
stranded DNA and nucleosomes in vitro [82]. The involvement of
the 26S proteasome in Agrobacterium infection is consistent with
the inhibitory effect of the proteasomal inhibitor MG132 on the
transformation process [88].

Historically, VirF, which is encoded by the octopine-type, but
not nopaline-type Agrobacterium strains, has been considered a
bacterial host-range factor [92–94]. For example, VirF enhances
Agrobacterium infectivity in tomato and tree tobacco (Nicotiana
glauca) [94], but it is not required for infection of tobacco or Ara-
bidopsis. Thus, plant species whose infection does not require VirF
may encode F-box protein functions that can substitute for VirF
during transformation. Our recent experiments (AZ, AK, VC, unpub-
lished) have identified such an Arabidopsis F-box protein, which
is induced by Agrobacterium infection and promotes proteasomal
destabilization of VIP1 and VirE2 in yeast and in planta. Collectively,
these data suggest that Agrobacterium has evolved to utilize the host
ubiquitin/26S proteasome system for enhancement of its infectivity
and expansion of its host range.

4.3. 26S proteasome in R-protein-mediated response to
Pseudomonas syringae

Another case of a bacterial effector that is delivered to the
host plant cell and likely participates in proteasomal degradation
is AvrPtoB of P. syringae. This protein is exported from the bac-
terium via the type III secretion system and functions to prevent
the host PCD response to infection (reviewed in [95]). To counteract
AvrPtoB, tomato plants resistant to P. syringae express a native R-
protein, Pto, which recognizes AvrPtoB and elicits a hypersensitive
response, leading to rapid localized PCD which limits the infection.
In the susceptible tomato plants, which lack Pto, AvrPtoB suppresses
PCD, allowing efficient infection and development of the disease
[96,97]. The C-terminal domain of AvrPtoB shares homology with
the RING/U-box family of E3 ubiquitin ligases. It possesses E3 lig-
ase activity in vitro [7], and interacts specifically with the tomato
ubiquitin [8]. Inactivation of the E3 ligase activity of AvrPtoB leads

to its loss of function, and transient expression of such a mutated
AvrPtoB in tomato leaves was unable to suppress PCD. Furthermore,
P. syringae expressing the mutant AvrPtoB lost its anti-apoptotic
ability and exhibited significantly suppressed virulence in tomato
[7].

Yet another P. syringae effector protein exported into the host
cell, HopM1 [98], has been shown to interact with Arabidopsis
immunity-associated (AtMIN) proteins [99]. Transient expression
of HopM1 in N. benthamiana leaves or bacterial infection of
Arabidopsis resulted in reduced levels of the AtMIN7 protein.
Importantly, HopM1 did not affect AtMIN7 transcription, while
the proteasomal inhibitors MG132 and epoxomicin completely
blocked the HopM1-mediated reduction in AtMIN7 protein level
[99]. Thus, HopM1 likely binds and destabilizes AtMIN7 via the
ubiquitin/26S proteasome pathway. Because HopM1 does not share
homology with the E3 ligases, it most probably serves as a molecular
linker between AtMIN7 and the bona fide proteasomal degradation
machinery of the host cell. Interestingly, AtMIN7 may be involved
in the vesicle trafficking system which is linked to the polarized
cell-wall-associated defense in plants [100,101]. Destabilization of
AtMIN7 promoted by HopM1, which also localizes to the host-cell
endomembrane system [99], may therefore disable vesicular traf-
ficking in the host cell, thereby suppressing cellular defenses.

5. Concluding remarks

Plant cell proteasomal degradation pathways may play a dual
role in the infection process (summarized in Fig. 1): they may
represent the host’s defense against the pathogen, as in the case
of tobacco N-gene-mediated resistance, or they may present the
pathogen with an opportunity to enhance its infectivity, as in the
case of proteasomal uncoating of the Agrobacterium T-complex. In
other cases, the beneficiary is less clear: does TMV, the host, or
both benefit from reduced levels of TMV MP following proteasomal
degradation?

This ambivalent role of proteasomal degradation in the plant
defense response may result from the close co-evolution of plants
and their pathogens. It is likely that some 26S proteasome-
based immune responses, initially employed by plants to ward
off invaders, have been subverted by pathogens in the course of
evolution. Interestingly, similar “hijacking” of the ubiquitin/26S
proteasome pathway to circumvent host immune responses is
employed by animal pathogens. Examples of such pathogens
include the human cytomegalovirus (HCMV), whose US11 protein
contributes to proteasomal degradation of major histocompatibil-
ity complex class I molecules, thus evading recognition by the host
immune system [102], or the human papillomavirus (HPV) onco-
protein E6, which promotes proteasomal degradation of the cellular
tumor suppressor protein p53 [103]. So is the 26S proteasome friend
or foe in the plant’s encounter with pathogens? The answer may be:
both.
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