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on the process of Agrobacterium-mediated genetic transformation and on E‘. 2
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has been shown to genetically transform, under laboratory conditions a a ~=

large number of plant species and numerous non-plant organisms,
indicating the truly basic nature of the transformation process. It is
therefore not surprising that Agrobacterium and the genetic transformation
itself have also become the focus of numerous ethical and legal debates.
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Preface

The bacterial origin of crown gall tumors was recognized a hundred years
ago; 70 years later, stable integration of bacterial DNA in the crown gall
cells was discovered, positioning Agrobacterium as the only cellular or-
ganism on Earth that is naturally capable of transferring genetic material
between the kingdoms of life, from prokaryotes to eukaryotes. Since then,
Agrobacterium has faithfully served plant biologists in a uniquely dual
role: as a primary tool for genetic engineering, for both industrial and re-
search applications, and as an extremely useful experimental system for
studies on a wide range of basic biological processes, such as cell-cell rec-
ognition, cell-to-cell transport, nuclear import, assembly and disassembly
of protein-DNA complexes, DNA recombination, and regulation of gene
expression, within plant cells. These studies have uncovered a wealth of
information on the process of Agrobacterium-mediated genetic transforma-
tion and on the bacterial and host cell factors involved in the infection.
Furthermore, Agrobacterium has been shown to genetically transform,
under laboratory conditions, numerous non-plant species, from fungi to hu-
man cells, indicating the truly basic nature of the transformation process. It
is therefore not surprising that Agrobacterium and its ability to produce
genetically modified organisms has also become the focus of numerous
ethical and legal debates. These aspects of Agrobacterium research—its
history, application, basic biology, and sociology, are reviewed in the pre-
sent book. We begin the book with a description of the crown gall disease
that initially attracted scientists’ attention to this microorganism, followed
by a historical essay on highlights of the first 70 years of Agrobacterium
research. The book continues with a description of how Agrobacterium is
used as a tool in plant biotechnology. The next two chapters describe our
knowledge of the Agrobacterium genome gained with the advent of ge-
nomics approaches and place Agrobacterium in the taxonomic context of
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related bacterial species. The main portion of the book, which comprises
11 chapters, provides a detailed review of virtually all molecular aspects of
the genetic transformation process, including chemistry, biochemistry and
molecular biology of host recognition and attachment, production of the
transferable DNA molecule (T-DNA) and secretion of this DNA—together
with bacterial protein effectors—into the host cell, transport of the invad-
ing bacterial DNA-protein complex (T-complex) through the host-cell
cytoplasm into the nucleus and targeting to the host chromatin, and mecha-
nisms and patterns of T-DNA integration into the host genome. Special
attention is paid to a description of the host factors involved in the trans-
formation process, and the biology of the crown gall disease and bacterial
oncogenes that cause these neoplastic growths. The next two chapters
focus on interactions of Agrobacterium with non-plant species, from com-
munication with its sister agrobacteria to fungi, algae, and mammalian
cells, and on horizontal gene transfer from Agrobacterium to plants. The
final two chapters of the book discuss ethical and safety issues associated
with the use of Agrobacterium for interspecies gene transfer and look at
the legal issues surrounding patents that involve Agrobacterium. The result
is a comprehensive book which we hope the readers will find useful as a
reference source for all major—biological, ethical, and legal—aspects of
the Agrobacterium-mediated genetic transformation of plant and non-plant
organisms.

Tzvi Tzfira

July 2007, Ann Arbor

Vitaly Citovsky
July 2007, New York
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Chapter 1

AGROBACTERIUM: A DISEASE-CAUSING
BACTERIUM

Léon Otten', Thomas Burr® and Ern Szegedi’

'Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer
12, 67084 Strasbourg, France; *Department of Plant Pathology, Cornell
University, Geneva, NY 14456, USA; Research Institute for Viticulture
and Enology, P.O. Box 25, 6000 Kecskemét, Hungary

Abstract. The common use of Agrobacterium as a gene vector for plants has somewhat ob-
scured the fact that this bacterium remains an important plant pathogen. Pathogenic strains
of the genus Agrobacterium cause unorganized tissue growth called crown gall or profuse
abnormal root development called hairy root. Agrobacterium tumefaciens induces galls on
roots and crowns of several fruit and forest trees and ornamental plants. A. vitis is responsi-
ble for the crown gall disease of grapevine, while A. rhizogenes induces abnormal rooting
on its hosts. Plants tissues that become diseased undergo physiological changes resulting in
weak growth, low yields or even death of the entire plant. Tumors originate from dividing
plant cells, e. g. from cambium. Thus the cambial region becomes unable to differentiate
into efficient phloem and xylem elements leading to deficient nutrient transport. Symptoms
may appear on roots, crowns and aerial parts of attacked plants (Figure I-1). Tumors are
usually comprised of unorganized tissue, but sometimes they differentiate into roots or
shoots. This depends on the host plant, the position on the infected plant or the inducing
bacterium (Figure 1-2). As indicated by several reviews, crown gall has been a worldwide
problem in agriculture for over hundred years (Moore and Cooksey, 1981; Burr et al., 1998;
Burr and Otten, 1999; Escobar and Dandekar, 2003).
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1 INTRODUCTION

1.1 Strain classification

Early taxonomy distinguished agrobacteria on the basis of their patho-
genic properties. Thus strains causing crown gall were classified as 4. tu-
mefaciens, those inducing cane gall on raspberry (Rubus idaeus) were
described as 4. rubi and hairy root-inducing isolates were allocated to 4.
rhizogenes. Non-pathogenic strains were called 4. radiobacter (Allen and
Holding, 1974). Later, strains were identified on the basis of their bio-
chemical and physiological properties which led to the definition of three
biotypes (Kerr and Panagopoulos, 1977; Siile, 1978). Species- and biotype-
based taxonomies do not coincide (Kersters and De Ley, 1984). Biotype 3
strains were isolated almost exclusively from grapevine (Vitis vinifera) and
allocated to 4. vitis (Ophel and Kerr, 1990). Similarly, several isolates
from weeping fig (Ficus benjamina) form a distinct group and were classi-
fied as A4. larrymoorei (Bouzar and Jones, 2001). For a recent review on
Agrobacterium taxonomy, see Chapter 5 in this book.

Figure 1-1. Natural crown galls on different hosts. a, grapevine (Vitis vinifera, cv.
‘Ezerfiirtii’); b, raspberry; c, apple. (photo a was kindly provided by Jozsef Mikulas,
Kecskemét, Hungary, photo b by Thomas Burr, Cornell University, Geneva and photo ¢ by
Christine Blaser, University of Guelph, Laboratory Services, Pest Diagnostic Clinic.)
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Figure 1-2. Experimental infections of Nicotiana tabacum cv. Samsun with different Agro-
bacterium vitis strains, showing differences in crown gall morphology. a, strain AB4, undif-
ferentiated tumors; b, strain AT1, shooty tumors (teratomata); ¢, Tm4, necrotic tumors.
(Photos by Ernd Szegedi).

1.2 The infection process

During the infection process a segment of the Ti (tumor-inducing)
plasmid, called T(transferred)-DNA, is exported from Agrobacterium to
the plant cell nucleus where it is integrated into the chromosomal DNA
and expressed. Hairy root is caused in a similar way by a root-inducing or
Ri plasmid. The T-DNA transfer and integration processes involve a large
number of bacterial and host factors, and finally results in genetically
transformed plant cells. Details of this unique natural example of inter-
kingdom DNA transfer have been reviewed (Zhu et al., 2000; Zupan et al.,
2000; Gelvin, 2003; Tzfira et al., 2004 and other chapters in this book).
During the infection process agrobacteria suppress plant defense mecha-
nisms via the chromosomally encoded degradation of hydrogen peroxide
(Xu and Pan, 2000) and by Ti plasmid-related functions (Veena et al.,
2003). Transformation of plant cells results in elevated hormone (auxin
and cytokinin) production and sensitivity. Both trigger abnormal prolifera-
tion leading to tumorous growth or abnormal rooting (Petersen et al., 1989;
Gaudin et al., 1994; Costacurta and Vanderleyden, 1995; see also chapter
15). Tumors and hairy roots produce and secrete specific amino acid and
sugar derivatives, called opines. These opines serve as selective nutrients
for the inducing bacterium and promote conjugal transfer of their Ti/Ri
plasmids. Their central role in the disease has been summarized in the
‘opine concept’ (Guyon et al., 1980; Petit et al., 1983; Dessaux et al.,
1998; see also Chapter 14). Although opines are known as highly specific
nutrients for agrobacteria, they can also be used by some other microbes
like fluorescent pseudomonads, coryneform bacteria and even by fungal
species belonging to the Cylindrocarpon and Fusarium genera (Rossignol
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and Dion, 1985; Tremblay et al., 1987a; Tremblay et al., 1987b;
Beauchamp et al., 1990; Canfield and Moore, 1991).

2 AGROBACTERIUM HOST RANGE

Crown gall has been found to occur on approximately 40 economically
important plants (De Cleene, 1979; Burr et al., 1998; Escobar and
Dandekar, 2003). Infections may occur both from soil and from infected
propagating material. During the 20th century crown gall has become a
major bacterial disease both in nurseries and in plantations although in
some cases, like cherry trees, no harmful effects have been demonstrated
(Garrett, 1987). In other cases, like grapevine, reduction of yield and
growth vigor might reach 40% even under the moderate climatic
conditions of California (Schroth et al., 1988). Damage due to crown gall
is generally more serious in cold climates frequently causing loss of the
infected plants (Burr et al., 1998). During the recent decades dissemination
of crown gall disease has highly increased due to the intensive exchange
and marketing of latently infected propagating material (Burr et al., 1998;
Pionnat et al., 1999). Little is known on the effect of hairy root disease on
affected plants. Some authors have presented evidence that secondary root
formation induced by 4. rhizogenes can have beneficial effects on infected
plants. A. rhizogenes-inoculated almond and olive trees showed better
growth rate, higher yield and better drought resistance than non-inoculated
ones (Strobel and Nachmias, 1985; Strobel et al., 1988). Therefore natural
or artificial infection using this ‘pathogen’ has considerable potential in
agriculture, especially in arid regions. This approach could be improved by
stable introduction of the 4. rhizogenes root-inducing genes into plants by
genetic engineering (Rinallo et al., 1999).

The host range of Agrobacterium is determined by bacterial and plant
factors. The former include bacterial virulence genes and T-DNA onco-
genes, the latter plant genes required for transformation and tumor forma-
tion (see other chapters in this volume). Besides these genetic factors tissue
type and physiological status of the plant may also influence efficient trans-
formation and tumor formation. For example, monocottyledons are known
as non-hosts of Agrobacterium, but meristematic cells of several monocoty-
ledons have been successfully transformed under laboratory conditions
(reviewed in Smith and Hood, 1995). The genetic diversity of the pathogen
and its potential hosts results in rather different host range patterns
(Anderson and Moore, 1979; Thomashow et al., 1980; Knauf et al., 1982).
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An early comprehensive review on the host range of crown gall reported
643 susceptible hosts (approximately 60% of the tested species) belonging
to 93 families, mainly gymnosperms and dicotyledons (De Cleene and De
Ley, 1976). On the other hand, only 3% of the tested monocotyledons (257
species belonging to 27 families) were found to be susceptible to infection
with A. tumefaciens B6 on the basis of tumor formation (De Cleene, 1985).
Further studies carried out with a large set of different agrobacteria showed
that they can infect a much wider range of monocotyledons than thought
previously (Conner and Dommisse, 1992). The host range of hairy root is
also wide and shows several overlaps with the host range of 4. tumefaciens
(De Cleene and De Ley, 1981; Tepfer, 1990; Porter, 1991).

The host range of A. tumefaciens and A. rhizogenes in the above reports
was determined by monitoring the appearance of crown gall or hairy root
symptoms. However, several studies have shown that Agrobacterium can
transform a significantly wider range of plants without causing symptoms.
The first evidence came from opine analysis of calli formed at the inocu-
lated wounds both in monocotyledonous (Hooykaas-Van Slogteren et al.,
1984) and dicotyledonous (Facciotti et al., 1985; Szegedi et al., 1989) non-
host plants. In other experiments using the ‘agroinfection’ method, plant
virus genes cloned into T-DNAs could be transferred into maize and
wheat, both non-hosts (Grimsley et al., 1988; Hayes et al., 1988; Boulton
et al., 1989). Soon after these reports several economically important
monocotyledons, e.g. rice (Raineri et al., 1990; Hiei et al., 1994), maize
(Ishida et al., 1996) (Ishida et al., 1996) and wheat (Cheng et al., 1997)
were successfully transformed with Agrobacterium-based vectors. Subse-
quently, genetic transformation of yeast, fungi and human cells with Agro-
bacterium was also reported (see Chapter 18).

3 DIVERSITY OF NATURAL ISOLATES

3.1 Strain diversity

In order to detect, identify and eradicate Agrobacterium we require
more knowledge about the natural diversity of this plant pathogen and its
main pathogenic determinant, the Ti/Ri plasmid. A large number of Agro-
bacterium strains have been isolated. They were obtained from all over the
world and from widely different host plants including weeping fig (Bouzar
et al., 1995; Vaudequin-Dransart et al., 1995; Zoina et al., 2001; Raio et al.,
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2004), roses (Marti et al., 1999; Pionnat et al., 1999), poplar (Nesme et al.,
1987; Michel et al., 1990; Nesme et al., 1992), chrysanthemum (Bazzi and
Rosciglione, 1982; Bush and Pueppke, 1991a; Ogawa et al., 2000), Lippia
(Unger et al., 1985) several fruit trees (Albiach and Lopez, 1992; Pulawska
et al., 1998; Ridé et al., 2000; Moore et al., 2001; Peluso et al., 2003) and
grapevines (Panagopoulos et al., 1978; Burr and Katz, 1983; Paulus et al.,
1989; Ridé et al., 2000). Isolates from a given host species usually show
high biochemical and genetic diversity. For example, rose isolates be-
longed to biotype 1 or 2 with a nearly equal occurrence of succinamopine
and nopaline Ti plasmids. They could be further subclassified into several
chromosomal and Ti plasmid groups using PCR-RFLP analysis (Pionnat
et al.,, 1999). Chromosomal and Ti plasmid diversity was also observed
among poplar isolates (Nesme et al., 1987; Nesme et al., 1992). Crown
galls on weeping fig (Ficus benjamina) were caused by A. tumefaciens
biotype 1 isolates and by a new species named A. larrymoorei (Bouzar
et al., 1995; Zoina et al., 2001; Raio et al., 2004). On grapevines crown
gall is caused by 4. vitis. The diversity of A. vitis is illustrated by the oc-
currence of octopine/cucumopine, nopaline and vitopine strains (Paulus et al.,
1989; Burr et al., 1998; Ridé et al., 2000). Among the 4. tumefaciens strains
that occasionally occur on grapevine two types are predominant. Some iso-
lates have an octopine/cucumopine type pTi which is characteristic for
A. vitis. The others are similar to the A. tumefaciens nopaline strains
(Szegedi et al., 2005). Although members of the genus Agrobacterium are
primarily known as plant pathogens they have also been found in human
clinical samples. Agrobacterium infections in humans are frequently asso-
ciated with the use of plastic catheters or with immunocompromising dis-
eases like HIV (Edmont et al., 1993; Hulse et al., 1993; Manfredi et al.,
1999; Landron et al., 2002). None of these strains carried a Ti/Ri plasmid.

3.2 pTiand pRi plasmid diversity

3.2.1 Opine classification

The Ti/Ri plasmids used in genetic engineering are derived from only a
few natural plasmids. Thus, it is not unusual to encounter descriptions of
‘the Agrobacterium Ti plasmid’ that refer in fact to one particular Ti plas-
mid, and ignore the existence of numerous other types of Ti/Ri plasmids.
Few of these plasmids have been entirely sequenced: pTiC58 (Goodner
et al., 2001; Wood et al., 2001), pTil5955 (AF242881), pTi-SAKURA
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(Suzuki et al., 2000), pRil724 (Moriguchi et al., 2001). Traditionally,
opines have been used for classifying both Agrobacterium strains and their
Ti/Ri plasmids. Sofar, octopine, nopaline, succinamopine, agropine, agropine/
mannopine, mannopine, chrysopine/succinamopine, chrysopine/nopaline,
cucumopine/mikimopine (Petit et al., 1983; Dessaux et al., 1998; Pionnat
et al., 1999; Moriguchi et al., 2001), octopine/cucumopine and vitopine
(Szegedi et al., 1988) strains and plasmids have been identified; a null-type
category has been proposed for cases in which no opine could be detected.
The possible relations between plasmid type and host range have been lit-
tle studied sofar. Vitopine pTis occur exclusively in grapevine isolates (4.
vitis) indicating an ecological adaptation of this group. Vitopine is a con-
densation product of glutamine and pyruvate (Chilton et al., 2001). Gluta-
mine occurs at an extremely high concentration (2-4 mM) in grapevine
xylem sap, accounting for up to 75-85% of the total free amino acid con-
tent (Prima-Putra and Botton, 1998). Its conjugation with pyruvate to vito-
pine and the specific uptake and degradation of vitopine provide 4. vitis
with large supplies of an abundant and metabolically important compound
allowing it to outcompete other grapevine-associated microorganisms. Fur-
ther details on the occurrence and classification of different pTi types in
Agrobacterium spp. and the role of opines have recently been reviewed
(Dessaux et al., 1998).

The opine classification is not perfect. First, some Ti/Ri plasmids in-
duce tumors that do not contain any known opine type. Some (pTiAT181,
pTiEUG6 and pTiT10/73) were initially classified as defective nopaline-type
Ti plasmids because of restriction pattern similarities to the nopaline plas-
mid pTiT37 (Guyon et al., 1980). Later they were found to induce the syn-
thesis of leucinopine (Chang et al., 1983) and succinamopine leading to a
re-classification as succinamopine plasmids (Chilton et al., 1984). Others,
like pTiBo542 and pTiAT]1, were first classified as null-type plasmids, then
found to induce agropine synthesis (Guyon et al., 1980) and called agropine-
type plasmids, and later reclassified as succinamopine plasmids (Hood et al.,
1986). Another example is the Lippia canescens strain AB2/73. The opines
induced by AB2/73 (Unger et al., 1985) are still unknown and AB2/73 is
therefore part of the null-type group. This group is clearly artificial.

Secondly, opine synthesis and/or utilization genes occupy only rela-
tively small parts of the large Ti/Ri plasmids. Even if Ti/Ri plasmids carry
similar opine genes, their remaining sequences can be be quite different. A
classification exclusively based on opines would lead to artificial groups
based on only partially related plasmid structures.
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Thirdly, one plasmid generally induces several types of opines and dif-
ferent plasmids can specify different combinations of opines, for example,
agropine and mannopine (pRiA4), agropine, mannopine and octopine
(pTi15955), or octopine and cucumopine (pTiTm4). The choice of one
opine rather than another to define a plasmid group has so far been largely
arbitrary. In summary, opine genes only seem to be of limited value for
pTi/pRi classification.

3.2.2 Incompatibility

Plasmids can also be classified according to their incompatibility prop-
erties (Couturier et al., 1988). Plasmid incompatibility is defined as the
failure of two co-resident plasmids to be stably inherited in the absence of
external selection. In the case of the Ti/Ri plasmids, four incompatibility
groups have been defined. The octopine and nopaline Ti plasmids from
A. tumefaciens have been grouped together in the IncRh1 group (Hooykaas
et al.,, 1980). The octopine/cucumopine Ti plasmid pTiB10/7 and the
nopaline Ti plasmid pTiAT66 from A. vitis also belong to IncRh1 (Szegedi
et al., 1996). The succinamopine Ti plasmid pTiBo542 belongs to IncRh2
(Hood et al., 1986), the agropine pRi plasmids to IncRh3 (White and
Nester, 1980) and the vitopine Ti plasmid pTiS4 to IncRh4 (Szegedi et al.,
1996). In most of the large plasmids of the Rhizobiaceae incompatibility
properties are encoded by repABC genes. Incompatible plasmids have
similar repC regions although exceptions have been found (Cevallos et al.,
2002). As in the case of the opine genes, the rep genes may be of limited
interest for a natural classification system, since similar rep sequences can
be associated with large stretches of different DNA sequences. Given these
difficulties, it would seem logical to base plasmid comparison and classifi-
cation on full plasmid sequences. Early restriction enzyme analysis of puri-
fied Ti/Ri plasmids and hybridization of plasmid probes to restriction
digests of total or plasmid DNA (Drummond and Chilton, 1978; White and
Nester, 1980; Thomashow et al., 1981; Knauf et al., 1983; Huffman et al.,
1984) showed a great variability of Ti/Ri plasmid structures. Subsequently,
Ti/Ri plasmids were shown to be evolutionary chimaeras resulting from
extensive horizontal gene transfer, gene loss and insertion sequence activ-
ity (Otten et al., 1992; Otten and De Ruffray, 1994; see also chapter 17).
The mosaic nature of the Ti/Ri plasmids makes it impossible to calculate
evolutionary distances from global DNA homology values. As an example
of this problem, consider the A. vitis pTiAB4 and pTiTm4 plasmids. About
75% of pTiAB4 is colinear with pTiTm4 and practically identical, the
remainder is entirely different, and partly resembles pTiC58. Similarly,
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pTiTm4 and pTi2608 are identical, except for a specific 50 kb fragment
(Fournier et al., 1994). Clearly, overall homology values based on this type
of differences fail to give correct estimations about phylogenetic relation-
ships. The patchwork nature of the Ti/Ri plasmids is also evident at a
smaller scale. This will be illustrated by a detailed comparison between
T-DNAs.

3.3 T-DNA diversity

T-DNAs are composite structures derived from related units (Figure 1-3).
The smallest units are individual genes. The socalled plast genes (like Iso,
b,c’,d, e 3,45, 6a, 6b, 7, rolB, rolC, ORF13, ORFI14, ORFI8 and
other genes) are weakly related and have functions in tumor and root ini-
tiation that still remain to be defined (Levesque et al., 1988; Otten and
Schmidt, 1998; Otten et al., 1999). They have been combined in different
ways in various T-DNA structures. Some units are much larger. One is en-
countered in several T-DNAs and has the gene order acs-5-iaaH-iaaM-ipt-
6a-6b. Derivatives of this structure can be separated into three groups:
those with an ocs gene (commonly called octopine T-DNAs), those with a
nos gene (nopaline T-DNAs) and those without an ocs or nos gene at their
right border (succinamopine T-DNAs). Octopine T-DNAs are quite di-
verse: some (like pTiTm4 and pTiAB3) have a partial 6a deletion, one has
an 1S869 element between 6b and ocs and an IS870 element in iaaM
(pTiCG474), one an IS866 insertion in iaaH (pTiTm4 and other related
plasmids), others have an iaa-ipt-6a deletion (pTiAB3, pTiAg57 and
pTiNW233, each of which with further changes). T-DNAs with a partial
acs deletion and an additional gene (gene 7) are found on pTiAchS5, the
pTiA66 T-DNA is similar but has an IS66 insertion in iaaH. The TL-
DNAs of the succinamopine plasmids pTiChry5 and pTiBo542 also con-
tain the acs-to-6b fragment, the full sequence is still unknown. In
pTiBo542 an IS/312 element is found between gene 5 and 7. Octopine and
succinamopine Ti plasmids carry a second T-DNA. They can be trans-
ferred independently of the other T-DNA and are divided in TR-DNAs
(pTiAch5 and pTiA66) and TB-DNAs (the remainder, see below). Al-
though octopine T-DNAs are basically similar, the plasmids on which they
reside can be quite different.

This also applies to nopaline T-DNAs. The best known is from pTiC58;
the central acs-to-6b fragment carries a nos gene at the right border and a
large 11 kb T-DNA extension at its left with genes a-b-c-c’-d-e-f (a-to-f
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region, Willmitzer et al., 1983; Otten et al., 1999) Genes a and b are re-
lated to acs and gene 5. An a-b-c¢ fragment is also found at the left end of
the pTiTm4 TB-DNA (see below and Otten et al., 1999). Thus, the acs-35
fragment is found in three different contexts (left part of acs-to-6b
fragment, left part of pTiC58 T-DNA and left part of pTiTm4 TB-DNA)
and may constitute an ancestral functional unit. The pTiT37 T-DNA is
similar to that of pTiC58 but a spontaneous variant carries an 1S/36
element between the 6a and 6b genes (Vanderleyden et al., 1986). In
pTiAB4 and pTi82.139, the acs-to-6b fragment is modified by replacement
of the 6a-6b fragment with an unrelated 65-3° gene fragment (Drevet et al.,
1994; Otten and De Ruffray, 1994). The 3’ gene is also found on the
pTiAchS and pTiChry5 TR-DNA (see below). Whereas pTi82.139 carries
the a-to-f region, it is lacking in the strongly related pTiAB4. Other
nopaline T-DNA variations have been reported (Wabiko et al., 1991).

The TR-DNA of octopine and succinamopine plasmids has the common
structure 4°-3-mas2 -mas1’-ags and is situated either close to the TL-DNA
(pTiAch5) or further away (pTiChry5 and pTiBo542). In pTiChry5 a gene

acs-to-6b unit

octopine/succinamopine type / \ nopaline type
, [ o |
Fl—=—— == JjuNeH [ ] o8 Hormone genes
1S736.
I_ = ipt
== o TL, A66 37
O aaH-iaaM
82.137
. Cirys cpinegens
. CE———m AB4 = nos Isn
[ | =5 | TL B0
- ocs vis
ORFI-ORF14 type =
EEr===r"="1 TA, Tmd
[ B o 8196 = acs
-—.E TA, Hml (oo o0 TL A4 = mas2’
S870 56! 2659 = masl’
CG474 ] ags
1724 - cus
TA, AB3 = mis
plant genes
TA, AgS7 =
TB, AgS7
= 23
NW233 = 6a
TB, Tmé4
=
mini T-DNAs mannopine type TB, AB3 = 3
=] 1,54 (=] 5
TR, Achs TB, NW233 = Iso
== ns insertion
=] 3,54 Co==m0E ™ cis B, Hm! sequence
deletion
apyr3  [EEESmeE] TR, A4 TB, K305

Figure 1-3. Schematic maps of different T-DNA structures. Genes discussed in the text are
marked in color. During T-DNA evolution, genes and gene groups were combined in dif-
ferent ways. Maps are not to scale.
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with homology to gene e is found between 3’ and mas2’ (Otten, unpub-
lished). A mas2’-masl -ags fragment is also found at the right end of the
pRiA4 TR-DNA (Bouchez and Tourneur, 1991) where it is linked to an
iaaH-iaaM-rolBTR fragment, a mas2’-masl’ fragment (without ags) is
found in the unique T-DNA of pRi8196 (Hansen et al., 1991).

The T-DNAs or TL-DNAs of the Ri plasmids carry a large conserved
fragment with gene order ORF1-ORF14. This fragment is linked to various
specific fragments at the right end: ORF15-18 in pRiA4 (Slightom et al.,
1986), mas2’-mas1’ in pRi8196, cus in pRi2659 and the cus-related mis in
pRi1724 (Suzuki et al., 2001). A second T-DNA (TB-DNA) is also found
on o/c Ti plasmids like pTiTm4. The left part with the a-b-c fragment is
followed by an iaaH-iaaM fragment and a cus gene (Otten et al., 1999).
Six TB-DNA variants have been identified (Otten and van Nuenen, 1993).

The pTiAB2/73 plasmid carries a minimal T-DNA with one oncogene,
Iso, and one opine gene, Isn (Otten and Schmidt, 1998). This T-DNA is
also found on the vitopine-type A. vitis pTiS4 plasmid (Otten, unpublished
data). Interestingly, pTiS4 carries three other small T-DNAs: T1 (6b-vis),
T2 (iaaH-iaaM) and T3 (ipt-vis’) (Canaday et al., 1992).

In view of such a large T-DNA diversity, we expect that more T-DNA
structures remain to be discovered. Comparative T-DNA studies allow a
number of interesting conclusions. (i) Isolates with identical or nearly
identical T-DNA structures are found in widely different locations and on
different host plants. This indicates a recent clonal origin for these struc-
tures, followed by rapid expansion. (ii) The mosaic T-DNA structures
were probably created by horizontal pTi/Ri transfer followed by recombi-
nation with resident plasmids. (iii) The known T-DNAs do not form a
gradual evolutionary series. Thus, there seem to be no transition forms be-
tween the small T-DNAs and the larger units. It is likely that many of the
intermediates were lost. (iv) Due to the lack of intermediates, it is probably
impossible to reconstruct the evolutionary history of the many present-day
T-DNAs. (v) The large range of structures probably reflects adaptation to
different selection factors like plasmid stability, metabolic coherence,
hosts, soils, climates and competing organisms.

3.4 Other ecologically significant plasmids

Apart from the Ti/Ri plasmids, agrobacteria contain other plasmids of
ecological interest. The agrocin plasmids, like pAgK84 and pAgK434
from A. radiobacter strain K84 (also mentioned as 4. rhizogenes K84) en-
code the synthesis of antibiotics that can kill certain virulent agrobacterial
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strains. K84 can be used for biocontrol (see below). The sequence of
pAgK84 has been determined (NC006277). Its occurrence in natural iso-
lates remains to be studied (for details see part 4). Tartrate utilization
plasmids (pTr) of A. vitis provide another example. They promote growth
on grapevine, a species with high tartrate levels (Kado, 1998; Salomone
et al., 1998). Strain AB3 carries two related tartrate utilization (tar) regions
(TAR-I and TAR-II) on pTrAB3 and pTiAB3 respectively (Otten et al.,
1995). The tar region consists of the ttuA-E genes, orfX, orfY and a second
ttuC copy. AB4 carries another tar region variant on pTrAB4, TAR-III
(Salomone et al., 1996). The tar regions are thus found in different plasmid
contexts and are also present in other bacteria, like Pseudomonas putida
(Tipton and Beecher, 1994). Two tumor-inducing plasmids, pTiAB3 and
pTiAToO, also carry tar genes. pTiAB3 and pTiAT6 belong to the IncRh1/2
group, pTrS4 to IncRh2, pTrAT6, pTrAB4 and pTrRr4 to IncRh4, while
pTrTm4, pTrAB3 and pTrNW221 belong to other, as yet unidentified Inc
groups (Szegedi and Otten, 1998). Thus, the pTr plasmids are a heteroge-
neous group and it is likely that their tar regions were acquired by horizon-
tal gene transfer to different plasmids. The different incompatibility
properties of pTr plasmids provide ecological flexibility since this allows
them to coexist with pTi plasmids from various incompatibility groups. It
would be interesting to know what other functions tartrate plasmids carry.

In the case of 4. rhizogenes agropine strains, mannopine, mannopinic
acid and agropinic acid catabolism is encoded by a non-oncogenic plasmid
that can form a cointegrate with the pRi plasmid (Petit et al., 1983). In
strain C58, the large cryptic pAtC58 plasmid plays a role in virulence, al-
though the mechanism is not clear (Nair et al., 2003). The antagonistic
strain F2/5 (see also section 4.6) contains conjugative tartrate and octopine
utilization plasmids. Neither of these is associated with biocontrol on
grapevine (Szegedi et al., 1999).

4 SOURCES OF INFECTION AND CONTROL OF CROWN
GALL DISEASE

Agrobacterium usually infects fruit trees from soil and ground water of
galled orchards (Moore and Cooksey, 1981), while in the case of grapevine
the systemically infected propagating material is the main source of infec-
tion. Therefore the traditional chemical control methods cannot be used to
prevent crown gall disease of crop plants. In spite of these difficulties there
are some protocols to reduce the occurrence of epidemic crown gall. These
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include detection of the pathogen in soils, the use of pathogen-free propa-
gation material, biological control, and traditional or molecular breeding
for new resistant varieties. In spite of several promising results the genetic
diversity of the pathogen could limit the efficiency of these methods. In
this paragraph we give a brief overview of possibilities that can be envis-
aged or applied to reduce economic losses caused by crown gall.

4.1 Diagnostic methods

Early protocols for detection of agrobacteria in propagation material
included isolation of bacteria from plant samples on selective media, their
identification by physiological and biochemical tests, and finally determi-
nation of pathogenicity on test plants (Moore et al., 2001). Since a viru-
lence assay for Agrobacterium typically takes 3-4 weeks, several other
methods have been developed, including serological tests (Bazzi et al.,
1987; Ophel et al., 1988; Bishop et al., 1989) and DNA hybridization
(Burr et al., 1990). The introduction of the polymerase chain reaction
(PCR) in plant pathology (Louws et al., 1999) opened up new possibilities
for rapid detection and identification of Agrobacterium in agriculturally
important plants. First studies were started in the early 90s (Dong et al.,
1992; Schulz et al., 1993). Primers designed for the amplification of
pathogenic strains have been based on specific chromosomal (Ponsonnet
and Nesme, 1994; Eastwell et al., 1995; Szegedi and Bottka, 2002), or
Ti plasmid sequences including the vir-region (Ponsonnet and Nesme,
1994; Haas et al., 1995; Sawada et al., 1995) or T-DNA (Dong et al.,
1992; Schulz et al., 1993; Haas et al., 1995; Kauffmann et al., 1996;
Pulawska and Sobiczewski, 2005). In order to increase the sensitivity of
detection PCR methods were combined with serological techniques
(‘immunocapture’, Kauffmann et al., 1996). To avoid false positives and to
increase the specificity of reaction (semi-)nested PCR can be used, this in-
volves the use of additional primer(s) to yield a new specific fragment
(Pulawska and Sobiczewski, 2005). The high genetic diversity of agro-
bacteria, even on a single host, may require the use of multiplex PCR
techniques. Analysis of restriction fragment length polymorphism of PCR-
amplified fragments (PCR-RFLP) and random amplified polymorphic
DNA (RAPD) techniques are additional helpful tools in genomic typing of
agrobacteria (Ponsonnet and Nesme, 1994; Irelan and Meredith, 1996;
Otten et al., 1996; Momol et al., 1998). Since these protocols allow not
only the detection of pathogenic strains but also their precise identification
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they can be efficiently used to trace back the origin of infection in plant
materials (Pionnat et al., 1999; Llop et al., 2003).

The pathogen can be detected directly from total DNA prepared from
plant samples, or following isolation of bacterial colonies. Although the
former protocol is fast and simple, the uneven distribution and low concen-
tration of the pathogen in the host, and the presence of polymerase inhibi-
tors in plant samples may limit its efficiency. Therefore it is advisable to
prepare DNA from plant samples with multistep organic extraction or
DNA purification columns (Eastwell et al., 1995; Cubero et al., 1999; Llop
et al., 1999). Interestingly, it was more efficient to force an SDS-based ly-
sis solution through grapevine canes and to analyze this material by PCR
than to force water through canes and isolate colonies (Eastwell et al.,
1995). This is in agreement with other observations (Bazzi et al., 1987)
showing only 2-12% recovery of bacterial cells previously introduced into
canes. The most likely explanation of this phenomenon is that bacteria are
firmly attached to host cell walls (Pu and Goodman, 1993a; Cotado-
Sampayo et al., 2001) or trapped in the complex xylem structure. In other
experiments (Stover et al., 1997a) it was determined that if cuttings were
frozen at —20°C and then incubated for 48 hr at 28°C recovery of 4. vitis
colonies with the xylem flushing method increased several-fold. Interest-
ingly, no increase was obtained if canes were assayed immediately after
freezing. The freezing/incubation treatment may provide a useful step for
improving the sensitivity of indexing methods. Although Agrobacterium
can be detected by PCR amplification of plant material (Eastwell et al.,
1995; Cubero et al., 1999; Szegedi, 2003) this method is limited to plant
tissues which are poor in PCR polymerase inhibitors and contain signifi-
cant numbers of agrobacteria, like fresh tumors or heavily infected plant
tissues. To exclude false negatives caused by polymerase inhibitors PCR
controls can be included in the samples (Cubero et al., 2002), or one may
first isolate bacterial cultures that are then analyzed by PCR (Szegedi and
Bottka, 2002).

4.2 Soil as a potential source of infection

Members of Agrobacterium spp. are known as soil-borne plant patho-
gens, therefore soils are generally considered as sources for infection.
Although this is true for fruit trees, grapevine crown gall is usually due to
infected propagating material. Agrobacteria may occur in fallow as well as
in virgin soils. In the USA, savanna and prairie soils and roots of endemic
plants contained predominantly non-pathogenic A. radiobacter biotype
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2 bacteria (Bouzar and Moore, 1987). On the other hand, fallow soils in
Algeria were populated with nearly equal ratios of Agrobacterium biotype
1 and 2 isolates with a relatively high proportion of pathogenic biotype
1 bacteria (Bouzar et al., 1993). The number of pathogenic bacteria
showed significant seasonal fluctuation. During the vegetation period the
numbers of pathogenic bacteria were high but drastically decreased during
the fall and winter indicating an essential role of the weed rhizosphere in
the regulation of A. tumefaciens populations in nursery soils (Krimi et al.,
2002). In France, soil contained almost exclusively non-virulent biotype
1 strains. In soil samples collected from fruit tree and raspberry nurseries
no biotype 3 (4. vitis) was found (Mougel et al., 2001). In other cases the
presence of pathogenic 4. tumefaciens closely correlated with the presence
of diseased plants (Pulawska and Sobiczewski, 2005).

Studies in vineyards in the USA have shown that 4. vitis can only be
isolated from the rhizosphere of diseased plants (Burr and Katz, 1983;
Burr and Katz, 1984; Burr et al., 1987). Pu and Goodman (Pu and Good-
man, 1993b) found about 9000 Agrobacterium colonies per gram of vine-
yard soil, although their biotype was not determined. Further experiments
were carried out in Germany where 128 soil samples from 19 vineyards
were analysed. These samples contained exclusively A. tumefaciens, no A.
vitis was detected (Jager et al., 1990) confirming that in the case of grape-
vine not the soil but the infected plant material is primarily responsible for
spreading of the disease. It should be noted however that 4. vitis survives
in root pieces for years and may therefore initiate new infections from soils
in which formerly infected plants were grown (Burr et al., 1995). This may
be very important in grapevine nurseries where the turnover of plant mate-
rial is high. To prevent long-term survival of A. vitis in vineyards, grape
roots should be removed as much as possible when plantations are cut
down and the area should be left fallow or non-host (e.g. monocotyledon-
ous) crops that do not favour the persistence of 4. vitis should be grown on
it (Bishop et al., 1988). A survey for non-host annual crops has already
been published (Novak et al., 1998) but similar investigations with re-
gional fallow plant and weed populations should also be of interest.

Various studies have demonstrated significant transport of opines from
tumors into healthy plant tissues and into the rhizosphere (Messens et al.,
1985; Szegedi et al., 1988; Savka et al., 1996), thus providing opines for
free-living agrobacteria. Indeed, opine-producing plants selectively promote
growth of opine-utilizing agrobacteria associated with the root system of
opine-producing Lotus corniculatus plants (Guyon et al., 1993; Dessaux
et al., 1998). Additional experiments confirmed that opine-producing plants



16  Léon Otten, Thomas Burr and Ern6 Szegedi

affect the composition of the bacterial population in their rhizosphere as
well as in the surrounding soil (Oger et al., 1997; Savka and Farrand,
1997; Oger et al., 2000; Mansouri et al., 2002). This promotes long-term
persistence of Ti plasmid-containing (pathogenic) agrobacteria. The essen-
tial role of plants in influencing microbial populations of soil has also been
established for other plant-microbe associations (Wieland et al., 2001).
Therefore crop rotation was proposed in order to eliminate pathogens from
soils (Oger et al., 2000).

Although infected propagating material is the primary source for
spreading A. vitis in grapevine, infection of Agrobacterium-free grapevines
from soil has also been demonstrated (Pu and Goodman, 1993b). Agrobac-
terium infection from soil is most probably enhanced by nematodes as
documented for cotton (Zutra, 1982), raspberry (Vrain and Copeman,
1987) and grapevine (Siile et al., 1995). Nematode-resistant plum root-
stocks did not become infected with crown gall, while symptoms appeared
on the roots of sensitive rootstocks (Rubio-Cabetas et al., 2001) indicating
that agrobacteria can enter the roots through nematode wounds. Thus the
nematode population of soils may contribute to epidemic crown gall. Re-
cently, it was shown that nematodes enhance transformation by Agrobac-
terium in vitro (Karimi et al., 2000). Whether nematodes are able to carry
the bacteria from one plant to another is still unknown.

In view of these data it is advisable to establish conditions that do not
favor the long-term persistence of pathogenic agrobacteria in soils, i.e. by
growing non-hosts plants and by eliminating nematodes as far as possible.
Additionally, the use of efficient methods to detect the presence of agro-
bacteria in soil prior to planting (Mougel et al., 2001; Pulawska and Sobic-
zewski, 2005) is also essential.

4.3 Propagating material as a source of infection

Pathogenic agrobacteria invade the whole plant from roots and tumors
via the vessels; healthy parts of the plant can become latently infected
without appearance of symptoms. Systemic spreading of Agrobacterium
has been described in several host plants, e.g. in chrysanthemum (Miller,
1975; Jones and Raju, 1988), rose (Marti et al., 1999; Pionnat et al., 1999),
weeping fig (Zoina et al., 2001), and perhaps most extensively in grape-
vine (Lehoczky, 1968, 1971; Burr and Katz, 1984; Siile, 1986; Tarbah and
Goodman, 1987; Thies et al., 1991). Since in the case of grapevine the in-
fected propagating material is the primary source in the spreading of the
pathogen it is of basic importance to select or produce pathogen-free
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stocks to reduce economic loss caused by crown gall. Some details of this
field have previously been reviewed (Burr et al., 1998; Burr and Otten,
1999).

4.4 Selection for pathogen-free plant material: The grapevine
story

The systemic presence of Agrobacterium has been demonstrated in
several plant species causing dissemination of the pathogen with propaga-
ting material. Since the most intensive studies have been carried out on
grapevine we would like to discuss the grapevine case, being confident
that the results may also be of interest for other plants.

For reliable detection of Agrobacterium in grapevine propagating mate-
rial indexing should be carried out at the different steps of propagation and
include the testing of stock plantations, wooden canes used for rooting or
graftings, as well as rooted material prior to planting. The presence of
Agrobacterium in stock plantations used to produce propagating material
can be simply monitored by the analysis of bleeding sap. Grape bleeding
sap is rich in nutrients so it provides optimal growth conditions for several
microbes including Agrobacterium spp. The presence of Agrobacterium in
bleeding sap was first described in Hungary (Lehoczky, 1968) and later
confirmed by other laboratories (Burr and Katz, 1983; Mohammadi and
Fatehi-Paykani, 1999) demonstrating the systemic nature of the crown gall
bacterium in grapes. Using bleeding sap analysis Pu and Goodman (Pu and
Goodman, 1993b) found that 53% of originally pathogen-free grapes
planted in infested soil contained Agrobacterium two years after planta-
tion. On the other hand, Stover et al. (Stover et al., 1997a) found agrobac-
teria in only 5,3% of infected plants in greenhouse experiments showing
their slow and uneven distribution in the host plant. In other experiments
A. vitis was detected in one of six healthy, and two of ten galled Riesling
and Cabernet Sauvignon plants confirming the uneven distribution in
grapevine plants (Szegedi and Bottka, 2002). Thus this method can be used
to show the appearance of agrobacteria in plantations if sufficient plant
numbers are tested, but for the detection in individual plants the bleeding
sap test is less reliable.

Under natural conditions wounded plants form calli that cannot always
be clearly distinguished from crown galls by visual inspection alone. For
example, phloem wounding may stop auxin transport leading to large
auxin-induced callus formation at the wound site. During grapevine propa-
gation wounds are made at the base of rootstocks, and also at disbudding
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and grafting sites. The extent of callus formation at these wounds depends
on the plant genotype as well as on environmental and physiological con-
ditions, such calli frequently cannot be distinguished from crown gall. For
rapid examination of these tissues opine analysis can be useful (Ophel
et al., 1988; Szegedi, 2003). It was recently observed that the position of
wound relative to growing shoots affected the development of crown gall
(Creasap et al., 2005). Such differences were hypothesized to be related to
growth induction of cells sensitive to infection following transport of [AA
to the wounds since exogenous application of IAA stimulated crown gall
development at otherwise recalcitrant wounds.

For vegetative propagation of grapevines one-year-old wooden canes
are most widely used, these are planted directly or used for graftings. Thus
it is of great importance that they are free of pathogens and pests. For in-
dexing dormant canes bacteria can be recovered from homogenized cane
pieces (Stover et al., 1997a), or by forcing sterile water through the xylem
using vacuum (Bazzi et al., 1987; Ophel et al., 1988; Burr et al., 1989),
pressure chambers (Tarbah and Goodman, 1986; Goodman et al., 1987),
or centrifugal force (Burr et al., 1988). The recovery of agrobacteria from
canes was usually less than 10% (see above and Bazzi et al., 1987). Sea-
sonal variation of bacterial cell numbers in grape plants (Pu and Goodman,
1993b; Bauer et al., 1994) is an additional limiting factor for efficient
detection. These seasonal changes are probably determined by the avail-
ability of nutrients in the host plants (Pu and Goodman, 1993b). Few Agro-
bacterium spp. were usually recovered when dormant canes were used
directly for isolation of bacteria, although a relatively high rate was ob-
tained with Californian samples collected in March when bleeding had
started (Goodman et al., 1987). In another experiment bleeding sap analy-
sis carried out in April showed 32% infection of a young plantation. Dur-
ing fall and winter, agrobacteria were detected in only 2 and 0% of the
same plants respectively. Next spring 25% of bleeding sap samples were
again positive. To overcome difficulties caused by the low recovery of
agrobacteria dormant cuttings were rooted or callused under sterile, moist
conditions and the freshly formed young roots and calli were used for
analysis (Lehoczky, 1971). Inducing growth of new young tissues on canes
prior to isolation of agrobacteria increased their detectability with about
one order of magnitude (Burr and Katz, 1984; Burr et al., 1989).

Although crown gall symptoms have rarely been observed on grape-
vine roots, several authors reported the presence of Agrobacterium in roots
(Lehoczky, 1971; Siile, 1986; Burr et al., 1987; Thies et al., 1991). Later it
was suggested that the root system of grapevines provides optimal conditions
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for growth and survival of agrobacteria and constitutes a reservoir for sys-
temic infection of whole plants. Bacteria overwinter in the roots but at
spring when bleeding starts they invade the aerial parts of plants by xylem
transport where they can serve as an initial source for crown gall induction
(Lehoczky, 1978). It was subsequently confirmed that two years after
vines were removed agrobacteria still persisted in root debris remaining in
the soil (Burr et al., 1995). Interestingly, roots of feral grapes (Vitis ri-
paria) contained only non-pathogenic A. vitis that atypically did not utilize
tartrate (Burr et al., 1999). Results of grafting analysis including root, root-
stock, and scion parts of one-year-old dormant graftings showed that ap-
proximately 90% of the A. vitis cells were concentrated in roots (Szegedi
and Dula, 2005). These data are in agreement with the earlier observations
by Lehoczky (Lehoczky, 1978).

In summary it can be concluded that indexing wooden plant material
like grapevine canes for Agrobacterium has several limiting factors like at-
tachment of agrobacteria to plant cell walls, uneven distribution of patho-
gens in the host plant, complexity of vessel structures and seasonal
changes of pathogen cell numbers in plants. Reliable detection requires
expensive and time-consuming multistep tests that limit application for
large-scale use. Indexing should mainly be used for small-scale selection
of pathogen-free stock material that can then be propagated under proper
quarantine conditions.

4.5 Production of Agrobacterium-free plant material

Dipping dormant grape cuttings in a water bath at 50-52°C for 30-45
minutes eliminates most 4. vitis cells from canes. Treatment at higher tem-
peratures may be harmful to the survival of dormant grape buds, depend-
ing on variety and whether the cuttings were given a post-treatment storage
period (Wample, 1993). Hot water treatment to eliminate A. vitis from
grapevine propagating material has been tested in the USA (Burr et al.,
1989; Burr et al., 1996), Australia (Ophel et al., 1990), Italy (Bazzi et al.,
1991) and Iran (Mahmoodzadeh et al., 2003). Although such heat treatment
kills 4. vitis in vitro, a few percent of the pathogen cells survive in vivo
when canes are treated. This limits the application of this simple method.
The reason for the difference between in vivo and in vitro treatments is un-
known.

Shoot-tip and apical meristem cultures can also be used to obtain Agro-
bacterium-free plants. Although in vitro propagation of crop plants is
rather time-consuming and needs laboratory equipment, it is very reliable.
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Cultures are usually started from shoot tips or apical meristems since
they are free of systemic agrobacteria. Using this method large numbers
of Agrobacterium-free Vitis vinifera L. Pinot Chardonnay plants were
produced from approximately 2 cm long shoot tips (Burr et al., 1988).
Similarly, Thies and coworkers (Thies et al., 1991; Thies and Graves,
1992) efficiently regenerated sterile Vitis rotundifolia Michx. (muscadine
grapes) from 0,2-0,4 mm long apical meristems. Plantations established
from shoot-tip propagated grapes were still free from crown gall symptoms
seven years later, even under cold climatic conditions (Burr et al., 1998).

As an alternative to meristem cultures, green internodes can also be
used for propagation: new shoots growing out from older wooden parts of
grape trunks become systemically infected only after the old (wooden) and
new (green) xylem elements have fused after the lignification of the new
shoots. Thus, in New York State, internodal fragments of Chenin blanc,
Pinot Chardonnay and Riesling grapes did not contain detectable Agrobac-
terium until August (Burr et al., 1998). Indeed, crown galls have not been
found on new green shoots, although they are sensitive to infection and are
wounded during cultivation. Thus, not only shoot-tips and apical meris-
tems but also young green shoots can be used as initial sources to produce
Agrobacterium-free plants. Since single-node softwood grape cuttings can
be routinely rooted under greenhouse conditions (Thomas and Schiefelbein,
2001, 2004) this method may become a simple, efficient and economical
protocol for mass production of Agrobacterium-free plants.

4.6 Biological control

One of the strategies to combat plant diseases is the use of non-
pathogenic antagonistic organisms, like viruses, bacteria, fungi or insects.
An efficient biocontrol agent should not only be antagonistic, but also able
to survive stably in the target plant and/or in its environment. Sofar, most
of the antagonistic microorganisms used against pathogenic agrobacteria
belong to the genus Agrobacterium. The first efficient microbe that
showed an inhibitory effect on pathogenic agrobacteria on peach, Agro-
bacterium radiobacter K84, was isolated in Australia (Kerr, 1972). After
the first trials K84 was rapidly tested on several additional crops (Moore
and Warren, 1979). Strain K84 contains three plasmids. The 47 kb
pAgK84 encodes the production of agrocin 84 and provides agrocin resis-
tance to the producing strain K84 (Slota and Farrand, 1982). Agrocin 84 is
an adenine nucleotide analogue that resembles agrocinopine and inhibits
DNA synthesis. The second plasmid (173 kb) carries functions for
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nopaline and agrocinopine uptake and catabolism. This IncRhl plasmid
has significant homology with the nopaline Ti plasmid pTiC58, but lacks
virulence and oncogenic functions (Clare et al., 1990). The third, less well
characterised large plasmid is 300-400 kb in size and encodes the produc-
tion of a second antibiotic, agrocin 434 (Donner et al., 1993; McClure
et al., 1998). Besides these antibiotics, K84 produces also a siderophore
called ALS84 that inhibits the growth of several agrobacteria at low-iron
conditions (Penyalver et al., 2001). Nopaline and succinamopine Ti plas-
mids encode sensitivity to agrocin 84 (Van Larebeke et al., 1975; Watson
et al., 1975; Chilton et al., 1984), this sensitivity is associated with the
Ti plasmid-encoded uptake and catabolism of certain agrocinopines
(reviewed in Dessaux et al., 1998). Dipping seeds or roots into a K84 sus-
pension prior to planting efficiently prevents crown gall formation in the
field on the roots of roses (Kerr, 1980; Farkas and Haas, 1985; Jones et al.,
1991) and on several stone fruits like peach (Kerr, 1972), almond (Jones
and Kerr, 1989) and cherry (Moore, 1977). A further advantage of K84 is
its excellent survival in the plant rhizosphere (Macrae et al., 1988; Stock-
well et al., 1993; Penyalver and Lopez, 1999). Besides these benefits of
K84 there are some factors that limit its application. First, only a limited
range of A. tumefaciens strains, those having nopaline or succinamopine Ti
plasmids, are sensitive to agrocin 84. A. tumefaciens carrying octopine-
type pTis and all types of A. vitis irrespective of their pTi plasmids are
resistant (Engler et al., 1975; Kerr and Roberts, 1976; Kerr and Panagopoulos,
1977; Panagopoulos et al., 1978; Burr and Katz, 1983; Knauf et al., 1983;
Bien et al., 1990). Second, some pathogenic agrocin 84 sensitive agrobacte-
ria readily mutate to an agrocin-resistant phenotype (Siile and Kado,
1980). Third, pAgK84 may be transferred from K84 into virulent agrobac-
teria by conjugal transfer (Panagopoulos et al., 1979) and thereby intro-
duce agrocin production and resistance into such strains. To overcome this
limitation a transfer-minus (Tra’) mutant, called K1026 was established
from the wild type K84 strain (Jones et al., 1988). This ecologically safe
K1026 showed similar biocontrol activity as the wild type A. radiobacter
K84 strain (Jones and Kerr, 1989; Jones et al., 1991). Fourth, 4. radiobacter
K84 may acquire a Ti plasmid from oncogenic agrobacteria which could
result in virulent strains that produce agrocin and are resistant to it (Vicedo
et al., 1996).

Since A. radiobacter K84 is inefficient against 4. vitis, several experi-
ments were carried out to isolate antagonistic strains able to prevent grape-
vine crown gall disease. The pathogenic biotype 2 A. tumefaciens J73
strain isolated in South-Africa inhibited the growth of several 4. vitis
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strains in vitro, and showed some activity on grapevine in planta
(Thomson, 1986; Webster et al., 1986). The non-virulent biotype 1 4.
radiobacter HLB-2 strain isolated in China was also antagonistic to sev-
eral A. vitis strains (Pu and Goodman, 1993c¢). The non-pathogenic A. vitis
F2/5 from South-Africa inhibited the growth of several pathogenic A. vitis
strains in vitro and was able to prevent crown gall formation on grapevine
in greenhouse experiments. It is interesting to note that agrocin-minus mu-
tants of F2/5 were still able to inhibit A. vitis-induced tumor growth, but
only on grapevine. It is still unclear which infection step is blocked in this
specific tripartite system (antagonistic 4. vitis F2/5-pathogenic A. vitis-
grapevine, Burr and Reid, 1994; Burr et al., 1997). A. vitis F2/5 has two
chromosomally located /uxR-like (quorum-sensing regulated) genes, aviR
and avhR that are associated with a hypersensitive response on tobacco and
a necrotic reaction on grapevine (Zheng et al., 2003; Hao et al., 2005).
Recent studies indicate that the agrocin-independent biocontrol activity of
F2/5 is caused by necrotic reactions induced on grape cambium (Creasap
et al., 2005) but a final proof using necrosis-negative mutants is still lack-
ing. Until now this strain proved to be the most efficient one in controlling
gall formation on grape. Several additional attempts have been made to use
non-pathogenic 4. vitis isolates in biological control since A. vitis pre-
sumably can permanently colonize grapevines (Bazzi et al., 1999; Burr
et al., 1999; Szegedi et al., 1999; Wang et al., 2003).

Members of other bacterial genera have also been tested for biological
control of crown gall. Bell et al. (1995) tested approximately 850 diverse
bacterial isolates from grapevine in Canada as possible 4. vifis antagonists
in vitro. Although some of them (e.g. Enterobacter agglomerans, Rahnella
aquatilis and Pseudomonas spp.) inhibited the growth of A. vitis, they
showed variable and usually insufficient efficiency on grapevine plants.
Similar results were obtained in Russia and Israel with Pseudomonas
strains (Khmel et al., 1998). Opine-utilizing fluorescent Pseudomonas spp.
have been isolated from several crown gall tumors, and nursery or orchard
soil samples (Rossignol and Dion, 1985; Tremblay et al., 1987b; Can-
field and Moore, 1991). Some of these isolates inhibited growth of A.
tumefaciens (Canfield and Moore, 1991). These observations indicate that
pseudomonads may down-regulate agrobacterial growth in nature. Hyper-
sensitive response reactions induced by Pseudomonas spp. also inhibit
crown gall induction (Robinette and Matthysse, 1990). It remains to be in-
vestigated whether treatment of plants with selected pseudomonads can
reduce the occurrence of crown gall disease under natural conditions.
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For safe and more efficient practical use several wild type antagonistic
strains have been genetically modified. The Tra derivative of K84 has
been mentioned above. The IncRh1 Ti plasmid of 4. tumefaciens J73 was
cured by introducing an IncRhl1 ori clone, resulting in an avirulent antago-
nistic strain (Webster and Thomson, 1988). Rhizobium leguminosarum bv.
trifolii strain T24 produces an antibacterial protein called trifolitoxin
(TFX) which inhibits the growth of several agrobacteria. Introducing genes
for TFX production and resistance into the well characterized antagonistic
strains A. radiobacter K84 and A. vitis F2/5 can extend their biocontrol ac-
tivity to a wider range of virulent strains and host plants (Herlache and
Triplett, 2002). Apart from antagonistic effects other, more indirect effects
might be used for biological control. Transfer of Ti plasmids from patho-
genic to non-pathogenic agrobacteria is induced by conjugative opines
produced in crown galls (Dessaux et al., 1998), as well as by N-acyl-
homoserine lactones (AHLs) produced by bacteria (Farrand et al., 2002;
von Bodman et al., 2003; see also Chapter 14). AHL degradation by lacto-
nase producing bacteria may prevent pathogen spreading or even tumor
formation (Carlier et al., 2003; Molina et al., 2003).

4.7 Selection and breeding for crown gall-resistant crops

The most efficient solution to prevent crown gall would be the use of
Agrobacterium-resistant crop plants, both from the environmental and
economical point of view. Although Agrobacterium spp. have an ex-
tremely wide host range considerable differences in susceptibility exist
among species and cultivars. A review on the host range of crown gall (De
Cleene and De Ley, 1976) provides several examples. More recently, addi-
tional data have been obtained on the susceptibility of various crop plants
to Agrobacterium spp. The aim of these studies was partly to reduce crown
gall-induced damage, partly to develop Agrobacterium-mediated transfor-
mation protocols for recalcitrant plant species. Crown gall resistance can
be defined as the capacity of a plant to maintain normal growth in the
presence of a given Agrobacterium strain. Different cultivars within a crop
species usually form tumors of different size. A plant genotype with small
but numerous tumors at the inoculation site cannot be considered as ‘resis-
tant’, since the transformed plant tissue (usually cambium) will be
impaired in its normal functions.

In order to select resistant rootstocks, genotypes of several fruit trees
have been tested including apple (Stover and Walsh, 1998), walnut
(McKenna and Epstein, 2003), Prunus spp. (Pierronnet and Salesses, 1996;
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Bliss et al., 1999), chrysanthemum and roses. Chrysanthemum cultivars
tested with 4. tumefaciens Chry5 and B6 strains formed four susceptibility
groups: some cvs. were susceptible to both strains (1), others to Chry5
(2) or to B6 (3) only, and the remaining ones (4) did not respond to inocu-
lation with either strain. These differences were due to differences in T-
DNA transfer and/or integration (Bush and Pueppke, 1991b). Although the
rose cultivars were all susceptible, they exhibited significant differences in
the frequency of tumor formation and gall size (Reynders-Aloisi et al.,
1998). Resistance to crown gall has also been well established for grape-
vine (Vitis spp.). V. amurensis clones inherited resistance as a single Men-
delian trait (Szegedi et al., 1984; Szegedi and Kozma, 1984). The tested
Vitis genotypes exhibited three phenotypically different ‘resistance’ re-
sponses to Agrobacterium infection. One group formed opine-negative
wound calli. In the second group, wound sites contained opines, showing
that transformation had taken place without tumor growth and in the third
group, necrotic reactions occurred (Szegedi et al., 1989). These data sug-
gest that Vitis-Agrobacterium interactions depend on both the host and the
pathogen type. Further studies were carried out in South-Africa, Hungary,
USA, Switzerland, Germany and more recently in Iran, mainly to select
resistant rootstock genotypes and to get an insight into the nature of the re-
sistance (Ferreira and van Zyl, 1986; Goodman et al., 1993; Heil, 1993;
Siile et al., 1994; Stover et al., 1997b; Ehemann, 1998; Mahmoodzadeh
et al., 2004). These studies revealed additional promising rootstock hy-
brids, of which V. riparia cv. Gloire de Montpellier, 3309 C and Paulsen
were the most resistant. The genetic and physiological bases of crown gall
resistance in these Vitis genotypes are still unknown. In field experiments
the use of V. riparia cv. Gloire de Montpellier significantly reduced the
frequency of crown gall disease (Siile and Burr, 1998).

4.8 Introduction of crown gall resistance by genetic
engineering

In the near future, crown gall resistance might be achieved by genetic
engineering targeting virulence proteins and tumor functions that contrib-
ute to T-DNA transfer and crown gall formation, respectively. Targeting
host genes required for the nuclear transport and integration of T-DNA
into the plant chromosome may also be envisaged.
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4.8.1 Targeting T-DNA transfer and integration

Transport of the T-strand from Agrobacterium to the plant cell and in-
tegration in host DNA require two key proteins, VirD2 and VirE2 (see
Chapter 10). Expression of a mutated virE2 gene lacking the coding se-
quence for the ssDNA binding domain in transgenic tobacco significantly
reduced tumor formation upon inoculation with Agrobacterium (Citovsky
et al., 1994). This construct and additional truncated virE2 genes derived
from various strains were used to transform grapevines and several of the
selected transgenic lines showed reduced susceptibility to crown gall (Xue
et al., 1999; Holden et al., 2003). The mutated VirE2 protein probably
competes with functional VirE2 molecules in the plant cytoplasm.

The VirEl protein has been shown to bind to VirE2, probably to avoid
VirE2 self-aggregation, and can prevent binding of VirE2 to the T-strand
(Zhao et al., 2001). By blocking binding of VirE2 to the T-strand in the
plant cell, VirEl may interfere with its transport and integration into the
plant nucleus. Expression of the virEl gene in tobacco resulted in a sig-
nificant degree of resistance to A. vitis octopine strains (Szegedi et al.,
2001).

4.8.2 Inhibition of oncogene expression

Transgenes often inhibit the activity of homologous endogenous genes
by a phenomenon known as ‘silencing’. A 0.7 kbp partial sense iaaM
fragment from A. tumefaciens nopaline strain pTiPO22 prevented tumor
formation in tobacco and aspen (Ebinuma et al., 1997). More recently, re-
gions from the major oncogenes iaaM and ipt were cloned as inverted re-
peats on the same T-DNA. These constructs produced self-complementary
RNAs in tomato and Arabidopsis thaliana that triggered silencing of ho-
mologous wild type oncogene sequences, thus resulting in a high level of
crown gall resistance (Escobar et al., 2001). A transgenic tomato line ex-
pressing the self-complementary oncogenes showed resistance to 34
pathogenic Agrobacterium strains from each of the three biotypes (Escobar
et al., 2003). For efficient silencing of the iaaM oncogene the presence of a
translation start site is essential (Lee et al., 2003). Oncogene silencing has
already been used to produce crown gall resistant walnut (Escobar et al.,
2002) and apple rootstock (Viss et al., 2003).

4.8.3 Manipulating plant genes for crown gall resistance

Gelvin and coworkers (Nam et al., 1999) tested about 3000 T-DNA
tagged Arabidopsis mutants for susceptibility to Agrobacterium. About
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0.7% of them were resistant indicating that several plant genes are required
for Agrobacterium-mediated transformation. To date 126 mutants have
been selected from approximately 16,500 mutants (Zhu et al., 2003). These
studies may lead to candidate plant genes that can be targeted by antisense
or microRNA methods to develop new crown gall-resistant crop plants
(Gelvin, 2003; see also Chapter 13). Certain plant proteins contribute to
the transformation process through interaction with VirD2, VirE2 or VirB2
(Deng et al., 1998; Tzfira et al., 2001; Tzfira and Citovsky, 2002; Hwang
and Gelvin, 2004). The gene coding for the VirE2-interacting protein VIP1
has been cloned from an Arabidopsis cDNA library and transformation of
tobacco plants with an antisense VIPI gene construct resulted in resistance
to crown gall tumor formation. Agrobacterium resistance correlated with a
reduced level of VIPI transcription and protein synthesis (Tzfira et al.,
2001). These observations suggest that crown gall resistance can also be
achieved by inhibiting the synthesis of host proteins interacting with bacte-
rial virulence proteins that are essential for transformation.
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Chapter 2

A BRIEF HISTORY OF RESEARCH ON
AGROBACTERIUM TUMEFACIENS: 1900-1980s

Andrew N. Binns

Department of Biology and Plant Sciences Institute, University of
Pennsylvania, PA 19104, USA

Abstract. The study of tumorigenesis on plants as a result of their infection by Agrobacte-
rium tumefaciens has resulted in enormous advances in our understanding of interspecies
genetic transfer. This chapter seeks to trace the earlier studies (from the early 1900s up to
mid 1980s) that were involved in defining the biology, genetics and molecular biology of
this system. The analysis of these studies will be carried out with the objective of under-
standing how Agrobacterium has become not only a model system in bacterial pathogenesis
but also a key player in both basic plant molecular genetics and agricultural biotechnology.

1 INTRODUCTION

Nearly every person picking up this book already knows that virulent
strains of Agrobacterium tumefaciens and Agrobacterium rhizogenes have
the capacity to transfer DNA from their Ti or Ri plasmid into plant cells,
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incorporate this bacterial DNA into the plant chromosomes where its ex-
pression results in the formation of ‘crown gall tumors’ or ‘hairy roots’, re-
spectively. The various steps in this process will be examined in detail in
other chapters of this book. Having been asked to prepare a contribution
concerning a ‘historical view’ of Agrobacterium research I found myself
asking what that really means. My answer is to consider the current status
of Agrobacterium research and then look back at the literature for the his-
torical roots of such studies. What experiments led us in the directions we
now find ourselves pursuing? Are there other new directions that the ear-
lier studies might suggest?

Fundamentally, Agrobacterium research is now carried out on two
quite distinct fronts: first, as a model bacterial pathogen and second as a
gene vector for modern plant biology and agricultural biotechnology. In
terms of Agrobacterium as pathogen, important insights have been pro-
vided not only to the plant pathologists but those studying bacterial patho-
gens, generally. Examples of this include recognition of the host by the
pathogen, the mechanisms of DNA and protein virulence factor transfer
from pathogen to host and the ultimate selective advantage conferred upon
the pathogen by the transformation process including issues related to quo-
rum sensing and biofilm formation. Meanwhile, an entirely distinct direc-
tion of research is that which develops and utilizes Agrobacterium as a
means by which to create transgenic plants (and fungi!) for studies in vir-
tually all areas of modern plant biology and agricultural biotechnology.
Though these two major streams of research have distinctly different goals
and outcomes, they evolved from the same very modest beginnings and are
obviously linked together by a common biology. Moreover, they serve as
an important reminder of how basic research can lead to ideas and tech-
nologies never envisioned by the original students of the system. The ob-
jective here is to examine some of the critical studies that revealed the
‘common biology’ and yet moved the field in these distinct directions.

Obviously, space constraints will force a rather brief consideration of
these issues. Should the readers desire a more completely developed view
of the earlier studies on Agrobacterium, 1 encourage them to look at a book
published twenty five years ago, The Molecular Biology of Plant Tumors,
edited by Gunter Kahl and Jeff Schell (1982). This contains a series of
chapters reviewing much of the work done in the 1960s and “70s to eluci-
date the mechanism of transformation and tumorigenesis, as well as a re-
markable (and controversial) chapter by Armin Braun (1982) on the early
history of crown gall research.
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2 AGROBACTERIUM—THE PATHOGEN

2.1 Early studies

As described in the first chapter of this volume, the “crown gall” dis-
ease of higher plants was a particular problem in orchards and vineyards,
though a wide variety of plants were known to develop distinct ‘galls’. The
earliest work identifying bacteria as the cause of these galls, in contrast to
the then known limited galls produced as a result of insect or nematode in-
fection, was published by Cavara (1987) who isolated ‘white bacteria’ that
would give rise to galls when inoculated on plants. A much more thorough
(and apparently independent — see Braun, 1982) characterization of the cau-
sal agent of the crown gall disease was published by Smith and Townsend
(1907) in which many of the characteristics of the inciting bacterium (named
then as Bacterium tumefaciens) were described including its rod shape, size,
polar flagella and inability to grow well at 37°C (‘blood temperature’). The
debate over the nomenclature of Agrobacterium species still exist (Box 2-1
and Chapter 5), and for simplicity, [ will refer to Agrobacterium tumefaciens
as the causal agent of crown gall tumors and Agrobacterium rhizogenes as
the causal agent of the hairy root disease throughout the course of this
chapter.

The nomenclature of Agrobacterium species (and genus) has
changed several times over the past 100 years. Virulent strains have
been called Bacterium tumefaciens, Phytomonas tumefaciens,
Agrobacterium tumefaciens, Agrobacterium rhizogenes, and
Rhizobium rhizogenes whereas non virulent strains have been called
Bacterium radiobacter and Agrobacterium radiobacter.

Young et al. (2001) proposed that the Agrobacterium genus, a
member of the Rhizobiaciea, be renamed as a member of the
closely related Rhizobium genus and also proposed renaming the
species.

Farrand et al. (2003) argue that sufficient differences exist between
Rhizobium and Agrobacterium such that the genus names should
not be changed.

Box 2-1. Agrobacterium nomenclature.
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Through the next thirty years studies on the crown gall disease de-
scribed the responses of many plants to various different field isolates,
generally concurring with the observations of Smith and Townsend. Of
particular interest amongst these early papers were the descriptions by
Smith (1916) and later Levin and Levine (Levin and Levine, 1918; Levine,
1919) of ‘teratomas’ — spontaneously shoot forming tumors — that could be
isolated on certain plants by certain bacterial isolates (see below). Never-
theless, despite a good deal of speculation about the relationship of crown
gall tumors of plants to neoplasias of animals, no particular insights into
the mechanism whereby A. tumefaciens might be inducing tumors were
developed.

The prospects for progress improved as physiological and genetic tools
in both plant biology and bacteriology were developed. During the period
of time from 1923-1941 the studies by the Riker lab at UW-Madison did a
great deal to the set the stage for future studies, particularly by Braun,
which ultimately established Agrobacterium-mediated tumorigenesis as a
fundamental biological system. Amongst these studies, Riker found that (i)
bacteria could be added to wounds after as long as 4-5 days and still yield
tumors (Riker, 1923b); (ii) elevated temperature (32°C) appeared to abol-
ish the capacity of the bacterium to induce tumors, even though neither
plant nor bacterial growth were significantly effected (Riker, 1926); and
(iii) an ‘attenuated’ strain (A6-6, derived from wild type strain A6) was
isolated that, induced significantly smaller tumors which had lower levels
of auxin than wild type tumors, could grow to full size if inoculated below
a virulent tumor, and, when inoculated on decapitated tomato plants, pro-
duced shoot forming tumors (Hendrickson et al., 1934; Locke et al.,
1938)). In fact, Locke et al. (1938) showed that the attenuated culture
stimulates bud development distal to the tumor (we now know these results
from the cytokinin produced by such tumors, see below). This attenuated
strain is the first mutant strain of Agrobacterium (to which I could find ref-
erence) that affected tumorigenesis and it was subsequently used in both
physiological and molecular genetic studies (Braun and Laskaris, 1942;
Binns et al., 1982 and see below).

2.2 Agrobacterium ‘transforms’ plant cells

The lack of progress in understanding the mechanism of crown gall
tumorigenesis was reversed through a series of ground-breaking studies by
Armin C. Braun at the Rockefeller Institute (which later became the
Rockefeller University) from the 1940’s through the 1970s. The first set of
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these established a quite surprising fact: the continuous proliferation of
crown gall tumors did not require the continued presence of the inciting
bacterium. One early clue of this had been the difficulty with which a vari-
ety of workers had in isolating Agrobacterium from primary tumors (for
details see Braun 1982). Additionally, Smith et al. (1912) had previously
reported that ‘secondary’ tumors could arise at some distance from the
primary inoculation site in at least some plants. Braun and Phillip White
(also at the Rockefeller Institute) collaborated, using both plant tissue cul-
ture techniques being developed by White and grafting and tumor induc-
tion techniques being used by Braun, to show that the secondary tumors of
sunflower could grow continuously in culture on a defined medium that
did not support the growth of non-transformed plant tissues (White and
Braun, 1941; Braun and White, 1943). Importantly, no bacteria could be
isolated from these cultured tumors. When small fragments (~20-40 mg) of
such cultured tissues were grafted back onto a healthy host, bacteria-free
tumors would develop as if from an inoculation. Later studies also demon-
strated that bacteria-free primary tumors could be isolated and these, too,
could grow continuously in culture conditions that did not support growth
of normal tissues (Braun, 1943, 1951a). Together the results from these
experiments demonstrated that crown gall tumors do not require the pres-
ence of the bacteria to be active neoplasias.

These studies spurred Braun to further define the nature of the event
and the roles played by both the plant and the bacterium in the process.
One of the studies I find most insightful is that of Braun and Laskaris
(1942) examining the attenuated strain A6-6 (A66) isolated by Riker as de-
scribed above. They confirmed several of the observations by Riker: in-
oculation of intact plants by the A66 strain resulted in small, slow growing
tumors whereas inoculations just under sites of decapitation resulted in vir-
tually no tumor formation. Additionally, shoot forming tumors were also
observed. A major difference however, was that the application of two dif-
ferent synthetic auxins (naphthalene acetic acid and indole butyric acid) to
the decapitation site just above sites inoculated with strain A66 resulted in
the formation of large, tumorous growths, whereas auxin application, by it-
self, had only a small growth effect on mock inoculations. Moreover, the
auxin-stimulated A66 tumors were capable of forming transplantable
tumors, that is, when grafted onto a healthy — intact — host plants they con-
tinued to grow and divide. These results led Braun and Laskaris (1942) to
two quite remarkable insights. First, they proposed that there are two
phases in the process of tumor formation: ‘inception’ followed by ‘stimu-
lation’ to continued multiplication by growth substances. The attenuated
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culture appeared capable of the former but was deficient in the latter unless
auxin was provided, either from endogenous auxin of the intact plant or via
exogenous supplement to the decapitated stem above the infection site. We
now know, of course, that the “inception” phase represents the transfer of
the T-DNA into plant cells and its integration into chromosomes while the
“stimulation” phase is the result of production of plant growth substances
via enzymes encoded on the T-DNA. Second, because auxin application,
alone, to the tomato stem did not result in continuous growth and cell divi-
sion, Braun and Laskaris (1942) reasoned that two (or more) growth sub-
stances must be involved in tumor growth. We now know that two plant
hormones, the auxins and cytokinins, are indeed required for continuous
cell proliferation by non-transformed cells but not by tumors induced by
wild type strains (Skoog and Miller, 1957; Braun, 1958) and these are pro-
duced by crown gall tumor cells (see below). Finally, molecular genetic
analysis of strain A66 demonstrated that it carries an insertion element in
one of the two genes of the T-DNA that encodes enzymes required for
auxin biosynthesis (Binns et al., 1982) by the transformed cells.

2.3 The “Tumor Inducing Principle” (TIP)

The results described above indicate that the continuous presence of the
bacteria is not required for tumorous growth and that the ‘inception’ and
‘growth stimulation’ phases are distinct. They did not, however, address
the mechanism of tumor inception. How and when does this occur? What
activities of the plant and bacteria are required? Braun (1943) utilized a
temperature regime (originally developed by Kunkel (1941) to eliminate
viral infections) whereby periwinkle (Vinca rosea) plants inoculated with
virulent agrobacteria were incubated at 46°C for 5 days at various times af-
ter inoculation and then returned to 25°C. The high temperature is lethal to
the bacteria but not the plant. He discovered that as long as the infected
plants were held at 25°C for 36-48 hrs after inoculation prior to a 5 day
heat treatment, tumors would develop but they would be free of bacteria,
confirming that the bacteria are not needed for tumor proliferation. How-
ever, if inoculated plants were held for times less than 30 hrs at 25°C prior
to heat treatment, few or no tumors would arise. As noted above, Riker
(1923b) had shown that after ~ 5-7 days wound sites become much less re-
sponsive, and ultimately non-responsive, to the bacteria. Taken together
these results strongly suggested that the continuous proliferating state of
crown gall tumor cells was a result of a ‘transformation’ of the plant cells
during a very short period of time after infection at a wound site.
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Subsequently, Braun (1947, 1952) and Braun and Mandle (1948) took
advantage of Riker’s observation that 32°C treatment disrupts the trans-
formation process in a series of temperature shift experiments. Two fun-
damental findings were reported. First, a period of wound healing — at
either 25 or 32°C — must precede the actual transformation process but the
latter can only occur at 25°C. Second, the transformation can occur in as
little as 10-12hrs as long as the plant had 30-96 hrs of time to respond to
the wound at an inoculation site. As the period of wound healing increased
so to did the magnitude of the tumor response, even when the inoculated
plants were transferred to 32°C after only 24 hrs at 25°C. The conclusions
from these studies were that the wound healing process was necessary in
order to provide an environment in which the bacteria could produce what
was termed an “active principle” (Braun, 1947) or “tumor inducing (trans-
forming) principle” (Braun and Mandle, 1948). This principle then acts on
the plant cells in a fairly short period of time, resulting in their transforma-
tion to the tumorous state. The role of the wound in transformation by
Agrobacterium continues to intrigue current students in the field (e.g.
Brencic et al., 2005; McCullen and Binns, 2006). Clearly, phenolics neces-
sary for the induction of the virulence genes of the Ti plasmid (see other
chapters in this volume) are produced in high quantities at wound sites
(Baron and Zambryski, 1995). Are other aspects of wound healing, for ex-
ample, cell division, also influential in optimizing the transformation proc-
ess? And if so, how? These are questions still to be answered.

What is the tumor inducing principle (TIP)? The fundamental possibili-
ties were outlined by Braun (1947): The TIP “...may fall into one of the
following categories: (i) a metabolic product of the crown gall bacterium;
(i1) a normal host constituent that is converted by the bacterium into a tu-
mor-inducing substrate; (iii) a chemical fraction of the bacterial cell that is
capable of initiating, as in the case of the transforming substance (desoxy-
ribonucleic [sic] acid) of the pneumococci, a specific alteration in the host
cell with a resultant consistent, and in this case abnormal, development of
these cells; (iv) a virus or other agent which is present in association with
the crown gall organism.” Nearly thirty years would pass before the mo-
lecular basis of the tumor inducing principle was elucidated.

2.4 Identification of T-DNA from the Ti plasmid as the “TIP”

While Braun’s studies paved the way for analysis of the crown gall
problem, the solution to the identification of the TIP ultimately required
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technologies not available until the mid-late 1970s. Braun spent a signifi-
cant portion of the latter stages in his career supporting an ‘epigenetic’
model of tumor initiation in which the bacterium was envisioned as induc-
ing an autocatalytic pattern of gene regulation that was involved in pro-
moting cell division (see Braun, 1981). This hypothesis stemmed from two
major factors. First, molecular studies of the time attempting to use iso-
lated nucleic acid fractions from virulent strains to transform plant cells
were unsuccessful or not repeatable. Second, in some cases cultured plant
cells, after exposure to prolonged culture or in response to specific induc-
ing conditions, could exhibit hormone independent growth (termed ‘ha-
bituation’) and this phenotype was readily reversible as a result of plant
regeneration (e.g. see Meins and N., 1978). Third, Braun had discovered
that at least in some instances transformation of the plant cells by Agro-
bacterium left them totipotent: normal, fertile plants could be regularly ob-
tained from single cell clones of certain tumors (Braun, 1959; Braun and
Wood, 1976 and see below).

The epigenetic model, however, was seriously challenged with the
identification of an unusual amino acid derivative — lysopine — in crown
gall tissues (Lioret, 1957) but not in non-tumorous tissues. This work was
followed up by the pivotal studies emerging from Morel and colleagues
demonstrating not only the existence of a variety of novel amino acid de-
rivatives (termed, generically, opines) in crown gall tumors but also the
strain-specificity of their occurrence (Goldmann et al., 1968; Petit et al.,
1970). For example, strains A6 and B6 yielded tumors that contained oc-
topine (a condensation product of arginine and pyruvate) whereas strains
T37 and [IBV7 contained nopaline (condensation product of arginine and
o-ketoglutarate). These opines, as well as numerous others that have been
described since, are specific for crown gall tumors: non-transformed plant
cells do not make them. Note that while there were, during the 1960s and
“70s, several reports of non-transformed cells producing opines, virtually
every report of this has been shown to have some flaw (for review see
Tempe and Goldmann, 1982). The strain specificity of opines produced by
tumors led Goldmann et al., (1968) to conclude: “Cette observation est en
faveur de I’hypothése du transfert d’une information spécifique perma-
nente de la bacterie dans la cellule vegetale, au cours de la transformation
tumorale”. The most obvious example of permanent, specific information
from the bacteria was, of course, DNA.

Adding to the intrigue of the opines being produced by crown gall tu-
mors was the finding that if the bacteria causes the synthesis of a particular
opine it is able to utilize that opine as a carbon and nitrogen source
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(Lejeune and Jubier, 1967; Petit et al., 1970). These results were widely
considered as indicating that genes within the specific strains were respon-
sible for both the tumorous phenotype, the type of opine synthesized by
that tumor and the catabolism of that opine by the bacteria. In particular,
Petit and Touneur (1972) carried out repeated platings in medium with oc-
topine as sole nitrogen source and observed occasional small colonies that
had lost both virulence and the capacity to degrade octopine. They sug-
gested that such a genetic linkage between these two phenotypes could be
in the form of a plasmid (“episome”). This was consistent with both the
report by Hamilton and Fall (1971) that growth of a virulent 4. tumefa-
ciens strain (C58) at 35°C lead to a consistent loss of virulence. The possi-
bility of a plasmid controlling virulence was also consistent with the report
by Kerr (1969) of the transfer of virulence from a virulent bacterium to an
avirulent one if they were co-resident in a tumor induced by the virulent
strain.

The experiments described above showing that strain-specific opines
are present in tumors suggested that a genetic transfer might be occurring.
Consistent with this were the observations reported by the Lippincotts
strongly suggesting that bacterial attachment to plant cells is critical for
plant transformation by Agrobacterium. In these studies, mixtures of viru-
lent and avirulent Agrobacterium strains were tested for their capacity to
elicit tumor formation (Lippincott and Lippincott, 1969): while avirulent
Agrobacterium strains would interfere with tumor formation by virulent
strains, unrelated, or distantly related, bacterial species would not. Subse-
quent experiments demonstrated that incubation of a virulent Agrobacte-
rium strain with plant cell wall fractions — which would contain such
binding sites — resulted in substantially reduced tumor formation (Lippincott
et al., 1977; Lippincott and Lippincott, 1978). Together, these results sug-
gested that A. tumefaciens binding to specific sites on plant cell walls is
required for tumorigenesis. Later studies using a direct binding assay dem-
onstrated that, indeed, there are a saturable number of Agrobacterium
binding sites on plant cells (Neff and Binns, 1985). While these sites have
not been identified, genomic approaches now present significant new op-
portunities for their characterization (e.g. Zhu et al., 2003).

Thus, by the early 1970s the evidence strongly indicated that (i) plant
cells were transformed, somehow, by virulent strains of Agrobacterium
through the activity of TIP, (ii) the type of opine produced by the tumors
and utilized by the bacteria were specified by the bacteria and genetically
linked; and (iii) an intimate association of bacteria and plant cell was im-
portant for transformation. This suggested that some type of genetic
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element might be the TIP and that DNA might be moved into the plant
cells. One candidate was a prophage, PS8, found in many Agrobacterium
strains. While a variety of studies claimed that this, or other DNA from
Agrobacterium, was found in sterile crown gall tumors all of them were,
for one reason or another, not able to supply convincing evidence. An ex-
cellent review by Drilica and Kado (1975) goes over the various experi-
mental and technical issues surrounding these experiments.

The pivotal experiments underlying the discovery of the TIP came with
the discovery of large plasmids in virulent strains for Agrobacterium tume-
faciens by Schell and Van Montagu and colleagues. They reasoned that a
potentially important (for virulence) but cryptic prophage might be present
as a plasmid or reside on a plasmid (Zaenen et al., 1974). A systematic
search for plasmids in various virulent and avirulent Agrobacterium strains
was carried out utilizing a variety of gradient centrifugation protocols de-
veloped in the late 1960s and early 1970’s for the study of plasmids from
E. coli. The results were startling: the presence of one or more large plas-
mids was completely correlated with virulence — all 11 virulent strains
tested carried such plasmid whereas all 8 avirulent strains did not. The
presence of various phages, prophages or defective phage-like particles, on
the other hand, was not correlated with virulence. Zaenen et al. (1974)
proposed the following hypothesis: “The tumor-inducing principle (Braun,
1947) in crown-gall inducing Agrobacterium strains is carried by one or
several large plasmids of various lengths”. Intense testing of this hypothe-
sis commenced immediately. Van Larebeke et al. (1974) took advantage of
the observations of Hamilton and Fall (1971, see above) to show that
strains made avirulent by heat curing lacked the large plasmid seen in the
virulent strain. These investigators termed this plasmid the ‘tumor-
inducing plasmid”. Finally, Van Larebeke et al. (1975) and Watson et al.
(1975) both demonstrated that the conversion of a non-virulent Agrobacte-
rium strain to a virulent one, via the method of virulence transfer discov-
ered by Kerr (1969, see above), was accompanied by the acquisition of the
large plasmid. Opine production and utilization specificity accompanied
the plasmid transfer as well (Bomhoff et al., 1976) . Shortly after the iden-
tification of the Ti plasmid as critical for A. tumefaciens virulence, a simi-
lar “root-inducing” (Ri) plasmid was demonstrated in A. rhizogenes
(Moore et al., 1979; White and Nester, 1980).

Thus, by 1975 it had become clear that genetic determinants for viru-
lence, opine production and opine utilization are carried on the tumor in-
ducing (Ti) plasmids. The production by the tumors of opines not found in
non-transformed tissues strongly suggested that there is a transfer of
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genetic information from the bacterium into the plant. Yet the possibility
that a factor or factors encoded on the plasmid could induce epigenetic
changes resulting in tumor proliferation and expression of cryptic plant
genes involved in opine production could not be excluded. The hunt was
on for evidence of the Ti plasmid in bacteria-free crown gall tumor lines.
Studies from the Nester lab (Chilton et al., 1974) and the Schilperoort lab
(Dons, 1975) found no evidence of the Ti plasmid in such lines, even un-
der conditions that allowed the detection of one copy of the Ti plasmid per
tobacco tumor cell. This did not, however, eliminate the possibility that
only part of the Ti plasmid was transferred into the plant cell. The ultimate
solution to this problem came with the utilization of the, then, recently dis-
covered restriction enzymes to digest the Ti plasmid into numerous smaller
fragments. Chilton et al. (1977) isolated such fragments and used them, in-
dividually, in solution hybridization studies with DNA from tobacco
crown gall tumor lines or non-transformed tobacco tissue culture lines. The
results were unequivocal: Smal fragment 3c of the Ti plasmid from strain
B6 hybridized to DNA in the B6 induced, octopine producing tobacco tu-
mor line, E9, that had been grown, bacteria-free, in culture for several
years; moreover, it did not hybridize with DNA from non-transformed cell
lines (Chilton et al., 1977). These authors stated: “Our results suggest that
the tumor inducing principle first proposed by Braun (1947) is indeed
DNA as many investigators have long suspected”.

2.5 The T-DNA of the Ti plasmid: Structure, function
and transfer

The work described above demonstrated the critical importance of the
Ti plasmid in tumorigenesis and the fact that a portion of it is delivered to,
and maintained in, transformed plant cells. Three critical questions were
subsequently addressed: What, exactly, is the T-DNA and where does it
reside? How does the T-DNA result in tumorous growth? What functions
encoded by the Ti plasmid — and the chromosome — are necessary for T-
DNA transfer and how do they carry out this function? Genetic, molecular
and biochemical approaches to these problems ultimately have answered
the first two of these questions and made major inroads on the third. (Sev-
eral of the chapters in this volume will review these questions in more de-
tail than space here can provide.). In relation to the first question, Chilton
et al. (1978) and DePicker et al. (1978) simultaneously reported the obser-
vation of ‘common’ DNA in the T-DNA of octopine and nopaline type
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tumors with the latter study also demonstrating that an insertion (of RP4)
in this region resulted in a loss of virulence. Southern blot analysis was
soon applied to the T-DNA problem and it quickly became apparent that
the T-DNA in crown gall tumor lines contained both this common DNA as
well as non-conserved DNA that we now know encodes the synthesis of
opine biosynthetic enzymes (Lemmers et al., 1980; Thomashow et al.,
1980a). The T-DNA was found integrated into the nuclear genome
(Willmitzer et al., 1980; Chilton et al., 1980). Southern blot analysis, and
cloning and sequence analysis of fragments of integrated T-DNA, as well
as the Ti plasmid, revealed that the boundaries of the T-DNA were marked
by 23 bp direct repeats in all Ti plasmids and that the T-DNA could be in-
serted in both repeated and unique host DNA, that is, approximately ran-
domly (Lemmers et al., 1980; Thomashow et al., 1980b; Yadav et al,,
1980; Zambryski et al., 1980; Yadav et al., 1982; Barker et al., 1983;
Wang et al., 1984). This latter observation proved crucial in the ultimate
development of Agrobacterium as an agent of insertional mutagenesis that
has proven so powerful in modern plant molecular genetics (see Alonso
and Stepanova, 2003 for review).

Genetic and molecular analysis of the Ti plasmid revealed two basic
sets of mutations in relation to virulence. First, insertions at various sites
within the common region of the T-DNA affected tumor growth and mor-
phology (Garfinkel et al., 1981; Ooms et al., 1981; Binns et al., 1982;
Leemans et al., 1982; Binns, 1983). Depending on the site of insertion,
these mutant T-DNAs cause either root or shoot forming tumors in to-
bacco, and this immediately led to the proposal that mutations leading to
shoot forming tumors cause a deficiency in auxin accumulation whereas
those mutations leading to root forming tumors cause a deficiency in cyto-
kinin accumulation (e.g. Akiyoshi et al., 1984; van Onckelen et al., 1984).
Mutations at both of these loci rendered the strain avirulent (Hille et al.,
1983; Ream et al., 1983). Molecular analysis revealed the presence of
polyadenylated transcripts from these loci as well as from the loci encod-
ing opine synthesis (Willmitzer et al., 1982; Willmitzer et al., 1983). Sub-
sequent biochemical and sequence analysis demonstrated that, in fact, a
two step auxin biosynthesis pathway is encoded on the T-DNA (Inz¢ et al.,
1984; Schroder et al., 1984; Thomashow et al., 1984; Thomashow et al.,
1986; van Onckelen et al., 1986) as is a one step synthesis of cytokinin
(Akiyoshi et al., 1984; Barry et al., 1984; Buchmann et al., 1985). Other
genes in the common DNA were discovered that appear to have functions
that modify or indirectly affect hormone production and/or response.
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The second critical set of genes on the Ti plasmid were those shown to
be outside of the T-DNA but required for its transfer into plant cells, first
examined in the Schilperoort and Nester labs (Garfinkel and Nester, 1980;
Ooms et al., 1980; Klee et al., 1983). Importantly, work from the Schil-
peroort lab showed that these genes in the “virulence” (vir) region of the Ti
plasmid work in frans to the T-DNA (Hoekma et al., 1983), a fact that has
become very useful in the development of Agrobacterium as a vector (see
below). Chromosomal genes were also discovered to be important in the
processes leading to T-DNA transfer (Garfinkel and Nester, 1980) includ-
ing some necessary for attachment of the bacterium to the plant cell
(Douglas et al., 1982). Finally, the landmark works of Stachel and Nester
(Stachel and Nester, 1986), and Zambryski and colleagues (Stachel et al.,
1985; Stachel et al., 1986; Stachel and Zambryski, 1986; Stachel et al.,
1987) identifying the VirA/VirG two component regulatory system that
controls vir gene expression as well as the discovery of a single stranded
DNA intermediate (the T-strand) set the stage for work on the virulence
region for the next two decades. As will be described in considerable detail
in other chapters of this volume, these experiments as well as those from
many other labs, defined the vir-region genes that are required for host
recognition, the gene products required for production of the T-strand sub-
strate (as well as other transported virulence effectors) and the mechanism
of T-strand and protein transfer into the plant cell. Perhaps the most strik-
ing aspect of studies on the virulence region is that they have moved A.
tumefaciens into the position of a model for pathogenic bacteria in general.
For example, the VirA/VirG two-component system that regulates viru-
lence gene expression is now recognized as the best developed such sys-
tem that responds to multiple host-derived signals. Even more impressive
has been the characterization of the Type IV secretion system (VirB com-
plex) that mediates transfer of virulence factors to eukaryotic host cells.
This clearly serves as one of the model Type IV secretion systems used by
bacteria in both pathogenesis and interbacterial conjugation. Both of these
are topics of other chapters in this volume.

3 A. TUMEFACIENS AS THE VECTOR OF CHOICE
FOR PLANT GENETIC ENGINEERING

As the biology of 4. tumefaciens mediated transformation was coming
to be understood, so to were the underlying features of the system that
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have allowed it to become the vector of choice for gene transfer experi-
ments in current plant biology and agriculture. As described above, the
study of Agrobacterium, the pathogen, led us to understand that 4. tumefa-
ciens moves DNA into plant cells and converts them into a population of
dividing cells that are dedicated to the production of opines, a source of ni-
trogen and carbon that can be used by the inciting bacterium, but not by
the plant. This is an exquisite system that could be called ‘nature’s first
plant genetic engineer’. The major question confronting students of A. fu-
mefaciens in the late 1970’s and early ‘80s was whether this capacity could
be exploited to direct the transfer of a specific gene, or genes, selected by
an investigator, into a plant and specifically into the germ line of a plant.
The convergence of ever-more sophisticated plant cell culture protocols
combined with the molecular genetics of the Agrobacterium system al-
lowed this field to progress rapidly.

3.1 Setting the stage—the analysis of crown gall teratomas

Not surprisingly, the origins of such work trace back to studies by
Armin Braun in the late 1940s and early ‘50s. He had become interested in
a class of crown gall tumors observed by Smith (1916) and Levin and
Levine (Levin and Levine, 1918; Levine, 1919) that spontaneously formed
a chaotic assemblage of differentiated tissues (leaves, shoot-like structures,
etc) and were termed teratomas. A great deal of the early debate centered
on the question of whether these differentiated structures were tumor cells
that had differentiated or were non-transformed cells that differentiated
abnormally under the influence of the tumor. Evidence for the former was
that inoculations of, for example, decapitated stems would lead first to an
unorganized tumor which would subsequently form differentiated tissues
(Levin and Levine, 1918). On the other hand, inoculations near axillary
buds would affect their development, particularly after decapitation.
Braun’s earliest work on this topic (Braun, 1948) demonstrated that some
strains, e.g. T37, induced teratomas on Kalanchoe daigremontiana whereas
other strains, e.g. B2, B6,induced typical unorganized tumors. (The earlier
studies reporting on teratoma formation did not always specify strains used
in their inoculations, though Smith (1916) reported using a “hop strain”).

Braun (1948) took advantage of the interesting developmental pattern
exhibited by Kalanchoe leaves — they form new plantlets at their margins
via vegetative reproduction — in an attempt to understand whether the dif-
ferentiated tissues of the T37 induced teratomas were normal or tumorous.
Leaves from the teratomas exhibiting varying degrees of normalcy were
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cultured on White’s basic medium and plantlets originating from them
characterized. Growths from these leaf margins ranged from tumor-like
growths to abnormal plantlets with no root system, to very occasional
plants with a complete root system. Even though the original teratomic
leaves arose from the tumor, Braun noted that these results could be
“...explained on the basis of a mixture of tumor and normal cells in the
same structure”. Similar results were obtained when T37 induced terato-
mas of tobacco were studied (Braun, 1951b), though the extent to which
tissue culture and grafting studies could be utilized were much greater than
with Kalanchoe. For example, the original teratomas could be cultured
over a period of years and still maintain the teratogenic phenotype, but
never made root-derived structures. Procedures in which shoot buds from
the teratomas were ‘scions’ in grafts to normal tobacco plants as ‘stock’
yielded normal appearing shoots (Braun, 1951b). Tissues from these
shoots, when returned to culture, reverted to the teratomatous phenotype.
Intriguingly, these shoots were fertile and the progeny were completely
non-tumorigenic — they formed roots and appeared to have ‘recovered’
from the effects of the TIP (Braun, 1951b). These data appeared to support
the hypothesis that the TIP might be some type of cytoplasmic self-
duplicating entity that could be ‘diluted’ away as a result of forcing rapid
growth of the teratoma derived buds. However, it was not until 8 years
later, with the advent of single cell cloning procedures, that Braun (1959)
could conclude that the capacity of teratoma tissues to generate highly dif-
ferentiated, organized tissues “...is a reflection of the inherent potentiali-
ties of pluripotent tumor cells and not the result...of a mixture of normal
and tumor cells”. Moreover, grafted shoots derived from the single-cell
cloned teratoma lines were, as in the earlier study, fertile and progeny from
them were normal in every respect (Braun, 1959).

3.2 Fate of the T-DNA in plants regenerated from
A. tumefaciens-transformed cells

The results described above indicated that transformation by A. tumefa-
ciens does not necessarily result in permanent changes in the plant genome
that keep it from being a completely normal cell. As the role of the Ti
plasmid and T-DNA in tumorigenesis was elucidated, one important ques-
tion became: what is the status of the T-DNA in the grafted teratoma
shoots and in the progeny? Braun and collaborators used a series of bio-
logical, biochemical and, ultimately, molecular assays on teratomas in-
duced by strain T37 to address the issue. They found that the grafted
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teratoma shoots contained nopaline (Braun and Wood, 1976). Moreover,
all the specialized tissues and/or cells of these grafted shoots had the ca-
pacity to revert to the tumorous state when returned to culture (Braun and
Wood, 1976; Turgeon et al., 1976; Wood et al., 1978; Binns et al., 1981).
The oncogenic properties of the T-DNA had, somehow, been suppressed,
allowing for the differentiation of specialized tissues but, intriguingly,
these shoots could still express the T-DNA encoded enzyme necessary for
opine synthesis (Wood et al., 1978). This was very good news for those
proposing that the A. tumefaciens T-DNA could be a useful system for
plant genetic engineering: here was foreign DNA in a normal shoot syn-
thesizing a functional, foreign genome encoded enzyme (nopaline syn-
thase).

The major problem, however, was the fact that although these T37
transformed, grafted shoots were fertile, the progeny, as originally de-
scribed by Braun, were completely normal: they made roots, did not syn-
thesize nopaline and tissues from them did not grow in culture as tumors
(Braun and Wood, 1976; Binns et al., 1981). Moreover, Southern blot
analysis of the progeny tissues indicated they did not contain the T-DNA
(Yang et al., 1980). Was the genome being actively scanned for foreign
DNA, which was somehow removed during meiosis? Or, were the cells
that received the oncogenic DNA after meiotic segregation incapable of
becoming functional germ cells? Evidence for the latter came from a series
of experiments in which the more usual unorganized tumors induced by
octopine strains such as B6 were treated with conditions that normally in-
duce shoot formation in non-transformed tissues. Occasional regenerants
were observed, and these had generally lost the T-DNA, though in one par-
ticular case the opine synthesizing portion of the T-DNA was retained,
and, more importantly, it was passed on to its progeny (De Greve et al.,
1982). This strongly suggested that if the T-DNA were made incapable of
causing tumors, for example by mutagenizing the common or oncogenic
DNA, then transmission to progeny would likely occur. This was predi-
cated on the notion that transformation by the non-oncogenic strain could
still occur — a good bet given Braun’s early work distinguishing inception
vs growth (see above).

Of course, the big problem with such a strategy was in the identifica-
tion of cells transformed by non-oncogenic strains: without the tumorous
phenotype the transformed cells would not be at a selective advantage and
therefore be difficult to find. However, opine synthesis could be observed
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in plant tissues transformed strains carrying Ti plasmids with insertion
mutations in the common DNA that rendered the strain avirulent — that is
no tumors were produced (Barton et al., 1983; Hille et al., 1983; Ream
et al., 1983). Barton et al (1983) screened for nopaline production in tis-
sues from tobacco stem segments transformed with strain T37 that carried
an engineered insertion in the cytokinin locus of its T-DNA. Such tissues
were cultured, single cell cloned, and the nopaline positive clones were
treated with standard tobacco shoot regeneration protocols. The resultant
shoots were capable of forming roots, contained the full length T-DNA,
synthesized nopaline and, importantly, transmitted the full length T-DNA
to the progeny (Barton et al., 1983).

3.3 Construction of selectable markers provides the capacity
to easily identify transformed cells carrying
non-oncogenic T-DNA

Clearly, Agrobacterium could be used to regularly generate transgenic
plants. But the opine screening protocol was tedious and labor intensive.
The next steps setting the stage for current use of Agrobacterium as a vec-
tor were (i) the development of selectable markers that could be used to
identify transformed plant cells without affecting the regenerative potential
of the host and (ii) the removal of all the oncogenes without affecting T-
DNA transfer. Studies on the expression of the T-DNA in tumors revealed
that the opine synthesis genes were highly expressed (Willmitzer et al.,
1982; Willmitzer et al., 1983). This suggested that their promoters could
be used to drive expression of, for example, antibiotic resistance genes that
would protect transformed plant cells from the normally toxic effects of
molecules such as kanamycin. Such studies were accomplished nearly si-
multaneously in the labs of Van Montagu and Schell in Ghent and Koéln
(Herrera-Estrella et al., 1983), Fraley and colleagues in St. Louis (Fraley
et al., 1983) and Bevan and colleagues in Cambridge (Bevan et al., 1983).
Once available these were immediately transferred into the T-DNA of ap-
propriately disarmed Ti plasmids (lacking both the auxin and cytokinin
biosynthesis genes) and used to select for transformed cells that could be
regenerated into fertile transgenic plants that would transmit the engi-
neered DNA to their progeny (Zambryski et al., 1983; Horsch et al., 1984).
The development and refinement of these strategies is detailed in Chapter 3.
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4 CONCLUSIONS

I would argue that this brief examination of the ‘history of crown gall
research’ has supported lessons that actually have been taught over and
over again. First, an intriguing biological problem is important to study
even when the ideas foremost in the thoughts of the investigator(s) may ul-
timately prove incorrect. Smith, for example, was convinced that studies
on crown gall would reveal that bacteria were a cause, generally, of can-
cers in animals as well as plants. Braun was equally certain, based on the
studies demonstrating the reversal of the tumorous phenotype, that crown
gall specifically, and many cancers generally, were the result of epigenetic
changes induced by the causal agent. Though these hypotheses were dis-
proven, the science that generated them was extremely solid and provoked
other, equally solid science that ultimately unraveled the story as we now
know it. The second major lesson is that key advances in crown gall re-
search have been (and continue to be) driven by technological advances in
other arenas of science. In the case of crown gall these include: the devel-
opment of sterile technique and various other microbiological methodolo-
gies used in the elucidation of Agrobacterium as the causal agent of crown
gall; the advance of plant tissue culture techniques in studies demonstrat-
ing bacteria-free crown galls grow autonomously and hence are trans-
formed as well as those studies related to the regeneration of transgenic
plants; the biochemistry of amino acid and metabolite analysis used to un-
ravel the opine issue; and the methodologies of plasmid characterization,
restriction enzymes, transposon mutagenesis and sequence analysis so
critical in the understanding of the Ti plasmid and its role in tumorigenesis.
Of course the role of advances in technology as drivers of science is obvi-
ous, but it certainly is useful and interesting to see the advances at work as
the best minds in the field sought to unravel the incredible biological activ-
ity of Agrobacterium tumefaciens and develop it into a tool that is so criti-
cal to modern plant biology and agricultural biotechnology.
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Abstract. Agrobacterium-mediated transformation has revolutionized agriculture as well as
basic research in plant molecular biology, by enabling the genetic modification of a wide
variety of plant species. Advances in binary vector design and selection strategies, coupled
with improvements in regeneration technology and gene delivery mechanisms, have dra-
matically extended the range of organisms, including grains, that can be transformed. Re-
cent innovations have focused on methods to stack multiple transgenes, to eliminate vector
backbone sequences, and to target transgene insertion to specific sites within the host ge-
nome. Public unease with the presence of foreign DNA sequences in crop plants has driven
the development of completely marker-free transformation technology and molecular
strategies for transgene containment. Among the many useful compounds produced in ge-
netically modified plants are biodegradable plastics, primary and secondary metabolites
with pharmaceutical properties, and edible vaccines. Crop plant productivity may be im-
proved by introducing genes that enhance soil nutrient utilization or resistance to viral,
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bacterial, or fungal diseases. Other transgenes have been shown to confer increased toler-
ance to many of the environmental constraints, including drought, extreme temperature,
high salinity, and heavy metal soil contamination, faced by resource-poor farmers attempt-
ing to cultivate marginally arable land. Early applications of plant biotechnology focused
primarily on traits that benefit farmers in industrialized regions of the world, but recent sur-
veys document the degree to which this pattern is changing in favor of modified crops that
contribute to enhanced ecological and human health. Documented decreases in the use of
pesticides attributable to genetically engineered plants are harbingers of the health and en-
vironmental benefits that can be expected from transgenic crop plants designed to decrease
reliance on harmful agrochemicals. As one thread in a network that also includes integrated
pest and soil fertility management, a reduced emphasis on monoculture, and traditional crop
breeding, plant genetic modification has the potential to help those who currently suffer
from inadequate access to a full complement of nutrients. The development of “golden
rice” illustrates the possibility to imbue a plant with enhanced nutritional value, but also the
challenges posed by intellectual property considerations and the need to introduce novel
traits into locally adapted varieties. Implementation of plant genetic modification within a
framework of sustainable agricultural development will require increased attention to po-
tential ecological impacts and technology-transcending socioeconomic ramifications. Suc-
cessful technology transfer initiatives frequently involve collaborations between scientists
in developing and industrialized nations; several non-profit agencies have evolved to facili-
tate formation of these partnerships. Capacity building is a core tenet of many such
programs, and new paradigms for incorporation of indigenous knowledge at all stages of
decision-making are under development. The complex (and sometimes controversial) social
and scientific issues associated with the technology notwithstanding, Agrobacterium-
mediated enhancement of agronomic traits provides novel approaches to address commer-
cial, environmental, and humanitarian goals.

1 INTRODUCTION

Plant biotechnology has had a dramatic impact on agriculture, and on
public awareness of the role of the private sector in industrial-scale farm-
ing in developed countries. This chapter focuses on the seminal contri-
butions of Agrobacterium tumefaciens to this technological revolution, and
on the applications of genetic engineering that continue to expand the lim-
its of plant productivity. Agrobacterium-mediated transformation has
yielded a stunning array of transgenic plants with novel properties ranging
from enhanced agronomic performance, nutritional content, and disease
resistance to the production of pharmaceuticals and industrially important
compounds. Many of these advances have been made possible by creative
and elegant methodological innovations that have enabled gene stacking,
targeted mutagenesis, and the transformation of previously recalcitrant
hosts.
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Transgenic plants are not a panacea for global food shortages, distribu-
tional failures, or other structural causes of poverty. They can, however,
have a positive impact on both human and environmental health. Agricul-
tural biotechnology’s image has been tarnished by the perception that it
fails to address the needs of the world’s hungry, and indeed most of the
commercial products to date represent technology that is inappropriate for
subsistence farmers (Huang et al., 2002a). As this chapter documents,
there is ample potential for genetically modified plants to ameliorate some
of the constraints faced by resource-poor farmers. Even modest enhance-
ments of agronomic traits have the potential to help farmers overcome en-
demic problems such as lack of food security, limited purchasing power,
and inadequate access to balanced nutritional resources (Leisinger, 1999).
Many of these innovations will come from public sector research, and the
vast majority of the applications described herein have in fact emanated
from basic investigations and collaborative product-oriented research ori-
ginating in the non-profit realm. As plant biotechnology research moves
forward and outward to include more stakeholders in developing count-
ries, it will continue to complement, rather than to replace, plant breeding
(Morandini and Salamini, 2003). Whether these applications will enjoy in-
creased public acceptance depends in large part on whether they progress
in a context of sustainable development that incorporates integrated natural
resource management and understanding of the socioeconomic realities of
small-scale farming (Serageldin, 1999).

2 THE DEVELOPMENT OF AGROBACTERIUM-
MEDIATED TRANSFORMATION

The first demonstration that A. fumefaciens could be used to generate
transgenic plants (Barton et al., 1983 and see Chapter 2) heralded the begin-
ning of a new era in agriculture as well as in plant molecular biology
research. Plant transformation entails not only delivery and integration of
engineered DNA into plant cells, but also the regeneration of transgenic
plants from those genetically altered cells. Thus it was no accident that the
earliest successes in plant genetic engineering occurred in species (e.g.,
tobacco, petunia, carrot and sunflower) that were both good hosts for 4. fu-
mefaciens and for which much was known about the conditions required to
regenerate whole plants. Indeed, it has frequently been the plant tissue cul-
ture technology, rather than the transformation process itself, that has been
the limiting step in achieving efficient genetic modification (Herrera-Estrella
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et al., 2005). Through extensive experimentation, protocols have been es-
tablished for Agrobacterium-mediated transformation and regeneration of
many other host plants including cotton (Umbeck et al., 1987), soybean
(Hinchee et al., 1988), sugarbeet (D’Halluin et al., 1992), rice (Hiei et al.,
1994), maize (Ishida et al., 1996), sorghum (Nguyen et al., 1996; Zhao et
al., 2000), wheat (Cheng et al., 1997), barley (Tingay et al., 1997), papaya
(Fitch et al., 1993), banana (May et al., 1995), and cassava (Li et al,,
1996). Generation of transgenic monocots using Agrobacterium, initially
believed to be impossible, is now considered routine for particular culti-
vars of some monocot species. However, transformation of several
agronomically important cereal genotypes still poses significant challenges
and represents an area where considerably more research is needed (S.B.
Gelvin, personal communication).

2.1 Requirements for generation of transgenic plants

Generally speaking, Agrobacterium-mediated transformation involves
incubating cells or tissues with bacteria carrying the foreign gene construct
of interest, flanked by border sequences. Plant cells in which the foreign
DNA has integrated into the genome are selected and propagated via a cal-
lus stage before hormone-induced regeneration of a transgenic plant, in
which each cell is derived from the genetically altered progenitor cell
(Walden and Wingender, 1995). Over the past two decades, a number of
techniques have been developed to improve the efficiency of Agrobacte-
rium-mediated gene delivery: wounding the plant tissue by sonication of
embryonic suspension cultures, by glass beads, or by particle bombard-
ment; bombardment with microprojectiles coated with agrobacteria; and
imbibing germinating seeds have all proven successful in at least one host
species. Other approaches are summarized in Newell (2000). The totipo-
tency of plant cells has allowed the transformation of many different cell
types, although tissues from different plant species respond differently to
culture conditions, so optimal culture and regeneration methods must be
established for every host tissue and species (Walden and Wingender,
1995). Explants are often used as the target for transformation because
they are less prone to changes in DNA methylation status, chromosomal
rearrangements and other genetic and epigenetic alterations that occur in
plant tissue culture and that result in somaclonal variation (Christou,
1996). Hormone-induced regeneration of transgenic plants from trans-
formed explants can occur via organogenesis (the direct formation of
shoots) or somatic embryogenesis (the generation of embryos that can
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directly germinate into seedlings from somatic tissues). Most economically
important plants, especially monocots, are regenerated using the latter ap-
proach, since callus is easily initiated from the scutellum of immature em-
bryos (Hansen and Wright, 1999; Zuo et al., 2002). Delivery of the foreign
DNA directly into meristematic tissue or immature embryos has also been
found to limit somaclonal variation because it minimizes the amount of
time in tissue culture (Walden and Wingender, 1995; Christou, 1996). A
vacuum infiltration method, in which agrobacteria are applied to entire
flowering Arabidopsis, was developed to avoid altogether the requirement
for plant tissue culture or regeneration (Bechtold et al., 1993). More re-
cently, this approach has been further simplified; in the “floral dip” proc-
ess only the developing floral tissue is submerged into a solution of
agrobacterial cells, and the labor-intensive vacuum infiltration step is
eliminated (Clough and Bent, 1998).

In addition to susceptibility to Agrobacterium infection and the ability
to regenerate whole plants from transformed cells, a third requirement for
successful genetic modification is an efficient selection method for plant
cells containing integrated trans-DNA (Chung et al., 2006). As described
in Chapter 2, the first demonstration that the Agrobacterium lifestyle could
be exploited to generate transgenic plants relied on a bacterial strain in
which the T-DNA was still partially intact. Identification of transformed
cells was achieved by screening for the production of nopaline (Barton
et al., 1983). Published almost simultaneously, a number of other papers
provided several key improvements on this initial transformation system.
Foremost among these was the use of T-DNA-derived promoters and 3’
regulatory regions (from the nopaline synthase gene) to drive in planta
transcription of a bacterial antibiotic resistance gene such as chloram-
phenicol acetyltransferase or neomycin phosphotransferase (nptll).
Expression of these chimeric genes in the plant allowed the selection of
antibiotic-resistant transformed plant cells and hence the elimination of the
opine synthesis genes from the transferred DNA (Bevan et al., 1983;
Fraley et al., 1983; Herrera-Estrella et al., 1983a; Herrera-Estrella et al.,
1983b). Phenotypically normal and fertile plants were regenerated from
the resistant calli, and the resistance trait was passed to the progeny in a
Mendelian fashion (De Block et al., 1984; Horsch et al., 1984). Two inno-
vations in vector design circumvented the difficulties associated with clon-
ing into the very large Ti plasmid. Zambryski et al. (1983) replaced the
entire oncogenic region of the Ti plasmid with the standard cloning vector
pBR322; DNA sequences of interest cloned into a pBR vector could thus
easily be introduced into the T-region by a single recombination event.
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The labs of Schilperoort and Bevan designed binary vector strategies in
which one broad-host range replicon carried the DNA to be transferred,
while a second, compatible pTi-derived plasmid provided the vir functions
required for DNA transfer (Hoekema et al., 1983; Bevan, 1984). Both of
these systems provided enormous versatility because the DNA to be trans-
ferred could be easily manipulated in E. coli, and the demonstration that
integration of these altered T-DNAs did not interfere with normal plant
cell differentiation (Zambryski et al., 1983) opened the floodgates for the
wave of plant genetic modifications that followed.

2.2 Binary vectors

In the two decades since their initial development, Agrobacterium-
mediated transformation systems have undergone a number of refinements.
Ease of DNA manipulation in E. coli has been achieved by modification of
the replication functions on the binary vectors to enhance copy number,
reduction in the size of the vectors (Hellens et al., 2000), and incorporation
of convenient multiple cloning sites (Komari et al., 2006). The Overdrive
sequence adjacent to the right border (RB) enhances T-DNA transfer
(Peralta et al., 1986), and some binary vectors include this sequence
(Hellens et al., 2000). In addition to the nptll gene originally used as the
selectable marker, a variety of other selection schemes, including chimeric
genes conferring resistance to methotrexate (Eichholtz et al., 1987) and
hygromycin (Van de Elzen et al., 1985) have been developed, and several
families of binary vectors now provide a choice of marker (Hellens et al.,
2000). Many of the early binary vectors carried the selectable marker near
the RB, where it would be transferred before the transgene of interest. In
contrast, placement of the marker closest to the left border greatly dimin-
ishes the chance of selecting transgenic plants resulting from interrupted
bacterium-to-plant DNA transfer that carry only the marker (Hellens et al.,
2000). This strategy is especially important when introducing very large
fragments of foreign DNA into plants. Binary bacterial artificial chromo-
somes (BIBAC) and transformation-competent bacterial artificial chromo-
somes (TAC) have been developed that allow the delivery of fragments of
at least 80-150 kb (Hamilton et al., 1996; Shibata and Liu, 2000). Such
large-capacity vectors are likely to prove particularly useful in identifying
and confirming quantitative trait loci (QTLs) controlling agronomically
significant characteristics such as crop yield, disease resistance, and stress
tolerance (Shibata and Liu, 2000; Salvi and Tuberosa, 2005).
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Binary vectors are typically used with so-called “disarmed” Agrobacte-
rium strains, in which the virulence functions required for DNA processing
and transfer are provided by a modified Ti plasmid lacking oncogenic
DNA. Certain strains carrying the “supervirulent” Ti plasmid pTiBo542
exhibit greatly enhanced transformation efficiency (Jin et al., 1987), and
the popular transformation strain EHA101 carries a disarmed version of
pTiBo542 (Hood et al., 1986). Capitalizing on the discovery of a super-
virulent pTi, super-binary vectors carry the virB, virE, and virG genes of
pTiBo542 or the Ti plasmid from another supervirulent strain, Chry5
(Torisky et al., 1997). Super-binary vectors have provided critical improve-
ments in transformation efficiency, and were a key factor in extending the
host range of Agrobacterium-mediated transformation to the cereals in the
1990s (Komari et al., 2006). Practical technical information about binary
and super-binary vectors and disarmed strains, along with email addresses
and websites of contacts for those who wish to obtain these resources, has
been compiled in two recent reviews (Hellens et al., 2000; Komari et al.,
2006).

Many binary vectors use the strong constitutive cauliflower mosaic
virus (CaMV) 35S promoter to drive expression of the target gene (Chung
et al., 2005), although the maize ubiquitin I promoter and the rice actin
promoter/intron sequences are more frequently used for expression in
monocots (Walden and Wingender, 1995). Alternative promoters exhibit-
ing similarly high or even higher levels of constitutive transcription in-
clude a chimera derived from the octopine and mannopine synthase genes
(Ni et al., 1995). Inducible and/or tissue-specific promoters provide the
possibility of activating a transgene at the most favorable time of devel-
opment or upon perception of certain environmental cues; use of such
promoters can also prevent deleterious effects associated with constitutive
production of a toxic product (reviewed in Gelvin, 2003b). A bidirectional
promoter, permitting expression of a gene at either end, offers the potential
to stack traits (Xie et al., 2001). A completely different strategy for the co-
ordinated production of two proteins makes use of a virally derived poly-
protein proteolytic processing peptide. A gene constructed from multiple
coding regions separated by this 18-amino acid peptide gives rise to a
polyprotein that is co-translationally self-processed to yield stoichiometric
amounts of the individual proteins (de Felipe et al., 2006). This approach
has even been used successfully to co-produce two proteins targeted to dif-
ferent subcellular compartments (Frangois et al., 2004).
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2.3 Transgene stacking

As researchers have moved beyond the introduction of simple traits
conferred by a single gene, strategies have been developed that allow the
coordinated manipulation of multiple genes in the same plant. The most
basic approaches entail sequential sexual crossings or retransformation,
and both of these have been used successfully, although they are time-
consuming and prone to complications arising from independent segrega-
tion in subsequent generations if the introduced genes integrate at different
loci (Halpin and Boerjan, 2003). Thus, methods that allow the introduction
of multiple genes in one step and their co-integration are more desirable.
Somewhat unexpectedly, co-transformation with two T-DNAs on the same
or different plasmids within the same bacterium, or even in two different
bacterial cultures that are mixed before co-cultivation, can yield remarka-
bly high rates of co-transformation and even, on occasion, co-integration
(Halpin and Boerjan, 2003). Such double-T-DNA systems have proven ef-
fective in manipulating two or more transgenes at a time in Arabidopsis,
tobacco, rapeseed, rice, soybean and maize (Slater et al., 1999; Miller
et al., 2002; Li et al., 2003). However, engineering of more complex
metabolic pathways will require that even more transgenes be stacked.
Recently, construction of transformation-ready cassettes was greatly sim-
plified by the advent of binary vectors compatible with the GATEWAY
technology, which is based on site-specific recombination between two
DNA molecules carrying complementary recombination sites (Invitrogen;
http://www.invitrogen. com). The first generation of GATEWAY -compa-
tible destination binary vectors allowed overexpression of a gene, with or
without a visible marker, construction of N- or C-terminal Green Fluores-
cent Protein fusions, or post-transcriptional gene silencing of a target gene
(Karimi et al., 2002). This elegant system was subsequently extended to
accommodate simultaneous assembly of up to three DNA fragments onto
one binary vector (Karimi et al., 2005). Alternatively, as many as six genes
can be inserted into a single binary vector containing sites for rare-cutting
restriction enzymes (Goderis et al., 2002). Transfer of up to 10 genes
into the rice genome has also been achieved using a TAC-based vector,
with assembly of the various inserts mediated by the Cre/loxP recombina-
tion system and homing endonucleases (Lin et al., 2003). Like the
GATEWAY-based system, both of these approaches rely on auxillary do-
nor vectors. Perhaps the most advanced system currently available is the
pSAT series of vectors, which offers unprecedented versatility in the
choice of restriction sites, plant selectable markers, and the possibility of
constructing fusions with any of six different autofluorescent tags (Tzfira
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et al., 2005). An added benefit of the newest pSAT vectors is the opportu-
nity to choose from among a variety of promoter and terminator sequences
for combined expression of the target, selection and reporter genes. This is
a critical advantage, since diversity among promoters and terminators can
reduce the risk of transgene silencing in plants (see section 2.6 and Chung
et al., 2005).

2.4 Marker genes and marker-free transformation

In response to concerns about the potential for transfer of antibiotic-
resistance genes to gut microbes, a number of antibiotic-free marker
systems have been developed. Herbicide resistance genes are also in wide-
spread use as selectable markers [see Hare and Chua (2002) for examples],
although they too pose perceived dangers to health and the environment
(Hood, 2003). Rather than killing non-transformed cells (negative selec-
tion), one can also use a positive selectable marker that confers on trans-
formed cells a growth or metabolic advantage (Hohn et al., 2001). For
example, introduction of the phosphomannose isomerase gene rescues
plants from the growth inhibition associated with mannose (Negretto et al.,
2000). The desire to transform recalcitrant plant species has driven the de-
velopment of other positive selection markers, including native plant genes
conferring resistance to bacterial pathogens (Hood, 2003). Erikson et al.
(2004) devised a clever scheme in which introduction of a single gene,
encoding a D-amino acid oxidase, allows either positive or negative selec-
tion. Selection can be exerted by spraying certain D-amino acids onto soil-
grown seedlings; transformed plants exhibit resistance to toxic D-amino
acids (e.g. D-alanine or D-serine), whereas only wild-type plants survive
exposure to innocuous D-amino acids (D-isoleucine or D-valine) that are
converted by the enzyme to toxic keto acids. This dual selection scheme
has the distinct advantage of permitting positive selection for transforma-
tion, followed by negative selection to identify desired plants that have lost
the selectable marker gene (Scheid, 2004). Other positive selection mark-
ers, such as the agrobacterial or plant cytokinin synthesis isopentyl trans-
ferase (ipt) genes, promote regeneration of shoots from transformed calli
or explants in the absence of critical growth regulators (Zuo et al., 2002).
Inducible expression circumvents the developmental defects associated
with constitutive overexpression of ipt (Kunkel et al., 1999). However,
over-produced cytokinins can cause spurious regeneration of non-
transformed neighboring cells. Thus, introduction of cytokinin signal
transduction pathway genes may be a preferable selection scheme to avoid
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non-transgenic escapes (Zuo et al., 2002). Finally, marker-free transforma-
tion was achieved in potato using a virulent A. tumefaciens and PCR
screening for successfully altered shoots (de Vetten et al., 2003).
Non-antibiotic/herbicide resistance markers address concerns about po-
tential health and ecological risks, but they still suffer from other short-
comings: the selection scheme can have negative consequences for plant
cell proliferation and differentiation, and multiple transgenes cannot be
stacked through sequential retransformations using the same marker gene
(Ebinuma et al., 1997). These constraints have spurred the development of
various methods to remove the marker gene after transformation. In one
such strategy, the selectable marker is inserted into a transposable element,
allowing transposition-mediated loss of the marker after selection of the
transformed plants (Ebinuma et al., 1997). Alternatively, one can place the
transgene of interest on the transposon; in this case, transposition to new
sites not only separates the transgene from the marker gene, but also pro-
vides an opportunity to obtain a series of plants with varying transgene
loci, and potentially differing expression levels, from a single transformant
(Hohn et al., 2001). Excision of the marker gene can be achieved by flank-
ing the marker gene with recombination sites and incorporating the cog-
nate site-specific recombinase on the transgenic unit or crossing with a
second plant carrying a recombinase-encoding transgene; in either case
counter-selectable marker genes can be included within the “elimination
cassette” to ensure excision (Hohn et al., 2001). Among the popular re-
combinase options are the bacteriophage P1 Cre/lox system (Dale and Ow,
1991) and the yeast Flp/FRT system (Hare and Chua, 2002). In the sim-
plest case, the marker gene is excised in the F1 generation and the recom-
binase gene is removed through segregation in the subsequent generations
(Gilbertson et al., 2003). Inducible (Zuo et al., 2001) or transient (Hare and
Chua, 2002) expression of the recombinase, or transient exposure of the
plants to agrobacteria that deliver the recombinase (Vergunst et al., 2000)
avoids the need to eliminate the recombinase gene through genetic segre-
gation. Marker excision through recombination has also been achieved us-
ing bacteriophage A aftP sequences as the flanking DNA (Zubko et al.,
2000). Surprisingly, introduction of a recombinase was not required,
making this strategy especially attractive for crops that are propagated
vegetatively and for which it would therefore be difficult to eliminate the
recombinase gene through subsequent crosses (Zubko et al., 2000). Finally,
marker genes can be eliminated by co-transforming with tandem marker-
and trans-genes, each flanked by its own border sequences, on a single
binary vector (Matthews et al., 2001). Agrobacterium-mediated delivery of
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such a construct can lead to independent integration events in the same
plant cell, and the marker can therefore be segregated away from the trans-
gene (Hohn et al., 2001).

2.5 Elimination of foreign DNA other than the transgene
of interest

Agrobacterium-mediated transformation frequently results in the unin-
tentional introduction of vector backbone sequences (Kononov et al., 1997;
Wenck et al., 1997; see also Chapter 12 in this volume for a more detailed
description of T-DNA integration patterns). Like marker genes, backbone
sequences in a transformed plant are undesirable from a commercial per-
spective. Incorporation of a lethal gene into the non-T-DNA portion of a
binary vector causes a dramatic decrease in the percentage of tobacco,
tomato, and grape plants carrying a vector-borne reporter gene, without
markedly reducing the overall transformation efficiency (Hanson et al.,
1999). Thus, this strategy can be an efficacious way to enrich for T-DNA-
only transformants in situations where the presence of vector backbone se-
quences would be problematic. Alternatively, a systematic comparison of
multiple agrobacterial strains and T-DNA origins of replication revealed
that integration of “backbone” sequences can almost be eliminated if the
border-flanked transgene is located on the bacterial chromosome (H.
Oltmanns and S.B. Gelvin, personal communication).

As the preceding discussion implies, the presence of foreign DNA (in
addition to the desired transgene itself) may or may not increase health or
environmental risks associated with a transgenic plant, but it frequently
poses public relations problems, and in fact accounts for much of the
dissatisfaction that has led to widespread public rejection of genetically
modified crops (Rommens, 2004). In addition to the transgene and the se-
lectable marker, other non plant-derived genetic elements needed for stable
transgene expression frequently include promoters, transcriptional termina-
tors, and of course the T-DNA borders. On average, genetically engineered
plants approved for commercialization contain ten genetic elements from
non-plant sources; typically these have come from bacteria or viruses, or
are synthetic sequences. In an effort to decrease dependence on non-plant
genetic material, researchers have identified a variety of plant genes asso-
ciated with agronomically relevant traits such as disease resistance, insect
resistance, herbicide tolerance, enhanced storage or nutritional characteris-
tics, and stress tolerance. Additionally, hundreds of plant promoters, both
constitutive and tissue-specific, and transcription termination sequences
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for most important crop species are now available (Rommens, 2004).
Rommens et al. (2004) used database searches and PCR to isolate plant
sequences that resemble T-DNA borders. Strikingly, these “P-DNA”
sequences function to mediate DNA transfer to potato. Using transient ex-
pression of a selectable marker carried on a conventional “Life-Support”
T-DNA to block proliferation and regeneration of cells that had not re-
ceived exogenous DNA, these authors were able to document integration
events comprised of marker-free P-DNA. Such all-native transformations
can be obtained by co-infecting with two Agrobacterium strains (one car-
rying the P-DNA binary and the other providing the Life-Support T-DNA
vector), either simultaneously or sequentially, but the frequency of marker-
free P-DNA insertion is as high or higher (depending on the host species)
if both binaries are present in a single bacterial strain. By selecting against
backbone integration events as described above, this approach can be used
to generate completely marker-free transgenic plants at a frequency that is
consistent with commercial scale production (Rommens et al., 2004).

2.6 Influence of position effects and gene silencing
on transgene expression levels

The fact that Agrobacterium-mediated DNA integration into the host
plant’s genome occurs by illegitimate recombination (see Chapter 11) has
profound implications for the generation of transgenic plants. Expression
levels of the transgene can be dramatically affected by the chromosomal
context of the integration site, and insertional disruption of an active host
gene can have unintended phenotypic consequences on the resulting plant
(Kumar and Fladung, 2001). Targeting the insertion event (see section 2.7)
to a specific innocuous, yet transcriptionally active, locus could provide a
way to circumvent this variability, particularly if insertions at the same ge-
nomic position routinely exhibit similar expression levels (Gilbertson et al.,
2003). In at least one study, targeted insertions into the same site did result
in reproducible transgene expression levels; however, in nearly half the in-
sertion events, partial or complete silencing of the transgene was observed
(Day et al., 2000). Such “position effects” are consistent with our growing
appreciation for the striking variability and unpredictable nature of trans-
gene expression levels, a ubiquitous phenomenon in almost all eukaryotes.
In the face of repressive influences exerted on transgenes by neighboring
genes or the surrounding chromosomal structure, the standard, albeit
costly, approach has been to generate enough transgenic plants to find
some with the desired level of expression (Hansen and Wright, 1999).
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There is some hint that naturally occurring matrix attachment regions
(MARs), sequences that associate with the nuclear matrix and mediate
looping of DNA, may stabilize expression levels (Han et al., 1997; Iglesias
et al., 1997), although the benefit of flanking Agrobacterium-delivered
transgenes with MARs may be only marginal (Gelvin, 2003b).

In the context of plant transformation, transgene silencing also results
from insertion of multiple copies or high-level expression from a constitu-
tive promoter, and an introduced transgene can lead to silencing of a ho-
mologous host gene (Vaucheret et al., 1998). Multicopy transgenic loci,
particularly those including binary vector sequences, appear prone to tran-
scriptional silencing attributable to meiotically heritable epigenetic modifi-
cations, most often methylation and/or condensation of chromatin (Matzke
and Matzke, 1998; Vaucheret et al., 1998). Silencing can also occur by a
post-transcriptional mechanism termed “cosuppression,” in which the for-
mation of double-stranded RNA (dsRNA) results in sequence-specific deg-
radation of homologous RNA molecules (Soosaar et al., 2005). The degree
of cosuppression tends to correlate with the strength of the promoter driv-
ing the transgene, although reciprocal and synergistic silencing between
host genes and transgenes can also result from production of aberrant RNA
above a threshold level that activates the RNA degradation machinery
(Vaucheret et al., 1998). Conversely, expression of heterologous genes can
be stimulated by adjacent ribosomal DNA spacer regions, at least in trans-
genic tobacco. Strikingly, the enhancement is attributable to amplification
of the gene copy number as well as increased transcription, and both
changes are stably inherited (Borisjuk et al., 2000).

2.7 Targeting transgene insertions

Gene targeting after Agrobacterium-mediated transformation was ini-
tially demonstrated as recombination between endogenous or engineered
tobacco protoplast sequences and a homologous incoming gene fragment;
successful targeting restored a functional selectable marker gene (Lee
et al., 1990; Offringa et al., 1990). However, the frequency of such ho-
mologous recombination events is relatively low. In contrast, efficient tar-
geted transgene insertion can be achieved by first creating a plant line with
a lox “target” site; in subsequent transformations of this plant line, incom-
ing DNA carrying a lox sequence is specifically and precisely integrated at
this chromosomal site via Cre-mediated recombination (Gilbertson et al.,
2003). Inclusion of a promoter at the site of integration provides a simple
selection scheme for successful insertion of a T-DNA carrying the marker
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gene (Albert et al., 1995). Targeted transgene integration via site-specific
recombination can be combined with a second recombination system that
eliminates the selectable marker gene (Srivastava and Ow, 2004). The effi-
ciency of the targeted integration reaction is enhanced when the T-DNA
carries two lox sites, allowing for formation of the required circular inte-
gration substrate (Vergunst et al., 1998). A variety of approaches have
been used to stabilize the insertion and prevent subsequent Cre-mediated
excision (Gilbertson et al., 2003).

A second important application of homology-directed DNA insertion is
gene inactivation via targeted disruption. Although large collections of
random T-DNA insertions (e.g., Feldmann, 1991) have proven to be an
immensely valuable tool for plant molecular biologists, not all genes are
represented and not all alleles are null mutants (Britt and May, 2003).
Disruption of a specified locus in Arabidopsis can be accomplished by
flanking a selectable marker with two genomic fragments from the target
gene and screening for a double cross-over event that eliminates another
T-DNA-borne marker gene or other T-DNA sequences (Miao and Lam,
1995; Kempin et al., 1997; Hannin et al., 2001). Several refinements of
this procedure enabled the first targeted disruption in a monocot, rice
(Terada et al., 2002). Those improvements include optimizing the effi-
ciency of the Agrobacterium-mediated transformation itself and the use of
a stringent PCR screen for true recombinants. A third, and probably criti-
cal, factor was the inclusion of toxin-encoding genes at either end of the
vector DNA to provide strong counter selection against random integration
of the T-DNA elsewhere in the genome. Finally, it is plausible that recom-
bination occurs more readily in the highly proliferative callus tissue typi-
cally used in rice transformation than in the plant tissues used in other
transformations (Shimamoto, 2002). The gene targeted for disruption in
this application was Waxy, which encodes granule-bound starch synthase.
Lower Waxy mRNA abundance in Japonica rice accounts for its stickier
nature as compared to Indica rice, in which the gene is expressed at higher
levels (Hohn and Puchta, 2003). The success of this gene targeting process
in rice paves the way for other gene knockouts in this important staple crop
to study gene function or to alter nutritional or growth traits.

Conventional approaches to gene targeting appear to be limited by the
preference in plants for non-homologous end-joining (NHEJ) over ho-
mologous recombination for DNA double-stranded break repair. Recent
advances in enhancing targeted mutagenesis have focused on harnessing
the NHEJ process and on stimulating homologous recombination by engi-
neering plants to express a yeast recombination gene (Tzfira and White,
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2005). NHEJ frequently introduces insertion and/or deletion mutations at
double-stranded breaks, thus raising the possibility that targeted mutagene-
sis could be accomplished by inducing double stranded breaks at the
desired locus. Successful implementation of this approach was achieved
using Agrobacterium-mediated transformation to introduce a synthetic
zinc-finger nuclease that then created the double-stranded break (Lloyd
et al., 2005). These zinc-finger nucleases consist of custom-made C2H2
zinc fingers, with each finger recognizing a specified three-nucleotide se-
quence, fused to a non-specific restriction enzyme. Expression of this chi-
meric gene in a plant allows the targeted digestion of a specific and unique
sequence of 18 nucleotides, which then becomes a substrate for error-
prone NHEJ-mediated repair (Tzfira and White, 2005). Using a heat-shock
promoter to drive production of the zinc-finger nuclease in Arabidopsis,
Lloyd et al. (2005) demonstrated highly efficient mutagenesis and trans-
mission of the induced mutations, and suggested on theoretical grounds
that this technology should be applicable to most plant genes in most plant
species. In a second approach to increasing the frequency of directed gene
disruption or replacement, Shaked et al. (2005) introduced the yeast chro-
matin remodeling protein RADS54 into Arabidopsis and reported a 10-to-
100 fold improvement in homology-based integration efficiency.

2.8 Extending the range of susceptible hosts for
Agrobacterium-mediated transformation

A variety of factors have been shown to influence the range of hosts
that can be transformed by 4. tumefaciens. On the bacterial side of the in-
teraction, certain virulence loci including virC and virF are considered host
range determinants (Yanofsky et al., 1985; Jarchow et al., 1991; Regens-
burg-Tuink and Hooykaas, 1993), and constitutive transcription of the
virulence genes improves the efficiency of plant transformation in both
susceptible and recalcitrant species (Hansen et al., 1994). Genes within the
T-region can also affect the range of susceptible host species (Hoekema
et al., 1984). Overexpression of certain plant genes, particularly H7A41 (en-
coding histone 2A) and VIPI (which may facilitate nuclear targeting of the
T-complex) can also enhance plant susceptibility (Mysore et al., 2000;
Tzfira et al., 2002). The manipulation of host genes to improve transforma-
tion frequency is the subject of two recent reviews (Gelvin, 2003a; Gelvin,
2003b). Bacterial and plant contributions to host range are discussed in
more detail in Chapters 1 and 13, respectively, in this volume. It is worth
noting that there are almost certainly more factors yet to be identified that
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limit the interaction between 4. tumefaciens and specific plant species. For
example, maize root exudates contain a potent inhibitor of VirA/VirG-
mediated signal perception, leading to the possibility that bacterial mutants
with enhanced resistance to this inhibition may prove useful in extending
the transformation efficiency of maize (Zhang et al., 2000). One approach
to circumvent host range limitations involves the use of Agrobacterium
rhizogenes to generate composite plants, comprised of transgenic roots on
wild-type shoots. This system provides a useful method to study transgene
activity in the root in the context of a wild-type plant, and has been used
successfully in species such as soybean, sweet potato and cassava, that are
recalcitrant to A. tumefaciens transformation (Taylor et al., 2006).
Somewhat ironically, of all the advances in plant transformation de-
scribed in this chapter, some of the most pronounced long-term impacts on
plant biotechnology may result from an innovation that has the potential to
obviate the requirement for Agrobacterium as a gene delivery vehicle. Mo-
tivated by the desire to “invent around” the myriad intellectual property
constraints that limit use of Agrobacterium-mediated transformation by the
public and the private sector, Broothaerts et al. (2005) successfully modi-
fied several species outside the Agrobacterium genus to stably transform a
variety of plants. (The complex issues surrounding intellectual property in
agricultural biotechnology are developed more fully in Chapter 20.)
Rhizobium, Sinorhizobium, and Mesorhizobium strains of bacteria en-
dowed with a disarmed Ti plasmid acquired the ability to deliver DNA
from a standard binary vector; the vector was modified with a unique tag
to facilitate tracking of the provenance of the transferred DNA. Rice,
tobacco and Arabidopsis were genetically modified to express an intron-
containing beta-glucuronidase (GUS) gene, indicating that monocots as
well as dicots can serve as recipients with non-Agrobacterium bacteria,
albeit at frequencies that ranged from 1-40% of that observed with Agro-
bacterium-mediated transformation. (The presence of the intron prevents
reporter gene expression in the bacteria, and thus ensures that any ob-
served GUS activity results from expression in the plant cell; Vacanneyt
et al., 1990). Various tissues, and hence transformation mechanisms (floral
dip for Arabidopsis, somatic tissue for tobacco and rice), were utilized in
these experiments, and stable integration was confirmed by Southern blot-
ting, sequence analysis of the insertion junctions, and Mendelian transmis-
sion of the transgene to progeny. This alternative technology may have
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profound implications for the plant biotechnology community for two rea-
sons. First, this technology has been configured to be freely accessible and
“open-source,” with no commercial restrictions other than covenants for
sharing improvements, relevant safety information, and regulatory data
(http://www.bioforge.net). Second, the exceptionally broad host range of
the Rhizobium strain used, and the potential to extend the technology to
additional bacteria species, make it likely that previously recalcitrant plant
species may become transformable. As a plant pathogen, Agrobacterium
elicits a variety of defense responses that can block any step of the trans-
formation process, thereby limiting its host range. While a better under-
standing of Agrobacterium-triggered defense responses may lead to
methods to lower or subvert a plant’s natural barriers (Zipfel et al., 2006),
the use of non-Agrobacterium species as T-DNA delivery systems pro-
vides a way for plant biotechnologists to invent around the obstacles
erected by both plant evolution and patent lawyers.

2.9 Alternatives to Agrobacterium-mediated gene delivery

In the 1980’s, the apparent recalcitrance of several agronomically im-
portant crop plants, including maize, wheat, barley, and rice, to infection
by A. tumefaciens drove the development of alternative methods of
DNA delivery for genetic engineering. Protoplast transformation, although
achievable through electroporation, microinjection, or polyethylene glycol
fusion, proved to be inefficient because the regeneration of plants from
protoplasts is time-consuming and non-trivial (Newell, 2000). Particle
bombardment, in which tungsten or gold microprojectiles are coated with
DNA and accelerated into the target plant tissue, has proven highly suc-
cessful in a wide range of species (Klein et al., 1987), and is the most reli-
able method by which chloroplasts can be transformed. This biolistic
approach presents certain advantages over Agrobacterium-mediated gene
delivery; many types of explants can be bombarded and yield fertile plants,
and the gene to be delivered need not be cloned into a specialized trans-
formation vector (Herrera-Estrella et al., 2005). Nonetheless, particle gun
delivery of DNA is generally not the method of choice for a plant species
that can be transformed by Agrobacterium, as the bombardment process
typically results in integration of multiple copies of the DNA, as well as
rearranged and/or truncated DNA sequences (Newell, 2000). These com-
plex integration patterns can lead to genetic instability, due to homologous
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recombination among the identical copies, and/or epigenetic silencing of
the transgene (see section 2.6). “Agrolistic” transformation was designed
to mitigate these shortcomings by combining the high efficiency of bio-
listic DNA delivery with the simpler integration pattern characteristic of
Agrobacterium-mediated DNA transfer. Particle bombardment of the
virD1 and virD2 genes, under the control of the CaM V35S promoter, with
a target plasmid carrying the transgene of interest flanked by T-DNA bor-
der sequences, allows transient expression of the vir genes in the plant.
The insertion events resulting from in planta VirD1/2-mediated processing
and integration resemble those generated by traditional Agrobacterium-
mediated transformation (Hansen and Chilton, 1996).

Agrobacterium-mediated and biolistic delivery of foreign DNA are
typically used to stably transform plants, although transient expression of
genes delivered by 4. tumefaciens on binary vectors can be used to pro-
duce recombinant proteins without the delays and technical barriers asso-
ciated with stable integration (Chung et al., 2006). Heterologous genes can
also be introduced into plants on viral vectors; because of the amplification
associated with viral infection, transient expression of the transgenes can
yield commercial-scale quantities of pharmaceutical proteins. In a novel
hybrid technology, A. tumefaciens has been used to expedite the produc-
tion process by circumventing the need for in vitro synthesis of the RNA
viral vector. Building on the idea of “agroinfection,” in which a viral
genome is delivered as a cDNA inserted between border sequences
(Grimsley et al., 1986; Grimsley et al., 1987), complete viral replicons
have been assembled in planta through site-specific recombination among
DNA modules delivered by Agrobacterium (Marillonnet et al., 2004). Ad-
ditional refinements of the viral vectors further enhanced the efficiency of
the system, which was limited by the low infectivity of viral vectors carry-
ing larger genes and apparently by nuclear processing of a viral transcript
that normally never experiences the nuclear milieu (Marillonnet et al.,
2005). By infiltrating whole mature plants with a suspension of agrobacte-
ria carrying the encoded viral replicons, the bacteria take on the viral infec-
tion function, while the viral vector mediates cell-to-cell dissemination,
amplification, and high-level expression of the transgene (Gleba et al.,
2005). This “magnifection” process is rapid and scalable; the modular
nature of the viral components facilitates adaptation to new transgenes,
and the yield can reach 80% of total soluble protein (Marillonnet et al.,
2004).
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3 APPLICATIONS OF AGROBACTERIUM-MEDIATED
TRANSFORMATION

3.1 Production of foreign proteins in plant cell cultures

Agrobacterium-mediated transformation has been extensively utilized
to engineer plants producing a wide variety of useful, and in many cases
clinically relevant, metabolites and exogenous proteins. Most applications
to date have focused on field-grown plants, although recombinant proteins
and metabolites can also be produced in plant cell cultures. Despite limited
commercial use so far, cultured plant cells such as the tobacco-derived BY-2
and NT-1 lines offer several advantages over expression systems in intact
plants: they can be maintained in simple media, and are not subject to varia-
tions in weather and soil conditions; products can be easily harvested, espe-
cially when secreted into the culture medium (Hellwig et al., 2004). In the
future, functional genomics and combinatorial biochemistry are likely to in-
crease dramatically the range of products that can be generated in genetically
modified plant cell cultures (Oksman-Caldentey and Inze, 2004).

3.2 Genetic modification of plants to generate useful products

3.2.1 Biodegradable plastics

Among the more notable foreign products produced in plants are bio-
degradable plastics. Drawing on the natural ability of many bacterial spe-
cies, including Ralstonia eutropha, to synthesize carbon storage products
with plastic-like properties (Hanley et al., 2000), Chris Somerville’s lab
first demonstrated poly-3-hydroxybutyrate (PHB) synthesis in Arabidopsis
by introducing biosynthetic genes from R. eutropha (formerly Alcaligenes
eutrophus) (Poirier et al., 1992). Yields of this simple C4 polymer, which
is synthesized from acetyl-CoA by the sequential action of the bacterial
phbA, phbB, and phbC gene products, could be increased 100-fold by N-
terminal addition of the pea small subunit RUBISCO-transit peptide,
thereby targeting the three encoded enzymes to the chloroplast (Nawrath
et al., 1994). Further increases in yield, from 14% to as much as 40% of
the plant dry weight, were achieved by using gas chromatography-mass
spectrometry to screen large numbers of transgenic Arabidopsis plants for
high levels of production; however, the high producing lines exhibited
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stunted growth, loss of fertility, and significant alterations in the levels
of various amino acids, organic acids, sugars, and sugar alcohols
(Bohmert et al., 2000).

Properties of PHB, including brittleness and low-temperature decom-
position, preclude its use commercial use. In contrast, the co-polymer
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is considerably
more flexible and therefore useful (Hanley et al., 2000). Slater et al. (1999)
successfully engineered both A. thaliana leaves and seeds of Brassica
napus (oilseed rape) to synthesize PHBV at a significantly lower cost than
the previous industrial-scale bacterial fermentation process (Poirier, 1999).
Because PHBYV synthesis requires not only the abundant metabolite acetyl-
CoA, but also the relatively scarce propionyl-CoA, Slater et al. had to redi-
rect the metabolic flow of two independent pathways to generate a pool of
propionyl-CoA in the plastid (Slater et al., 1999).

Finally, Neumann et al. (2005) have recently reported the synthesis in
transgenic tobacco and potato plants of cyanophycin, which can be hydro-
lyzed to yield the soluble, non-toxic, biodegradable plastic-like compound
poly-aspartate. Although these transgenic plants exhibit morphological al-
terations in chloroplast structure and in growth rate, additional engineering
of the amino-acid biosynthesis pathways may permit economically viable
levels of biodegradable plastic production (Conrad, 2005). If successful,
the substitution of a renewable process (solar-driven carbon fixation) for
conventional petrochemically derived plastic production technologies
would have substantial positive environmental consequences, decreasing
our reliance on finite petroleum resources, while reducing the accumula-
tion of indestructible plastics (Poirier, 1999; Conrad, 2005).

3.2.2 Primary and secondary metabolites with desirable properties

Considerable effort has been dedicated to metabolic engineering of ter-
penoids in plants. Terpenoids, also known as isoprenoids, are a family of
more than 40,000 natural compounds, including both primary and secon-
dary metabolites, that are critically important for plant growth and
survival. Some of the primary metabolites produced by the terpenoid bio-
synthetic pathway include phytohormones, pigments involved in photo-
synthesis, and the ubiquinones required for respiration (Aharoni et al.,
2005). Secondary metabolites, including monoterpenoids (C10), sesquiter-
penoids (C15), diterpenoids (C20), and triterpenoids (C30), also provide
physiological and ecological benefits to plants. Some function as anti-
microbial agents, thus contributing to plant disease resistance, while other
terpenoid compounds serve to repel pests, attract pollinators, or inhibit
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growth of neighboring competitor plant species. Additionally, many terpe-
noids have commercial value as medicinals, flavors, and fragrances. Inter-
est in manipulating the inherent properties of plants (e.g., enhanced aromas
of ornamentals, fruits, and vegetables), or in using plants as sources of
pharmaceuticals and cosmetics, has driven the development of terpenoid
metabolic engineering in a variety of species (Aharoni et al., 2005).

The terpenoid biosynthetic pathway and strategies for its manipulation
have been reviewed recently (Mahmoud and Croteau, 2002; Aharoni et al.,
2005). A comprehensive listing of transgenic plants with altered terpenoid
biosynthetic properties is available elsewhere (Aharoni et al., 2005). Ex-
amples include expression of heterologous synthases in tomato, leading to
enhanced aroma in ripening fruit (Lewinsohn et al., 2001), reduced pro-
duction in mint of an undesirable monoterpenoid that promotes off-color
and off-flavor (Mahmoud and Croteau, 2001), and the introduction of bac-
terial genes directing the production of keto-carotenoids, thought to have
medicinal value, into tomato and tobacco (Ralley et al., 2004). Other
endogenous, plant-derived terpenoids with demonstrated pharmaceutical
properties include the anti-malarial agent artemisinin, the diuretic glycyr-
rhizin, and the cancer drugs Taxol and perilla alcohol. Several of these
compounds are currently derived from endangered species in threatened
ecosystems (Bouwmeester, 2006), while chemical synthesis of terpenes
can be prohibitively costly and inefficient (Wu et al., 2006).

Plants contain two terpene biosynthetic pathways; the mevalonate
pathway leads to the synthesis of sesquiterpenes and triterpenes at the level
of the endoplasmic reticulum, while the methyl-D-erythritol-4-phosphate
pathway functions in the chloroplast to produce monoterpenes, diterpenes,
and carotenoids (Aharoni et al., 2005). Most attempts to manipulate the
pathways involve introducing terpene synthase genes whose products
could divert pathway intermediates towards the production of desired,
and in some cases novel, terpenes (Chappell, 2004). To date, generating
monoterpenes in transgenic plants has proven easier than modifying the
metabolism of longer-chain terpenoids (Aharoni et al., 2005). The com-
plexity of the biosynthetic pathway, giving rise to a vast number of natural
products, and the subcellular compartmentalization of the processes pose
challenges for terpenoid genetic engineering. Manipulating terpenoid bio-
synthetic pathways in plant species that produce the same class of terpenes
is less problematic, because the plant already has the specialized structures
necessary to carry out the storage and transport of volatile, hydrophobic
compounds. In contrast, introducing novel pathways into species that lack
the secretory structures required may prove to be far more difficult
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(Mahmoud and Croteau, 2002). A recent comprehensive evaluation of the
factors required for high-level terpene production in tobacco identified
several effective strategies for enhancing synthesis as much as 1,000-fold
(Wu et al., 2006). By over-producing, in the same subcellular compart-
ment, an enzyme producing an isoprenoid substrate and a terpene synthase
that rapidly incorporates this substrate, Wu et al. (2006) have advanced the
technology necessary to achieve commercial-scale production of industri-
ally or pharmaceutically relevant terpenes (Bouwmeester, 2006).

3.2.3 Commercially relevant traits in ornamentals and trees

In ornamental plants, flower color, architecture, and post-harvest life
are all targets for transgenic modification (Mol et al., 1995). Commercially
important traits in trees have also been a focus of recent Agrobacterium-
mediated transformation (Tzfira et al., 1998). Tree improvement goals in-
clude increasing timber yield and decreasing generation time; together,
these traits could pave the way for economically viable plantation forests,
leading to decreased pressure on natural forests as sources of wood
(Fenning and Gershenzon, 2002). In this regard, overexpression of a key
enzyme in the gibberellin biosynthetic pathway resulted in enhanced bio-
mass and accelerated growth rate in hybrid aspen, but had a negative effect
on rooting. Interestingly, the transgenic trees also exhibited longer and
more numerous xylem fibers that could be advantageous in producing
stronger paper (Eriksson et al., 2000). Altering plant composition could
also enhance the production of bioethanol, a renewable energy source for
the transportation sector with substantial positive environmental impact
(Boudet et al., 2003). Finally, in poplar and aspen, biotechnology has
proven to be an effective way to manipulate levels of the undesirable cell
wall component lignin by downregulating the last step of the lignin bio-
synthetic pathway through an antisense strategy (Baucher et al., 1996;
Li et al., 2003); the transgenic trees required fewer chemicals for delig-
nification and yielded more high-quality pulp (Pilate et al., 2002). Since
removal of lignin in the paper and pulp industry is an energy-consuming
process that requires large amounts of hazardous chemicals, the success of
the antisense trees holds promise for more environmentally friendly proc-
essing in the future.

3.2.4 Biopharmaceuticals/edible vaccines

Using Agrobacterium-mediated transformation, transgenic plants have
been engineered to express a wide variety of exogenous proteins, from
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spider dragline silk (a fiber with high tensile strength and elasticity;
Scheller et al., 2001) to vaccines, antibodies, and other life-saving bio-
pharmaceuticals such as anti-coagulants, human epidermal growth fac-
tor, and interferon (Giddings et al., 2000). To date, most such clinically
relevant proteins have been produced in tobacco, although potatoes, al-
falfa, soybean, rice and wheat have also been used successfully. While
green tissue has a distinct advantage in terms of productivity, seeds or tu-
bers are most useful for delivery of an edible product such as a vaccine;
they can be stored for long periods of time (Daniell et al., 2001) and
shipped long distances at ambient temperature (Streatfield et al., 2001).
Edible vaccines may hold considerable promise for the developing
world, where refrigeration, sterile syringes and needles, and trained health
care personnel are frequently in short supply (Arntzen et al., 2005). Since
many pathogens utilize mucosal surfaces as their point of entry, priming
the entire mucosal immune system via oral stimulation is an especially at-
tractive mode of immunization (Streatfield et al., 2001). Nonetheless, lack
of a profit incentive for private industry, coupled with concerns about in-
adequate biosafety infrastructure in developing countries and the complex-
ity of government-financed health care delivery systems, have resulted in
the development of relatively few products (Ma et al., 2005b) in the 14
years since the first report of an antigen expressed in transgenic plants
(Mason et al., 1992). Oral immunization has been achieved using trans-
genic potatoes expressing antigens including the heat-labile enterotoxin
from E. coli (Haq et al., 1995; Mason et al., 1998), the Norwalk virus cap-
sid protein (Tacket et al., 2000), and the hepatitis B surface antigen
(Richter et al., 2000; Kong et al., 2001), as well as transgenic alfalfa ex-
pressing proteins from the foot and mouth disease virus (Dus Santos et al.,
2005), among others. Despite these successes, it should be noted that there
are no transgenic-plant-derived pharmaceuticals in commercial production
(Ma et al., 2005a). This may change in the near future, as a large European
consortium with collaborators in South Africa is actively engaged in de-
veloping plant-based production platforms for pharmaceuticals targeted to
HIV, rabies, tuberculosis and diabetes. This group would be the first to
carry out clinical trials of plant-derived candidate pharmaceuticals within the
European Union regulatory framework (http://www.pharma-planta.org/).
Plant-derived pharmaceuticals have many potential advantages over
those produced in animal cell culture or by microbial fermentation. High
yields, favorable economics, existing technologies for harvesting and
processing large numbers of plants, and the possibility of expressing pro-
teins in specific subcellular compartments where they may be more stable,
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all contribute to the choice of transgenic plants over bacterial expression
systems for recombinant proteins (Daniell et al., 2001). Like animal cells,
plants have the ability to carry out post-translational modifications, and
can fold and assemble recombinant proteins using eukaryotic chaperones,
but plant expression systems have the added benefit of minimizing the po-
tential for contamination with human pathogens (Woodard et al., 2003;
Arntzen et al., 2005). Finally, multimeric protein complexes may be recon-
structed in transgenic plants by stacking transgenes through successive
crosses among plants resulting from single transformation events (Hiatt
et al., 1989; Ma et al., 1995; Ma et al., 2005a). This is a particularly im-
portant consideration when producing multimeric secretory antibodies to
protect against microbial infection at mucosal sites (Giddings et al., 2000).

One concern about plant-based pharmaceuticals is the potential for
non-mammalian glycosylation patterns that might result in immune sensi-
tization or loss of function (Bardor et al., 1999; Giddings et al., 2000).
However, at least one plant-derived monoclonal antibody was found to be
functional despite differences in N-linked glycosylation (Ko et al., 2003),
and stable expression of a human galactosyltransferase in plants has been
shown to yield “plantibodies” with mammalian glycosyl modifications
(Bakker et al., 2001). Other potential limitations of plant expression sys-
tems include low and/or variable yield (Chargelegue et al., 2001), unex-
pected localization of the expressed protein (Hood, 2004), and, for edible
vaccines, induction of oral tolerance and/or gastrointestinal degradation of
the antigen (Ma, 2000; Daniell et al., 2001). Finally, contamination of food
and feed crops with pharmaceutical crops, either in the field or post-
harvest, poses potentially serious health and public relations risks (Ma
et al., 2005b).

3.3 Bioremediation

Two classes of transgenic plants have been developed to address the se-
rious risks to human health posed by industrial and naturally occurring en-
vironmental pollutants: some serve as biomonitors, detecting the presence
of toxic compounds in the environment, while others detoxify contami-
nated soils. By integrating an engineered marker gene, beta-glucuronidase,
Barbara Hohn and coworkers have pioneered a strategy in which trans-
genic Arabidopsis has successfully been used to report enhanced rates of
homologous recombination or point mutation due to heavy metal ions
(Kovalchuk et al., 2001a; Kovalchuk et al., 2001b), and to ionizing radia-
tion resulting from the Chernobyl accident (Kovalchuk et al., 1998).
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Increasing levels of pollution resulting from global industrialization
have focused attention on the possibility of phytoremediation: using plants
to remove or inactivate pollutants from soil or surface waters. Factors that
influence the utility of a plant in phytoremediation include (i) the availabil-
ity of the trace element in a form that can be taken up by the plant’s roots;
(ii) the rate of uptake; (iii) the ability of the plant to transform the pollutant
into a less toxic, and potentially volatile, compound; and (iv) the movement
of the compound from the roots into the shoots (Kramer and Chardonnens,
2001). Theoretically, genetic manipulation of heavy metal accumulation in
plants could be used to imbue a plant with any of these traits or to enhance
an existing capability (Clemens et al., 2002). Introduction of bacterial
genes has enabled the creation of transgenic Arabidopsis plants capable of
converting the highly toxic contaminant methylmercury to the volatile and
much less toxic elemental mercury (Bizily et al., 1999; Bizily et al., 2000).
Similar modifications have resulted in Arabidopsis and poplar able to
process and sequester mercury ion (Rugh et al., 1996; Rugh et al., 1998),
Indian mustard that processes selenite (a common contaminant in oil-
refinery wastewater) (Pilon-Smits et al., 1999), and tobacco engineered to
facilitate degradation of the explosive trinitrotoluene (TNT) (Hannink
et al., 2001). To deplete arsenic contamination from groundwater, re-
searchers have introduced bacterial genes that confer on Arabidopsis the
ability to extract and accumulate in the leaf levels of arsenic that would
normally poison the plant (Dhankher et al., 2002). Second generation
phytoremediating plants will likely capitalize on the finding that overex-
pression of a yeast vacuolar transporter in Arabidopsis leads to enhanced
accumulation, and hence tolerance, of heavy metals such as cadmium and
lead (Song et al., 2003b).

3.4 Increasing crop plant productivity by altering plant
physiology and photosynthetic capacity

The Green Revolution succeeded in increasing net food productivity
per capita in Asia, India, and Latin America by combining, through traditional
breeding, high yield and dwarfing traits in several of the world’s most im-
portant grain crops (Evenson and Gollin, 2003). The advent of basic plant
molecular biology, made possible in large part by the availability of Agro-
bacterium-mediated techniques for introducing and knocking out plant
genes, has dramatically augmented our understanding of how plant archi-
tecture and generation time are regulated, and these discoveries may
enable further improvements in yield. For example, manipulating plant
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brassinosteroid levels resulted in a more erect leaf structure in rice, in-
creasing yield under dense planting conditions (Sakamoto et al., 2006).
Tissue-specific modulation of the growth hormone gibberellin catabolism
in transgenic rice led to a semi-dwarf phenotype without a loss in grain
productivity (Sakamoto et al., 2003). In other cases, yield may be en-
hanced by decreasing the time required for the plant to produce the edible
portion. Exogenous expression of the Arabidopsis flower initiation genes
LEAFY or APETALA accelerated the generation time of citrus trees (Pena
and Seguin, 2001). Dormancy in potatoes was controlled by expressing a
bacterial gene that altered sprouting behavior (Farre et al., 2001), while
tomatoes with prolonged shelf- and vine-life characteristics were created
by manipulating the biosynthesis of the ripening-promoting hormone eth-
ylene (Oeller et al., 1991), or by increasing levels of the anti-ripening poly-
amines (Mehta et al., 2002), respectively.

Other attempts to increase yield potential have centered on the photo-
synthetic process, and in particular the inefficiency of the carbon assimila-
tion pathway in C; plants, a group that includes many agronomically
important crop plants. The alternative C, pathway makes use of both altered
biochemical pathways and spatial segregation within the plant to concen-
trate CO, for the crucial Calvin-cycle enzyme ribulose 1,5-bisphosphate
carboxylase (Rubisco) (Edwards, 1999). Using Agrobacterium-mediated
transformation, Matsuoka and co-workers have expressed three key C4 en-
zymes in rice (a C; plant) (Ku et al., 1999; Ku et al., 2001), but it seems
likely that successful enhancement of photosynthetic capabilities will re-
quire the specialized leaf anatomy of C, plants. Another strategy, involving
expression in tobacco of a cyanobacterial enzyme, successfully improved
photosynthetic capacity and concomitantly increased the plants’ biomass
(Miyagawa et al., 2001). However, grain production is tightly linked to ni-
trogen availability, and hence larger plants will not necessarily yield more
grain unless soil nitrogen levels are sufficient (Sinclair et al., 2004).

3.5 Enhancing crop productivity by mitigating external
constraints

A plant’s physiology and its photosynthetic capacity are inherent char-
acteristics, but crop yields can also be limited by many external factors,
including inadequate soil fertility, disease, climatic stresses, and/or the
presence of soil constituents (e.g., heavy metals) that compromise plants’
growth and development. Among the approaches to mitigating these con-
straints are some that involve genetically modifying the crop plant. It is
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important to stress that there are also many highly successful non-
biotechnological practices that have been in use for centuries, including in-
tegrated pest and vector management, crop rotation, dissemination of
pathogen-free plant material (Rudolph et al., 2003), and removal of weeds
that can serve as reservoirs of infection (Wilson, 1993). Indeed, farming
systems that combine careful land management with a diverse array of
species and genetic backgrounds within a species can be highly productive
even in the absence of modern varieties or biotechnology “improvements”
(Brown, 1998). The lessons of such a holistic approach to agriculture are
enjoying a resurgence of popularity among small and some medium-scale
farmers in the industrialized world; for example, integrated production and
organic farming guidelines are in practice on 85% of the farmland in Swit-
zerland (Xie et al., 2002). Nonetheless, the predominant model of agricul-
ture in much of the developed world is one of monocultures grown with
high external inputs. At the other end of the spectrum, resource-poor farm-
ers cultivating marginally arable land face myriad environmental con-
straints which, for a variety of reasons, have proven recalcitrant to the
available integrated approaches. The following sections highlight some of
the applications of Agrobacterium-mediated genetic modification of plants
that may address these constraints and/or mitigate negative consequences
of the conventional solutions. None of these biotechnological approaches
is a panacea. On the other hand, although biotechnology is anathema to
most proponents of organic farming practices, it is likely that our ability to
meet the growing challenge of adequate food production may benefit from
open-mindedness and creative approaches that incorporate the genetic
modifications described below into sustainable, ecosystem-centered culti-
vation systems.

3.5.1 Enhanced nutrient utilization

The negative environmental impacts of inorganic, petroleum-based fer-
tilizers are well-documented, as are the prohibitive costs that preclude their
use by subsistence farmers attempting to cultivate depleted soils (Good
et al., 2004). Engineering plants with enhanced capabilities to absorb
micronutrients from the soil, by over-expressing nitrogen, potassium and
phosphorus transporters and/or manipulating their regulation, could de-
crease the need for fertilizers (Hirsch and Sussman, 1999). For some nutri-
ents, such as iron and phosphorus, the limiting factor is often solubility
rather than abundance in the soil. Plants synthesize and secrete a variety of
organic acids that can chelate insoluble compounds, allowing uptake of the
complex (Guerinot, 2001). Several important grain crops such as rice,
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maize and sorghum are particularly sensitive to low iron availability in al-
kaline soils, where iron is less soluble. Agrobacterium-mediated introduc-
tion of genes conferring enhanced biosynthesis of an iron chelator in rice
resulted in improved growth and four-fold higher grain yields under condi-
tions of low iron availability (Takahashi et al., 2001). Finally, it may be
possible to engineer plants to secrete nutrients that specifically promote
growth of beneficial microbes in the rhizosphere (O’Connell et al., 1996).

3.5.2 Enhanced tolerance to abiotic stress

Solubility of soil constituents is also an important factor influencing a
plant’s tolerance for metal ions. The abundant metal aluminum normally
exists as harmless oxides and aluminosilicates, but in acidic soils it is solu-
bilized into the toxic A’ which inhibits root growth. Plants that tolerate
otherwise toxic levels of AI’™ do so by secreting organic acids such as cit-
rate or malate at the root apex that chelate the AI’" in the soil and prevent
uptake (Ma et al., 2001). [Other plants accumulate aluminum in the leaves
and detoxify it internally by forming organic acid-complexes; the charac-
teristic variation in hydrangea sepals from pink to blue, for example, is de-
termined by the pH-dependent aluminum concentration in the cell sap; Ma
et al., (2001).] Attempts to engineer aluminum tolerance by introducing
bacterial citrate synthase genes into tobacco and papaya were met with
mixed success; enhanced tolerance was reported, but could not be repro-
duced by another group (de la Fuente et al., 1997; Delhaize et al., 2001).
Improved tolerance of zinc in transgenic plants has also been observed
(van der Zaal et al., 1999).

Metal contamination in the soil is but one of the abiotic stresses that
constrain crop plant productivity. Growing global demand for food contin-
ues to force farmers onto marginally arable land where soil salinity, water
deficits, and climatic challenges such as low or high temperatures limit
cultivation (Bartels, 2001). Strategies to engineer enhanced tolerance to
such adverse conditions fall into at least two categories: direct protection
from the stressor(s), and enhanced resistance to the physiological damage
caused by the stressor. In the latter category, a family of aldose-aldehyde
reductases are activated in response to a wide variety of stresses (Bartels,
2001). Ectopic expression of an alfalfa aldose-aldehyde reductase gene via
Agrobacterium-mediated transformation results in reduced damage upon
oxidative stress, apparently by eliminating reactive aldehydes, and in-
creased tolerance to salt, dehydration, or heavy metal stress (Oberschall
et al., 2000). Several other transgenic improvements in stress tolerance
[e.g., overexpression of glutathione peroxidase (Roxas et al., 1997) and
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overexpression of superoxide dismutase (McKersie et al., 1996)] likewise
function by providing oxidative protection (Zhu, 2001).

Osmolytes also confer stress tolerance by scavenging reactive oxygen
species (Zhu, 2001). The non-reducing disaccharide trehalose stabilizes
biological structures upon dessication in many bacteria, fungi, and inverte-
brates, but apparently does not accumulate naturally in plants (Penna,
2003). Transgenic tobacco and rice engineered to produce trehalose exhibit
enhanced resistance to drought (Romero et al., 1997; Pilon-Smits et al.,
1998), salt, and low-temperature stress (Garg et al., 2002). Production of
mannitol results in tobacco with enhanced tolerance to high salinity
(Tarczynski et al., 1993). Other low-molecular-weight compatible solutes
that accumulate in some plants to protect proteins from stress-induced
damage include glycinebetaine, polyols and amino acids. Glycinebetaine
accumulation confers on transgenic Arabidopsis an increased ability to
withstand high temperatures during germination and seedling growth (Alia
et al., 1998).

In addition to small osmolytes, a number of proteins have also been
shown to have stress protective activity, primarily in response to low tem-
perature. A variety of plants produce antifreeze proteins, as do several fish
and insects; these proteins function to inhibit growth of intercellular ice
crystals (Griffith and Yaish, 2004). There have been a variety of attempts
to introduce a gene encoding one of these anti-freeze proteins into tobacco,
tomato, potato, and Arabidopsis, with the ultimate goal of lowering the
freezing temperature, even by a few degrees, so that the plants could sur-
vive a light frost (Griffith and Yaish, 2004). At least one such experiment
was successful; although the plant did not exhibit higher rates of survival
upon freezing, the freezing temperature was indeed lowered (Huang et al.,
2002c). Another transgenic strategy to achieve freezing tolerance involves
the introduction of bacterial ice nucleation genes, which permit slow dehy-
dration that minimizes tissue damage (Baertlein et al., 1992).

High soil salinity impedes plant growth, both by creating a water deficit
in the soil and within the plant, as sodium ions impinge on many key bio-
chemical processes. Strategies to increase salt tolerance involve limiting
exposure of cytoplasmic enzymes to the salt and may include blocking
Na', influx, increasing Na' efflux, and compartmentalizing Na" (Zhu,
2001). Successful transgenic approaches are described in detail in Yama-
guchi and Blumwald (2005). Many of these entail over-expressing the
Arabidopsis vacuolar Na'/H™ antiporter, which enhances tolerance to soil
salinity, with few or no detrimental effects on seed quality or plant growth,
in canola (Zhang et al., 2001), Arabidopsis (Apse et al., 1999), tomato
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(Zhang and Blumwald, 2001), and wheat (Xue et al., 2004). Sequestration
of cations in the Arabidopsis vacuole, resulting in enhanced salt and
drought tolerance was also achieved by overexpressing the vacuolar H' py-
rophosphatase (Gaxiola et al., 2001). Increased expression of a plasma
membrane Na'/H" antiporter augmented salt tolerance by limiting Na" ac-
cumulation (Shi et al., 2003). Finally, tolerance in rice, resulting from ex-
pression of a bacterial Na'/H" antiporter, was accompanied by biosynthetic
activation of the osmoregulatory molecule proline (Wu et al., 2004).

Both freezing and high temperature cause damage to plant tissues and
proteins, leading to diminished crop yield. A comprehensive listing of at-
tempts to enhance plant thermo-tolerance through genetic modification can
be found in Sung et al. (2003). This chapter will highlight some of the
most common approaches. One of the earliest reports of altered chilling
sensitivity resulted from engineering the degree of fatty acid saturation in
tobacco membranes (Murata et al., 1992). Another strategy stems from the
identification of the low-temperature transcriptional activator CBF1, which
induces expression of multiple cold-regulated (COR) genes associated
with cold acclimation (Sarhan and Danyluk, 1998). Using Agrobacterium-
mediated overexpression of CBF1, Jaglo-Ottosen et al. (1998) successfully
mimicked an acclimated state and enhanced the freezing tolerance of
Arabidopsis. The existence of a more universal transcriptional response
that includes cor genes, induced by the DREB (dehydration-responsive
element binding) transcription factor family (Smirnoff and Bryant, 1999),
suggests that there is likely to be extensive cross-talk among the stress-
responsive signal transduction pathways (Sung et al., 2003). Indeed, stress-
inducible over-expression of DREB1A conferred enhanced tolerance to
freezing, water stress, and salinity without affecting plant growth, while
increased constitutive expression of DREB1A also caused a significant
improvement in stress tolerance but at the expense of severe growth retar-
dation under normal growing conditions (Kasuga et al., 1999). Although
the biochemical functions of the encoded stress-induced proteins are un-
known, it is worth noting that the effect of DREB1A on freezing tolerance
was substantially greater than that of CBF1 (>10°C vs. 1°C) (Zhu, 2001).

In concluding this section on engineering tolerance to environmental
constraints, it is important to recognize that reductions in crop viability and
yield are compounded by combinations of abiotic stresses. Such combina-
tions can elicit plant responses that are not easily extrapolated from the
plant’s response to each stress applied individually (Mittler, 2006). Strate-
gies designed to mitigate the effects of combinations of environmental
stress conditions might, for example, target stress-responsive signal
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transduction pathways, which could exhibit synergistic or antagonistic
cross-talk. Regardless of the approach taken, lab-based proof-of-
concept experiments must be complemented by testing under conditions
that mimic the field environment (Mittler, 2006).

3.5.3 Improved disease resistance

Crop productivity is limited by a variety of parasites and pathogens, in-
cluding fungi, bacteria, viruses, and insects (Baker et al., 1997). In natu-
rally occurring ecosystems, elaborate networks of defenses function at
many levels to protect plants from disease (Abramovitch and Martin,
2004). Elucidation of these defense pathways has recently become a par-
ticularly active area of research in plant molecular biology, and has led to
our growing appreciation for the complex interplay between basal defenses
and specific disease resistance (Feys and Parker, 2000). A major contribu-
tor to disease susceptibility is the reliance of industrial-scale agriculture on
monocultures. Cultivation of plant lines bred for resistance to one or a few
pathogens, often conferred by so-called R genes, can lead to the emergence
of pathogens that have undergone natural selection to overcome the resis-
tance (Gurr and Rushton, 2005). Despite the potentially short-sighted na-
ture of such agricultural practices, identification of R genes has been the
focus of considerable effort over the past decade (Baker et al., 1997; Dangl
and Jones, 2001). At least one such gene, the Bs2 gene from pepper, has
been used successfully to engineer durable resistance to the agronomically
significant bacterial spot disease in tomato (Tai et al., 1999). The Xa21 re-
sistance gene from rice, which provides wide-spectrum resistance to the
devasting bacterial blight caused by Xanthomonas oryzae pathovar oryzae,
has been introduced into a variety of rice cultivars using Agrobacterium-
mediated gene delivery (Wang et al., 2005). Likewise, broad spectrum re-
sistance to potato late blight is conferred by one of four R genes cloned
from a wild, highly resistant, potato species (Song et al., 2003a). Pyramiding
of multiple R genes can confer resistance to a range of pathovars within a
species (e.g., Li et al., 2001), but the introduction of R genes can also re-
sult in a substantial fitness cost to the plant (Gurr and Rushton, 2005).

More recently, attention has shifted to the basal or non-host resistance
plant defenses, which tend to target entire classes of pathogens. These
pathways are generally activated in response to common patterns shared
by many pathogens, such as fungal cell walls or bacterial flagellin. Elici-
tation of defense-related signal transduction pathways can be achieved
by introduction or overexpression of receptor-like kinases (Gurr and
Rushton, 2005) such as the receptor responsible for perception of the
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pathogen-associated molecule flagellin (Zipfel et al., 2004). A related
strategy involves engineering a plant to express a pathogen-derived
elicitor of specific or basal defense responses (Keller et al., 1999). In this
case, limiting the expression to sites of infection using pathogen-inducible
promoters (Rushton, 2002) is essential, since constitutive activation of de-
fense pathways can lead to reductions in plant health and even cell death
(Gurr and Rushton, 2005).

Generic plant defenses include antimicrobial compounds such as de-
fensins and chitinases. Ectopic expression of plant-derived or synthetic an-
timicrobial peptides in transgenic potatoes provides robust resistance to
bacterial and fungal pathogens (Gao et al., 2000; Osusky et al., 2000), al-
though only the former study tested resistance in the more relevant field
setting (van der Biezen, 2001). A variety of antibacterial proteins from
sources other than plants have been used to confer resistance to bacterial
diseases in several transgenic plants (reviewed in Mourgues et al., 1998).
Arabidopsis plants expressing antifungal peptides fused to a pathogen-
specific recombinant antibody derived from chicken exhibited resistance to
the fungal pathogen (Peschen et al., 2004). Finally, plant-derived defense
molecules including proteinase inhibitors (Urwin et al., 1997) and lectins
(Jung et al., 1998) have potential as nematicidal agents.

A third approach to engineering enhanced disease resistance takes ad-
vantage of the rapid expansion in our understanding of the pathways
downstream of the initial pathogen perception events. Here, targets for ge-
netic manipulation include “master-switch” transcriptional regulators, par-
ticularly those that activate local or global resistance networks involving
salicylic acid, jasmonate, pathogenesis-related proteins, and the systemic
acquired resistance that primes defenses in uninfected areas of the plant
(Gurr and Rushton, 2005). For example, overproduction of the transcrip-
tion factor NPR1 (also known as NIM1) results in enhanced resistance to
bacterial and fungal pathogens and enhances the efficacy of fungicides
(Cao et al., 1998; Friedrich et al., 2001). Plants engineered to produce ele-
vated levels of salicylic acid also exhibit enhanced disease resistance
(Verberne et al., 2000). Finally, appreciation for the involvement of the
iron-binding protein ferritin in the oxidative stress response and the central
role of oxidative stress in plant defense responses led to the successful
demonstration that ectopic expression of ferritin can enhance tolerance to
viral and fungal pathogens (Deak et al., 1999). Given the explosion in
knowledge of plant defense mechanisms over the past decade, as well as
the continued reliance on approaches to industrial-scale cultivation that
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foment rampant pathogen spread, genetic engineering for disease resis-
tance promises to be a very active area of research in the near future.

The quest to engineer virus resistance in plants stems from the proposal
that expression of pathogen-derived genes within a plant can induce resis-
tance to the pathogen in question (Sanford and Johnston, 1985). The first
successful validation of this concept was the creation of tobacco mosaic vi-
rus-resistant tobacco plants producing the virus coat protein (Powell-Abel
et al., 1986). A multitude of virus-resistant plants have since been devel-
oped using the same strategy (reviewed in Lomonossoff, 1995 and Wilson,
1993). A markedly effective implementation of coat protein-mediated pro-
tection was instrumental in saving the Hawaiian papaya crop from the pa-
paya ringspot virus; the transgenic papaya has been commercialized and
efforts are underway to transfer the technology to developing countries,
which produce 98% of the world’s papaya crop (Gonsalves, 1998). Al-
though this particular application made use of particle bombardment rather
than Agrobacterium to deliver the transgene, it serves as a convincing il-
lustration of the potential for achieving virus resistance in other highly
susceptible crops.

Production of viral proteins generally provides moderate levels of pro-
tection to a relatively broad spectrum of related viruses (Lomonossoff,
1995). In several cases, Agrobacterium-mediated expression of a viral rep-
licase gene (Baulcombe, 1994) or virus movement proteins (e.g., Beck
et al., 1994), rather than the viral coat protein, effectively conferred resis-
tance. Unexpectedly, a number of researchers discovered that in some in-
stances, levels of resistance did not correlate with the amount of foreign
protein produced; furthermore, translationally defective genes could also
provide protection (reviewed in Lomonossoff, 1995). Taken together, these
findings indicated that at least some component of the resistance was at-
tributable to the transgenic RNA, not the protein itself (Lindbo et al., 1993;
Pang et al., 1993; Goregaoker et al., 2000; Prins, 2003). These observa-
tions coincided roughly with the initial reports of cosuppression (see
section 2.6), and contributed to the discovery of post-transcriptional RNA
silencing (PTGS) in plants, as well as in fungi and animals (Hannon,
2002). The recognition that the observed RNA-mediated virus resis-
tance was a manifestation of PTGS, in turn, led to the realization that
homology-dependent gene silencing is responsible for much of the pheno-
typic variability observed in transgenic plants (Kooter et al., 1999).

The intracellular series of events by which dsRNA brings about gene
silencing in plants has been extensively studied (reviewed in Tenllado
et al., 2004), and it is now clear that the process functions as a naturally
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occurring defense system in plants in response to dsSRNA formed during
virus replication (Tenllado et al., 2004; Soosaar et al., 2005). RNA-
mediated protection tends to provide resistance even to high levels of viral
infection, but, as might be expected given the mechanism, is usually very
virus-specific (Lomonossoff, 1995). Engineering plants to produce a self-
complementary hairpin RNA corresponding to a viral gene target confers
virus resistance; notably, the percentage of virus-resistant plants can be in-
creased to almost 100% by including an intron within the hairpin region
(Smith et al., 2000). Using Agrobacterium-mediated infiltration to deliver
hairpin loops of viral RNA, Diaz-Ruiz and colleagues have demonstrated
that it is possible to induce virus resistance in plants simply by exogenous
exposure to the dsRNA; this work opens the door for future development
of field-scale approaches in which bacterial lysates containing dsRNA are
sprayed directly on the plants to confer resistance (Tenllado et al., 2004).
Endogenous microRNAs, important regulators of gene expression that
cause translational repression or cleavage of their target mRNAs, can also
be engineered to contain sequences complementary to particular plant vi-
ruses. Transgenic plants expressing precursors of these artificial microR-
NAs exhibit resistance to the targeted viruses, even at temperatures that
compromise hairpin dsSRNA—mediated silencing (Niu et al., 2006). In contrast
with RNA-mediated resistance, artificial microRNAs do not run the risk of
complementing or recombining with non-target viruses, and thus pose less of
an environmental biosafety threat (Garcia and Simon-Mateo, 2006).

Generally speaking, the mechanism by which expression of viral pro-
teins causes resistance in plants is not as well understood as the process of
viral RNA mediated suppression (Uhrig, 2003), and is rather protein-
specific (Lomonossoff, 1995). Nonetheless, recent attempts to improve
virus resistance in transgenic plants have targeted both protein- and RNA-
mediated mechanisms. In several instances, introduction of a defective or
truncated protein-coding sequence has proven more effective than expres-
sion of an intact, functional version in inducing resistance (Uhrig, 2003).
Rudolph et al., (2003) have demonstrated that transgenic expression of a
dominant interfering peptide from a viral nucleocapsid protein, identified
using the yeast dihybrid assay, is sufficient to bring about virus resistance.
Agrobacterium-mediated delivery of a ribozyme, a small RNA molecule
capable of cleaving RNA, has been successful in conferring at least partial
resistance to viruses and viroids in tobacco and potato (de Feyter et al.,
1996; Yang et al., 1997).

A significant shortcoming of RNA-mediated virus resistance is the high
degree of sequence homology (>90%) required (Prins, 2003), limiting the
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possibility of engineering resistance to multiple viruses with one trans-
gene. Furthermore, virus resistance achieved in the lab does not always
translate into the field, where added environmental stresses compound the
plants’ susceptibility (Wilson, 1993). With our growing appreciation of
PTGS as a natural form of self-protection in plants came the predictable
discovery that many viruses produce suppressors of PTGS as a counter-
defense strategy (Rovere et al., 2002; Soosaar et al., 2005). This presents a
potential problem for the use of silencing-based virus resistance in the
field, where a secondary infection with a suppressor-carrying virus could
allow the targeted virus to overcome the engineered resistance. Some at-
tempts to stack viral genes have been successful in achieving resistance to
multiple, related, viruses (Prins et al., 1995); one logical strategy would
entail engineering resistance to possible co-infecting viruses that carry
PTGS suppressors as well as the virus of interest (Rovere et al., 2002). Fi-
nally, expression of a viral transgene under the control of the 35S CaMV
promoter can be substantially attenuated if the plants happen to become in-
fected with CaMV, leading to silencing of the transgene and a loss of im-
munity (Mitter et al., 2001). Likewise, herbicide resistance, conferred by a
35S CaMV-driven transgene, was rendered ineffective upon CaMV infec-
tion (Al-Kaff et al., 2000). These observations suggest that virus-derived
suppression of transgene expression, attributable to transcriptional or post-
transcriptional gene silencing, may prove to be a significant limitation in
maintaining engineered traits in a field setting.

3.6 Reduction in the use of harmful agrochemicals by
enhancing plant resistance to herbicides and pests

3.6.1 Herbicide resistance

Much has been written in the popular press about the creation and mar-
keting of herbicide resistant crop plants. The rationale is that these crops
allow farmers to eliminate weeds with one broad-spectrum, somewhat less
toxic, herbicide without damaging the crop. Two of the most common her-
bicide/herbicide resistant seed packages involve the herbicides glyphosate
(inhibitor of the shikimate pathway for aromatic amino acid biosynthesis;
marketed by Monsanto as RoundupTM) and glufosinate ammonium
(glutamine synthase inhibitor; Hoechst’s trademark BastaTM); others in-
clude sulfonylurea (acetolactate synthase inhibitor) and bromoxynil
(Nottingham, 1998). In most cases, resistance is conferred by foreign
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genes encoding enzymes that are not susceptible to the action of the herbi-
cide (Comai et al., 1985), or by overproduction of the target enzyme (Dale
et al., 1993). In addition, the bacterial bar gene product provides resistance
to glufosinate ammonium by detoxifying it (De Block et al., 1987). The
most widely planted herbicide-resistant crop plant is Monsanto’s Round-
Up Ready soybean; other glyphosate-resistant crops include maize, canola,
oilseed rape, sugarbeet, tobacco, and cotton (Nottingham, 1998). Although
many herbicide-resistant crops were initially developed using Agrobacte-
rium-mediated gene delivery, the current method of choice is particle
bombardment. For this reason, these plants will not be discussed further
here; the reader is referred to Nottingham (1998) for a more complete dis-
cussion of the private sector interests responsible for the development of
these crops.

3.6.2 Insect resistance

One of the early selling points of transgenic crop plants was the prom-
ise of a reduction in the use of hazardous pesticides. By far the most
widely used insect resistance traits are conferred by the cry genes, encod-
ing toxins derived from the soil bacterium Bacillus thuringiensis. Several
different Bt toxin gene products have slightly different modes of action
and target different orders of insects, but the general strategy is similar: the
crystalline toxins bind to the membrane of the larval gut and prevent nutri-
ent uptake (Nottingham, 1998). Bt toxins are considered particularly at-
tractive because of their high specificity, biodegradable nature, and lack of
toxicity for humans and other non-target animals. Agrobacterium was first
used to introduce a Bt gene into tobacco and tomato in 1987 (Vaeck et al.,
1987), and the first transgenic plant was commercialized in 1996. The
most widely planted Bt crops include maize (resistant to the European corn
borer and/or southern corn rootworm), cotton (resistant to the cotton boll-
worm and the tobacco budworm), and potato (target pest is the Colorado
potato beetle) (Shelton et al., 2002). Several other Bt crops, including ca-
nola, soybean, tomato, apple, peanuts, and broccoli are under development
(Bates et al., 2005). Bt rice may hold considerable promise for Asian agri-
culture (High et al., 2004). A substantial body of literature exists on the
economic impact of Bt crops in industrial and developing countries [see,
for example, Morse et al., (2004); for a comprehensive review of ecologi-
cal, economic, and social consequences, together with risk assessment of
Bt crops, the reader is referred to Shelton et al., (2002)]. It should be noted
that yield increases due to genetic modifications such as Bt transgenes are
likely to be much higher in developing countries than in industrialized
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nations; this difference is attributable to high pest pressure, and low avail-
ability/adoption of chemical alternatives in areas such as south/southeast
Asia and Africa, where farmers cannot afford chemical inputs (Qaim and
Zilberman, 2003). In a clear validation of the original rationale for insecti-
cide-producing transgenic crops, Huang et al. have documented impressive
reductions in pesticide application and in pesticide-related poisoning
among Chinese farmers cultivating Bt cotton and rice (Huang et al., 2002b;
Huang et al., 2005). Similar decreases in the use of pesticides have also
been reported among farmers planting Bt cotton in India (Qaim and Zil-
berman, 2003).

At the same time, effects such as the long-term regional declines in the
pink bollworm population density attributed to the planting of Bt cotton
(Carriere et al., 2003), suggest that this technology will have significant
and lasting ecological impacts. Concern about the emergence of insect re-
sistance to Bt has led to a variety of insect resistance management strate-
gies including regulation of the toxin dosage, mandated planting of refuge
regions, and temporal or tissue-specific toxin expression (Bates et al.,
2005). Pyramiding two or more Bt toxin genes in the same transgenic plant
has been demonstrated to delay the evolution of resistance (Zhao et al.,
2003). However, selection for resistance will continue to occur even in
plants with pyramided resistance genes as long as the transgenes are also
used singly in other varieties; Pink and Puddephat (1999) have argued in-
stead for plant “multilines” that are heterogeneous with respect to the resis-
tance genes they carry, with the composition of the mixture commensurate
with the frequency of the corresponding virulence alleles in the pathogen
population. Additional non-Bt proteins that target non-Bt receptors under
development include the Vip3A toxin (Moar, 2002) and toxin A from the
bacterium Photorabdus luminescens (Liu et al., 2003). Other classes of in-
secticidal proteins are the protease inhibitors, produced by a wide variety
of plants to inhibit animal or microbial digestive enzymes, and plant-
derived lectins (Nottingham, 1998). Agrobacterium-mediated introduction
of the cowpea trypsin inhibitor gene has been shown to provide tobacco
with increased resistance to the tobacco budworm (Hilder et al., 1987);
the same gene in rice also confers greatly enhanced resistance to the
rice stem borer (Wang et al., 2005). Pyramiding cry genes with genes en-
coding lectins and/or protease inhibitors is an active area of research in
many crops of import to developing world agriculture (see, for example,
the report from the Indo-Swiss Collaboration in Biotechnology at
http://iscb.epfl.ch).
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3.7 Enhanced nutritional content in crop plants

In addition to increasing yields and reducing the use of inputs associ-
ated with negative environmental and/or health consequences, genetic
modification of food crops offers the possibility of enhancing the nutri-
tional content of the food (Huang et al., 2002a). In some cases, the goal is
to improve nutritional value by removing naturally occurring, but harmful,
substances. Perhaps the best-known cases are the toxic cyanogens found in
the important staple food cassava. Labor-intensive processing is required
to remove these cyanide precursors, which pose particular risks to indi-
viduals with protein-poor diets, from the tubers. By blocking the synthesis
of the cyanogen precursors with antisense constructs, Siritunga and Sayre
(2003) achieved a 99% reduction in root cyanogen levels, even though the
Agrobacterium-mediated transgenic modification targeted the leaf-based
biosynthetic pathway.

More frequently, however, nutritional enhancement entails increasing
the content of relatively rare constituents and/or creating a more balanced
amino acid complement. Rice, for example, is a staple crop for over half
the world’s population (Wang et al., 2005), yet lacks many essential nutri-
ents (Ye et al., 2000), and loses more nutritional value during processing
(Al-Babili and Beyer, 2005). The gene encoding a non-allergenic seed al-
bumin protein with a well-balanced amino acid content was introduced
into potato (Chakraborty et al., 2000), while canola and soybean have been
modified to augment their notoriously low levels of lysine (Tabe and
Higgins, 1998). Transgene-driven biosynthesis of naturally occurring or
modified sulfur-rich proteins has been achieved in canola (Altenbach et al.,
1992) and could be used to ameliorate low methionine levels in other edi-
ble plants; this deficiency is especially pronounced in legume seeds (Tabe
and Higgins, 1998). Quantity and quality of starch are other targets of
food-crop engineering (Slattery et al., 2000); manipulation of the adenylate
pools in potato increased both the starch content and the yield of trans-
genic potatoes (Regierer et al., 2002). Successful production of health-
promoting very long chain polyunsaturated (including omega-3) fatty acids
in oilseed crops has recently been reported (Wu et al., 2005). Although
accumulation of the desirable fatty acids in linseed is limited by the avail-
ability of biosynthetic intermediates, alternative strategies, including engi-
neering fatty acid production in green vegetables, have been proposed
(Abbadi et al., 2004). If successful, such genetic modifications hold prom-
ise as a sustainable alternative to fish, which are prone to problems includ-
ing dwindling stocks and contamination with heavy metals and other
pollutants (Qi et al., 2004).
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As might have been predicted from their roles in cancer prevention, in
promoting immunity, and in slowing the progression of several degenera-
tive human diseases (Shintani and DellaPenna, 1998), augmentation of
anti-oxidant levels in plants has been another attractive goal of food crop
engineering. Biosynthesis of one such group of essential antioxidants,
Vitamin E (Sattler et al., 2004), has been significantly enhanced in Arabi-
dopsis, corn, and soybean using Agrobacterium-mediated redesign of the
pertinent pathways (Shintani and DellaPenna, 1998; Cahoon et al., 2003;
Van Eenennaam et al., 2003). Production of other potent anti-oxidants in-
cluding lycopene has been increased through transgenic overexpression of
relevant enzymes in tomatoes (Muir et al., 2001; Mehta et al., 2002;
Niggeweg et al., 2004). Fruit-specific silencing of the photomorphogene-
sis gene DETI in tomato elevated flux through both the flavonoid and ca-
rotenoid biosynthetic pathways, increasing the content of beta-carotene as
well as lycopene, without the use of exogenous genes and without negative
impacts on fruit yield or quality (Davuluri et al., 2005).

Mineral fortification of crop plants through genetic alteration or selec-
tion has been envisioned as a way to address dramatic global dietary defi-
ciencies in iron, zingc, iodine, selenium and several other essential minerals.
Identifying genes and conditions that promote mineral accumulation in
plants is the focus of the HarvestPlus program within the CGIAR (Consul-
tative Group of International Agricultural Research). In the initial phase of
this initiative, six crops (beans, cassava, maize, rice, sweet potato and
wheat) are being targeted; an additional 11 subsistence crops will be added
in phase 2 (http://www.harvestplus.org/about.html). Transgenic approaches
to increase bioavailability have targeted mineral uptake, transport to edible
tissues, and augmented levels of organic compounds, including ascorbate
and beta-carotene, that promote mineral absorption in humans (White and
Broadley, 2005). Expression of the soybean iron storage protein ferritin in
rice, for example, resulted in a three-fold rise in seed iron content (Goto
et al.,, 1999). Alternative strategies include engineering plants to express
phytase, thereby removing a key impediment in most animals to mineral
uptake (Brinch-Pedersen et al., 2002).

3.7.1 “Golden Rice”

Beta-carotene is an essential dietary constituent, required in vertebrates
to synthesize Vitamin A, the key visual pigment retinal, and the morpho-
gen retinoic acid (Giuliano et al., 2000). Beta-carotene and other carote-
noids are synthesized in plants from phytoene, and introduction of a
phytoene synthase or desaturase from bacteria dramatically increased flux
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through the carotenoid pathway in canola (Shewmaker et al., 1999) and in
tomato (Romer et al., 2000), respectively. Vitamin A deficiency is a sig-
nificant health problem in much of the developing world, leading to an es-
timated 2 million deaths and 250,000 cases of childhood blindness each
year (Ye et al., 2000). A public sector initiative to engineer the beta-
carotene biosynthetic pathway into rice endosperm resulted in the devel-
opment of “golden rice” in 1999. A. tumefaciens was used to deliver into
rice phytoene synthase and lycopene cyclase genes from daffodil, along
with a bacterial phytoene desaturase gene. All three encoded enzymes car-
ried transit peptides targeting them to the plastid, the natural site of synthe-
sis of the phytoene precursor geranylgeranyl diphosphate (Ye et al., 2000).
This prototype golden rice contained one tenth of the recommended daily
allowance (RDA) of beta-carotene per 300 grams of rice (Giuliano et al.,
2000). This relatively low yield, coupled with concerns about the presence
of an antibiotic selectable marker, led to the creation of second-generation
golden rice in two agronomically important rice cultivars. The details of
these modifications, carried out in parallel by both public and private sec-
tor researchers, have been summarized in an excellent review by Al-Babili
and Beyer (2005). Dramatic improvement in the yield of beta-carotene was
achieved by substituting a phytoene synthase gene from maize for that
from daffodil (Paine et al., 2005). Using generally accepted conversion
factors for bioavailability and processing within the human, it is estimated
that this second generation golden rice can provide 50% of the vitamin A
RDA for children in a 72 g serving (Al-Babili and Beyer, 2005). Ulti-
mately, however, as with all transformed crop plants, the only relevant
value will be the nutritional contribution provided by field-grown, locally
adapted varieties. Additional goals for complementary rice improvement
include increasing the content of vitamin E to stabilize the beta-carotene,
and increasing iron accumulation to address the iron deficiencies often
found in the same populations who would benefit from golden rice
(Al-Babili and Beyer, 2005).

Golden rice serves as an excellent illustration of the challenges inherent
in technology transfer to developing countries. Although the research and
development was provided exclusively though the public sector, the pro-
ject had drawn on a wide variety of patent-protected DNA fragments and
technologies, and hence the modified plant was encumbered with no fewer
than 70 patent constraints held by 32 different companies and universities
(Potrykus, 2001). Through a series of complex negotiations, free licenses
were eventually obtained for every intellectual and technical property
component (see, for example, Normile, 2000). Current efforts are focused
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on introducing the engineered traits into as many local adapted varieties
and ecotypes as possible. The central player in this phase of the project is
the Indo-Swiss Collaboration in Biotechnology, a program funded through
the Indian Department of Biotechnology and the Swiss Development Cor-
poration. This collaborative effort, which incorporates studies on biosafety,
ecological impact, and socioeconomic considerations, and which is com-
mitted to ensuring that the technology reaches the target populations,
should serve as a model for future technology transfers (Potrykus, 2001).
Public adoption of golden rice will depend on many factors, but as Pot-
rykus (2001) succinctly spells out, this product of Agrobacterium-mediated
genetic modification fulfills each of the requirements for acceptability put
forth by activists opposed to genetically engineered crops.

4 GENE FLOW AND MOLECULAR APPROACHES
TO TRANSGENE CONTAINMENT/MONITORING

Despite the panoply of potential benefits associated with plant genetic
modification, public enthusiasm for this technology has been far from uni-
versal. Concerns range from risks inherent in the technology-such as po-
tential ecological damage resulting from transgene escape to wild plant
relatives, or possible adverse health effects of consuming genetically
modified (GM) food-to sociopolitical ramifications that transcend the
technology. In the latter category, valid questions have been raised about
inequitable access to the new crop varieties and the impact that this may
have on the distribution of wealth within poor societies. On a global scale,
growing disparities in wealth between North and South (industrialized and
developing countries) may be exacerbated by the practice referred to as
bio-prospecting or bio-piracy (depending on one’s perspective), in which
genes from landraces and traditional varieties found to confer desirable
traits are utilized/appropriated to genetically modify crop plants (Leisinger,
1999). Like the dangers associated with monoculture discussed earlier,
these technology-transcending risks are not specific to plant genetic engi-
neering, but they should not be dismissed as irrelevant to the discourse on
GM crops.

A detailed discussion of biosafety issues and regulatory considerations
associated with agricultural biotechnology is beyond the scope of this
chapter. However, in light of the serious nature of the concerns, and the
widespread public mistrust of the technology (Kleter et al., 2001), it would
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be irresponsible not to include a brief overview of the topic. For a more
detailed analysis, the reader is referred to chapter 19 in this volume.

Most health-related concerns center on the possibility of transgene
transfer to gut microbes. As alluded to in section 2.4, antibiotic-resistance
marker genes have come in for special scrutiny in this regard. Many ques-
tions remain unanswered concerning the ability of ingested DNA to sur-
vive passage through the digestive tract in a biologically active form, the
potential for gene flow during silage production using GM crops, and the
significance of GM plant-derived antibiotic resistance marker genes in
comparison with the rampant dissemination of bacterial resistance attribut-
able to overuse of antibiotics in clinical and livestock settings (Heritage,
2005). The cultivation of plants producing pharmaceutical proteins also
presents possible health risks including exposure of non-target organisms
and of humans to potential allergens (Peterson and Arntzen, 2004).

Adverse environmental impacts of transgenic plants may arise from
toxicity to non-target organisms or from increased selective pressure on
target pests, although our ability to predict the evolution of resistance de-
velopment is limited (Sandermann, 2004). Transgene contamination of
plants can occur via cross-pollination or inadvertent dispersal of GM seeds
during harvest, transportation, or planting (Smyth et al., 2002). Gene flow
from transgenic plants to wild relatives and non-transgenic crop plants has
been documented for both Bt and herbicide resistance traits (reviewed in
Sandermann, 2004). Contamination of conventional varieties destined for
“GM-free” or organic markets represents a serious concern to farmers who
have chosen to abstain from cultivating genetically engineered crops
(Smyth et al., 2002). Incidents that appear to threaten the livelihood of this
cohort of producers or the integrity of the booming organic movement are
likely to cause a substantial negative backlash in public perceptions of ag-
ricultural biotechnology.

Molecular strategies to limit gene flow include interfering with pollen
production and interruption of seed formation; both approaches can rely on
Agrobacterium-mediated delivery of exogenous genetic material. A third,
non-Agrobacterium mediated approach- maternal inheritance-involves in-
troducing the transgene into the chloroplast genome to avoid pollen-based
gene dissemination (Daniell, 2002). Nuclear-encoded male sterility was
first accomplished by Mariani et al. (1990), who expressed an RNase gene
under the control of a promoter specific for the tapetum. RNase-induced
destruction of the tapetum, one of the specialized tissues in the anther re-
quired for pollen development, prevents pollen formation. Restoration of
male fertility can be achieved by crossing in the barstar gene, encoding an
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inhibitor of the barnase RNase, also under tapetum-specific promoter
control (Williams, 1995). Other approaches to conditional male sterility
include engineering a plant with a gene or set of genes, under inducible
control in male reproductive tissues, that poison the plant cells or that alter
the levels of metabolites such as amino acids needed for the production of
pollen (Perez-Prat and van Lookeren Campagne, 2002).

Genes required for seed formation have also been targets for gene con-
tainment strategies. In the infamous “terminator” technology, inducible
expression of Cre recombinase results in the removal of a spacer sequence
that otherwise prevents seed-specific production of a cytotoxic ribosome
inhibitor protein; application of an exogenous stimulus relieves repression
of the cre gene and leads to destruction of the seed tissue (Daniell, 2002).
Although this technology has significant potential as a built-in safety
mechanism to prevent unintended dispersal of GM seed, it gained notoriety
as an impediment to growers wishing to save and replant harvested seed
containing proprietary alterations. As such, it is perceived as exemplifying
the insensitivity of the agricultural biotechnology enterprise to the needs of
subsistence farmers, and winning the acceptance of biotechnology skeptics
will be a challenge (Smyth et al., 2002).

Several recent reviews focus on monitoring gene flow and on mathe-
matical modeling of risk assessment (Wilkinson et al., 2003; Heinemann
and Traavik, 2004; Nielsen and Townsend, 2004; Lee and Natesan, 2006).
Transgene presence in living plants can be monitored using fluorescent
marker genes (Stewart, 2005). “Bio-barcodes,” consisting of uniform rec-
ognition sequences flanking a unique variable sequence to facilitate PCR
amplification and sequencing of the barcode, could be incorporated into all
transgene events; comparison to a universal database of barcode sequences
would provide information pertinent to liability claims, intellectual prop-
erty violations, and dispersal tracing (Gressel and Ehrlich, 2002). Unfortu-
nately, our ability to predict ecological consequences of transgenic crop
cultivation still lags far behind the implementation of monitoring technol-
ogy, and even further behind the development of the crops themselves
(Snow, 2002). As the many emerging applications of plant genetic engi-
neering described in section 3 are adapted for novel geographical loca-
tions, each will need to be assessed on a case-by-case basis, taking into
consideration the particular ecological context in which the plants are to be
grown (Dale et al., 2002).
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5 GLOBAL STATUS OF AGRICULTURAL
BIOTECHNOLOGY AND TECHNOLOGY TRANSFER

A concise summary of the global growth of commercialized GM crops
and their economic impact, replete with graphs and figures, is compiled
annually by the International Service for the Acquisition of Agribiotech
Applications (ISAAA) and can be easily accessed via the internet at
http://www.isaaa.org (James, 2005). Additional insights concerning future
trends can be gleaned by examining data available on the internet regard-
ing approved field trials, field trial applications, and patent applications
in the U.S and internationally (http://www.aphis.usda.gov/brs/brs_charts.
html; http://www.nbiap.vt.edu). An analysis of these data from 1987
through 1999 reveals that the early emphasis on single gene traits-
primarily herbicide and insect resistance-has now given way to attempts to
alter more complex traits, such as nutritional quality and the physiological
characteristics that affect crop yield (Dunwell, 2000).

As of 2005, 90 million hectares in 21 countries were planted with ap-
proved GM crops; 11 of the 21 nations, producing 38% of the world’s bio-
tech crops, are in the developing world (James, 2005). With public funding
levels that far exceed those in any other country, China accounts for over
half of the plant biotechnology expenditures in lesser-developed nations,
with Brazil and India trailing far behind (Huang et al., 2002a). Early
claims that plant genetic engineering would help ameliorate food shortages
among the world’s poorest populations have led to sustained skepticism
and even cynicism from biotechnology opponents, in part because the first
transgenic crops to be commercialized appear to benefit primarily the
agro-chemical industry and corporate-scale farmers in industrialized coun-
tries, rather than consumers or subsistence farmers (Vasil, 2003). This
picture is changing, however; of the 8.5 million farmers cultivating geneti-
cally engineered crops in 2005, 7.7 million of them were poor subsistence
farmers. The vast majority of those farmers (6.4 million) live in China
(James, 2005), the world’s largest producer of rice, and genetic modifica-
tion of rice is the focus of considerable attention in China’s program to
develop more sustainable agriculture (Wang et al., 2005). Biosafety proce-
dures in China require multiple levels of testing for environmental release,
and rice engineered for resistance to lepidopteran insects or bacterial blight
is currently in the final stages of safety trials prior to commercialization
(Wang et al., 2005). In addition to rice, the Chinese have placed substantial
emphasis on engineering a variety of fruit and vegetable crops in an effort
to bolster food security (Huang et al., 2002b). Although herbicide tolerance
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is still the most prevalent engineered trait worldwide (currently constitut-
ing 71% of the global area devoted to GM crops) (James, 2005), over 90%
of the field trials in China target insect and disease resistance (Huang et al.,
2002b). Pest and pathogen resistant plants are already starting to have a
significant impact on productivity and on reducing the environmental im-
pact of pesticide use in China (Huang et al., 2002b; Huang et al., 2005).

Over the past four decades, public sector research institutions in several
regions of the developing world have played a pivotal role in the im-
provement of staple crops through conventional breeding. In addition to
the 20 CGIAR centers (http://www.cgiar.org), national agricultural re-
search agencies have contributed to introducing new traits into local varie-
ties and to facilitating distribution and adoption of these varieties by
farmers. Collaborations with both academic and corporate plant biotech-
nology programs in industrialized nations are now beginning to make
biotechnology approaches available to these public sector institutions
(Toenniessen, 1995). The most successful of these collaborations have as
core tenets strong emphases on capacity building, and on sustainable crop-
ping practices that incorporate indigenous knowledge at all levels of deci-
sion-making. The following section highlights the goals, participants, and
innovative aspects of some of these programs. More information on na-
tional and international public-sector research stations, and on international
organizations involved in facilitating biotechnology transfer is available
elsewhere (Toenniessen, 1995). A detailed investigation of the capacity for
biotechnology research in four developing countries-Mexico, Kenya, In-
donesia, and Zimbabwe-together with policy recommendations arising
from the study, has also been published (Falconi, 2002).

The resource- and knowledge-intensive nature of plant genetic engi-
neering has precluded development of biotechnology research programs by
many of the countries that face the most pressing food security issues. Fur-
thermore, with a few notable exceptions (China, Brazil, India and South
Africa), national government investment in agricultural research is gener-
ally insufficient to maintain programs that could address local constraints
and/or transfer modifications developed elsewhere to locally favored varie-
ties (Huang et al., 2002a). Several collaborative initiatives, some including
private sector partners, have evolved to meet these challenges; most of the
projects undertaken within these collaborations rely on Agrobacterium-
mediated transformation of target plants. One of the oldest such partner-
ships is the Indo-Swiss Collaboration in Biotechnology (ISCB), which was
established in 1974. During its first two decades, this long-term bilateral
program focused on developing a cadre of highly trained Indian scientists
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and establishing research capacity within the Indian academic sector. In
the last few years, the ISCB has promoted research partnerships between
Swiss and Indian institutions, with an emphasis on increased productivity
of wheat and pulses through enhanced disease resistance; a parallel initia-
tive centers on sustainable management of soil resources (http://iscb.
epfl.ch). Other bilateral programs include the Peking-Yale Joint Center for
Plant Molecular Genetics and Agrobiotechnology, established in 2000
(Yimin and Mervis, 2002), and a partnership between scientists in Bolivia
and those at the University of Leeds, who are developing nematode-
resistant potatoes by introducing proteinase-inhibitor genes (Atkinson
et al., 2001).

For several years starting in 1992, the Dutch government-funded Spe-
cial Programme on Biotechnology brought together scientists, farmers, and
local leaders in Zimbabwe, India, Kenya, and Colombia to develop local
biotechnology agendas that addressed the needs of small scale producers.
This project-based program differed from most other collaborations in the
primacy it placed on participatory technology development, developing
new paradigms for integrating the perspectives of farmers, consumers, and
socio-economic policy experts into the process of setting research priori-
ties (Broerse, 1998). Specific research projects included the transformation
of cassava, sweet potato, and cowpea to confer virus resistance (Sithole-
Niang, 2001). In Zimbabwe, the Dutch program also funded capacity
building through a Master’s level training program in biotechnology and
shorter local training workshops.

Complementing these bilateral models for technology transfer are net-
works of researchers focused on one crop, as exemplified by the Cassava
Biotechnology Network (CBN). Founded in 1988 by two CGIAR centers,
the Centro International de Agricultural Tropical (CIAT) and the Interna-
tional Institute of Tropical Agriculture (IITA), in collaboration with sev-
eral small research institutes in North America and Europe, the goals of the
CBN are to develop strategic biotechnology tools and appropriate biotech-
nology applications for cassava improvement. With support from the
Dutch Special Programme for Biotechnology, the network has expanded to
over 800 active researchers in 35 countries and includes collaborators
focusing on needs assessment, anthropology, plant breeding, and post-
harvest issues including market economics. Although cassava is not culti-
vated in industrialized nations and therefore has not been a target for
improvement by the private sector, it is an important source of nutrition
and food security in many of the world’s least developed areas (Taylor
et al., 2004). Several characteristics make cassava a staple for subsistence
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farmers, a cash crop for local markets, and a reliable source of food and
animal feed during periods of famine. It is drought tolerant and grows with
low inputs in areas of marginal fertility. The edible roots can be left in the
ground for one to two years without decay and the leaves are an important
source of protein and vitamins in many parts of Africa (Siritunga and
Sayre, 2003). Through direct participation by cassava farmers, the CBN
has identified several targets for improvement: resistance to bacterial
blight, viral disease, and insect-inflicted damage; reduction of toxic cyano-
gens; enhanced nutritional value including increased vitamin content, pro-
tein content, and quantity and quality of starch in the roots; and stress
tolerance (Thro et al., 1999). A recent comprehensive review, describing
how each of these goals is being addressed through Agrobacterium-
mediated transformation of cassava (Taylor et al., 2004), serves to illus-
trate the potential for improvement in one key crop of central importance
to resource-poor farmers.

Several collaborative ventures have involved significant contributions
from the private sector. In 1991, the ISAAA was created to build partner-
ships and to broker transfer of proprietary technology from industrialized
countries to developing nations. One model project praised for its inclusion
of a substantial training component involved the donation by Monsanto of
coat protein genes conferring virus-resistance to Mexican scientists work-
ing on potato. The technology was further disseminated to scientists from
the Kenyan Agricultural Research Institute (Krattiger, 1999). ISAAA has
centers on five continents and is funded by the McKnight Foundation, the
Rockefeller Foundation, various bilateral agencies, and the private sector.
Like ISAAA, the USAID-funded Agricultural Biotechnology Support Pro-
ject, based at Michigan State University, was initiated to bring together
public sector and commercial research efforts. Between 1991 and 2003 this
program funded a number of plant genetic modification projects that were
undertaken in collaboration with the Agricultural Genetic Engineering Re-
search Institute in Egypt. Goals included development of resistance to po-
tato tuber moth, drought- and salinity-tolerant tomato and wheat, stem
borer resistance in tropical maize, virus resistant tomato and sweet potato,
and micropropagation techniques for pineapple and banana (http://www.
iila.msu.edu/absp/). As a third example, in 2005 the Bill and Melinda Gates
Foundation provided funding through its Grand Challenges in Global
Health initiative for the Kenyan-based food organization A Harvest to
partner with Pioneer Hi-Bred International and the Council for Scientific
and Industrial Research in South Africa to develop a more nutritious and
easily digested variety of sorghum (http://www.gcgh.org/).
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The future success of these collaborative programs will depend on sus-
tained commitments to their funding, and on a continued recognition of the
complementarity between biotechnology and traditional crop breeding
programs (Huang et al., 2002a). A key component in many of the exam-
ples described above is the emphasis placed on transfer of the technologi-
cal knowledge and the tools required for scientists in the developing
countries to pursue future projects more independently. Such capacity
building includes training of research personnel, but also requires the es-
tablishment of a regulatory framework that is sensitive to local ecological,
legal, and cultural contexts. In contrast with commercial crops that have al-
ready been vetted by Western regulatory agencies, novel locally developed
crops “pose unique challenges for institutes seeking regulatory approval”
(Cohen, 2005). The Swedish Biotechnology Advisory Commission was
formed to help developing countries meet the challenges of biosafety ca-
pacity building through training, advising, and information exchange (L.
Paula, personal communication). Similarly, a core mission of the ISAAA
is training, including institutional capacity building in biosafety regulation
(Krattiger, 1999). The Biotechnology Service at the International Service
for National Agricultural Research (ISNAR) has also provided training in
agricultural biotechnology management and performed assessments on in-
tellectual property issues as they related to agricultural biotechnology
(http://www.isnar.cgiar.org). In 2004, ISNAR was folded into the Interna-
tional Food Policy Research Institute and is now located in Addis Ababa,
Ethiopia (http://www.ifpri.org/divs/isnar.htm).

Finally, a number of public sector research institutes are dedicated to
developing and transferring biotechnology knowledge and resources to de-
veloping countries. These include the Applied Biotechnology Center at
CIMMYT in Mexico City, devoted to genetic engineering of wheat and
maize (http://www.cimmyt.org/ABC); the Center for the Application of
Molecular Biotechnology to International Agriculture (CAMBIA) in Can-
berra, focusing on rice transformation using Agrobacterium (http://www.
cambia.org); and the International Laboratory for Tropical Agricultural
Biotechnology, focusing on rice, cassava, and tomato (http://www.dan-
forthcenter.org/iltab).

A recent and highly illuminating survey of the public-sector research
pipelines for GM crops in 15 developing countries identified a number of
key trends in research agendas and regulatory considerations (Cohen,
2005). In contrast with the worldwide situation, where three crops (soy-
bean, maize, and cotton) account for 95% of the global land area devoted
to commercialized GM crops (James, 2005), the 201 genetic transforma-
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tion events in these 15 countries encompassed no fewer than 45 different
crops important to local economies, including chickpeas, cowpeas, lupin,
cacao and a wide variety of fruits and vegetables in addition to rice, potato
and maize (Cohen, 2005). Somewhat surprisingly, given the potential of
the collaborative ventures described in the preceding section, most of the
research described in this survey was carried out by single institutions, and
the partnerships that did exist most often involved only public-sector insti-
tutions within the same country (Cohen, 2005).

The vast majority of the projects surveyed target biotic or abiotic
stresses, while others strive to achieve prolonged shelf life or nutritional
enhancement; only 5% of the transgenic plants under development are be-
ing engineered for herbicide tolerance (Cohen, 2005). This, again, is in
stark contrast to the situation in industrialized nations, as described above,
and reflects a much more consumer-centric approach to genetic transfor-
mation that focuses on local needs in these predominantly poor countries.
Indeed, one of the most important observations to be made from this sur-
vey is the degree to which the biotechnology research in these countries
actually has the potential to realize the oft-touted promise of enhancing
human health and reducing poverty. By substantially decreasing the use of
pesticides, fungicides, and other harmful agrochemicals, these crops
should provide significant environmental and health benefits. Reducing
losses attributable to pests can result in less acreage devoted to a single
staple or cash crop, thereby contributing to greater biodiversity in a given
area (Atkinson et al., 2001)). Enhanced shelf life can diversify a farm fam-
ily’s diet and allow farmers to wait out a glutted supply stream before
bringing crops to market, thus increasing the financial return on their in-
vestment. Likewise, higher yields due to improved disease, pest, salt and
drought tolerance lead to increased food security and more purchasing
power, with the potential for “spillover effects” in the local economies
(Cohen, 2005). These effects include enhanced educational opportunities
for female children, personal hygiene leading to less transmission of com-
municable disease, and reduced population growth (Rosegrant and Cline,
2003). These, then, are the applications of Agrobacterium-mediated trans-
formation that truly reflect a “poverty focus” (Conway, 1997) and that give
renewed life to the promise of benefits for resource-poor farmers.
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Abstract. Agrobacterium is a bacterial plant pathogen capable of transferring a specific

fragment of DNA, called the T-DNA, into plants and other organisms. Once in a eukaryotic

cell, the T-DNA moves to the nucleus and integrates into the genome at an essentially ran-
dom location. T-DNA integration generally leads to tumor formation in the plant host, and
Agrobacterium’s ability to transfer DNA has been adapted as an important tool for
mutagenesis and genetic engineering of plants and fungi. Agrobacterium tumefaciens C58
was the first species of Agrobacterium to have a fully-sequenced genome, and the sequence

data are catalyzing expansion of 4. tumefaciens research beyond its traditional focus on

plant pathogenesis and T-DNA transfer. This chapter reviews many of the findings of the
original genome publications and discusses many new insights derived from the availability

of the genome sequence.
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1 INTRODUCTION

In 2001 the journal Science published two papers back-to-back on the
genome of the Agrobacterium biovar 1 organism A. tumefaciens C58
(Goodner et al., 2001; Wood et al., 2001). Two different teams of scientists
had raced to complete and publish this genome, only becoming aware of
the other’s efforts near the end of the projects. After contacting each other,
and thanks to the vision of Science editors, both teams were able to publish
their results simultaneously. An interesting account of this race was pub-
lished several years later in Nature Biotechnology (Harvey and McMeekin,
2004). The principle members of both groups have now combined efforts
and, in addition to authoring this chapter, have completed the genome se-
quences of representative Agrobacterium strains from biovars Il and III
(Wood D, Burr T, Farrand S, Goldman B, Nester E, Setubal J and Slater S,
unpublished data).

The two original Science papers, although covering a lot of common
ground, were surprisingly complementary. Over 250 manuscripts have
used the data from the original C58 genome sequences. The types of
manuscripts fall into three basic categories: (i) those that use the sequence
as part of genome-scale comparative analyses, (ii) those that simply cite
the identification of an ortholog of their gene of interest in A. tumefaciens,
and (iii) those that follow-up on specific genes in A. tumefaciens after
identifying them in the genome sequence. The last category contains about
20% of these manuscripts. Here we present a description of the C58 ge-
nome that combines the findings of both teams, and summarizes many new
results on A. tumefaciens biology that have been enabled by the A. tumefa-
ciens C58 genome sequence. Table 4-1 lists all genes discussed herein and
their designations by the original genome publications (Goodner et al.,
2001; Wood et al., 2001). To harmonize nomenclature as we continue our
annotation of the Agrobacterium genomes, we have chosen to use the gene
designations and style of Wood et al. (2001).

2 GENERAL FEATURES OF THE GENOME

The 5.67-Mb genome of 4. tumefaciens C58 (Hamilton and Fall, 1971)
is comprised of four replicons (Allardet-Servent et al., 1993): a circular
chromosome, a linear chromosome and the pAtC58 and pTiC58 plasmids.
The original sequences generated by the two groups had only 38 potential
sequence discrepancies. Re-sequencing of discrepant regions showed 15
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verified sequence differences between the two isolates, with the remaining
differences being due to sequencing errors by one team or the other (Slater,
S, Burr T, Farrand S, Goldman B, Kaul R, Nester E, Setubal J, Wood D
and Zhao Y, unpublished data). Thus, the overall sequencing error rate was
well below the 1 in 10° required by the Bermuda Standard (Wellcome
Trust, 1997).

Gene density is very similar between the two chromosomes. However,
genes involved in most essential processes are significantly over-
represented on the circular chromosome (Goodner et al., 1999; Goodner
et al., 2001; Wood et al., 2001). This asymmetry is consistent with direct
descent of the circular chromosome from the primordial a-proteobacterial
genome, with a minority of essential genes moving to the linear chromo-
some. Consistent with lateral transfer between chromosomes, the overall
dinucleotide signatures (Karlin, 2001) of the two chromosomes are essen-
tially identical, but are significantly different from those of the two plas-
mids. The dinucleotide signatures of the two plasmids are quite similar to
each other and to related plasmids from other members of the Rhizo-
biaceae family (Goodner et al., 2001). Several other bacterial species have
true multipartite genomes (that is, essential genes on more than one chro-
mosome), including Vibrio cholerae, Rhodobacter sphaeroides, and organ-
isms in the Burkholderia pseudomallei complex (Heidelberg et al., 2000;
Holden et al., 2004; Copeland et al., 2005). Other members of the Rhizo-
biaceae also have large plasmids with many genes that are critical for bac-
teria-plant interaction, although not necessarily for survival (Capela et al.,
2001; Galibert et al., 2001; Kaneko et al., 2002; Gonzalez et al., 2003;
Gonzalez et al., 2006).

In contrast to the pSymB plasmid of S. meliloti (Galibert et al., 2001),
both A. tumefaciens plasmids contain all the necessary machinery for con-
jugation, but do not contain essential genes. A new conjugal transfer sys-
tem belonging to the Type IV secretion family (AvhB) was identified on
pAtC58, and was shown to be required for the conjugal transfer of pAtC58
following the original publications (Chen et al., 2002). Recent work in
Rhizobium etli has shown that a similar system is under the control of the
regulatory pair RctA and RctB, both of which have orthologs in C58
(Perez-Mendoza et al., 2005).

More than 6000 bp of near perfect sequence identity extend across the
two TRNA gene clusters on each of the two chromosomes (Goodner et al.,
2001; Wood et al., 2001). The chromosomes also share some shorter re-
gions of greater than 90% sequence identity with pAtC58. The overall GC
content of the 4. tumefaciens genome is 58%. The TiC58 plasmid has two
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regions of distinctive GC content, the T-DNA (46%) and the vir region
(54%). Low GC content was noted previously in the T-DNA of a related
Ti plasmid (Suzuki et al., 2000). Reduced GC content (53%) is also seen
within a 24-kb segment of pAtC58. This region includes seventeen con-
served hypothetical or hypothetical genes, an ATP-dependent DNA heli-
case and an IS element. These genes are flanked by a phage integrase and a
second IS element. The genes in these three regions have a distinct codon
usage as compared to the rest of the genome, providing evidence for their
recent evolutionary acquisition.

A. tumefaciens contains four rRNA operons and transcription of all
these gene clusters is oriented away from the DNA replication origins,
with those on the linear chromosome being in the same orientation. The
genome contains 53 tRNAs that represent all 20 amino acids. These
tRNAs are distributed unevenly between the circular and linear chromo-
somes. Transfer RNA species corresponding to the most frequently repre-
sented alanine, glutamine and valine codons are found only on the linear
replicon.

The genome contains 25 predicted insertion sequence (IS) elements
representing 8 different families. The largest is the IS3 family comprising
10 IS elements. The IS elements are not equally distributed among the rep-
licons, but are located preferentially on the linear chromosome and
pAtC58. The adjacent virH1 and virH2 genes of the Ti plasmid, encoding
p450 mono-oxygenases, are flanked by IS elements, suggesting that they
arrived in A. tumefaciens as part of a compound transposon. Twelve genes
of probable phage origin were identified, most of which are on the circular
chromosome. Many of these genes cluster in two discrete regions suggest-
ing that they represent prophage remnants. None of these clustered phage-
related genes are shared with S. meliloti, implying they were lost from
S. meliloti or entered the A. tumefaciens genome after these organisms
evolutionarily diverged.

3 THE LINEAR CHROMOSOME

Historically, genetic research on A. tumefaciens focused on its viru-
lence mechanism, and almost all of the early mapped mutations affecting
virulence were localized to the Ti plasmid (Binns and Thomashow, 1988).
However, a few chromosomal virulence genes were found at around that
same time, and several labs constructed genetic maps of the A. tumefaciens
C58 “chromosome” (Hooykaas et al., 1982; Pischl and Farrand, 1984;
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Miller et al., 1986; Robertson et al., 1988; Cooley and Kado, 1991). These
efforts involved mobilization of mutations and transposable element inser-
tions via R factor-mediated chromosome transfer between Agrobacterium
strains. All of the early papers supported a single circular chromosome in
C58, in line with the E. coli standard for bacterial chromosomes.

The first chink in the single chromosome model for C58 came from a
combination of physical mapping by pulsed-field gel electrophoresis and
Southern blotting (Allardet-Servent et al., 1993). This work showed that
there were clearly two distinct mega-DNA molecules in C58 and one of
them was linear. Moreover, rRNA operons were found on both molecules,
supporting a multi-chromosome genome architecture. The move from a
one chromosome model to a two chromosome model was solidified by two
independent efforts. In one, additional biovar I strains of A. tumefaciens
and A. rubi were shown to have two mega-DNA molecules, one being lin-
ear, with each bearing one or more rRNA operons (Jumas-Bilak et al.,
1998). Interestingly, the grape-limited biovar III strains of Agrobacterium
also have two chromosomes, but both of them are circular. In the second
parallel effort, the C58 genome was subjected to extensive genetic and
physical mapping which further confirmed the linear nature of the second
chromosome and identified several auxotrophic markers on the linear chro-
mosome (Goodner et al., 1999). This work also showed that the linear
chromosome was not “invisible” to the R factor-mediated chromosome
transfer technique. The most likely explanation lies in the relative rarity of
auxotrophic markers on the linear chromosome as compared to the circular
chromosome. The idea that the linear chromosome originated from a
breaking/rejoining event of the circular chromosome seemed improbable
given the stable nature of the linear chromosome, which implied the pres-
ence of stable telomeres. The remaining hypotheses required some level of
“foreign” DNA insertion into the linear chromosome, the real question be-
ing: How much?

Linear replicons are the norm in eukaryotes, but only a few examples
are known in prokaryotes and viruses (Casjens et al., 1997; Goshi et al.,
2002; Bao and Cohen, 2003; Ravin et al., 2003; Chaconas, 2005). The
chromosome ends, or telomeres, of these known examples fall into two
groups; those with proteins attached to free DNA ends, such as in Strepto-
myces species, and those with covalently closed hairpin loops, such as
Borrelia species and numerous viruses (e.g., phage N15). As the C58 ge-
nome projects got underway, experiments were done to analyze the nature
of the linear chromosome telomeres. Comparisons of pulsed-field gel elec-
trophoresis done with and without proteolysis showed that there are no
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large proteins attached to the telomeres. Rather, experiments that tested for
the snap-back characteristics of hairpin loops demonstrated the presence of
hairpin loops at the telomeres (Goodner et al., 2001). Neither of the origi-
nal genome projects clearly defined the hairpin loop sequences, but not for
a lack of trying. Since then, the sequences of the hairpin loops have been
determined; one telomere had been sequenced around the hairpin loop in
the original genome projects but not enough of the stem structure was pre-
sent to catch the eyes of researchers (Huang et al., 2006). The hairpin loop
sequence is highly conserved between the two telomeres, reflecting the
fact that they both are substrates of the same protelomerase, TelA, encoded
by the Atu2523/AGR_C 4584 gene. The TelA protein is distantly related
to the protelomerases found in Borrelia species and in numerous viruses
(Huang et al., 2006). In contrast to the conservation of the hairpin loops,
the sequences proximal to the telomeres are not similar in sequence even
though they both are rich in IS elements and potential secondary struc-
tures.

The complete sequence of the C58 linear chromosome answered the
questions raised by the earlier genetic and physical mapping as to its ori-
gin. Sitting almost perfectly in the middle of the linear replicon is an intact
repABC operon, the key element involved in the replication and segrega-
tion of almost all plasmids known in the family Rhizobiaceae. The position
of the repABC operon coincides with a GC-skew inversion indicative of
bi-directional replication typical of circular DNA molecules. In addition to
the repABC operon, other indications of a plasmid origin for the linear
chromosome include the presence of genes for the conjugation proteins
TraA, TraG, and MobC. Based on these and other data, both Goodner et al.
(Goodner et al., 2001) and Wood et al. (Wood et al., 2001) proposed that
the linear chromosome is evolutionarily derived from a plasmid, although
the replication mechanism remains to be experimentally verified for the
C58 linear chromosome. The plasmid origin of an “extra” chromosome in
proteobacteria had been predicted for multi-chromosome genomes of the
o-proteobacteria (Moreno, 1998).

How then did a plasmid become a chromosome? Syntenic analysis of
the two chromosomes of C58 in comparison with the single chromosome
of Sinorhizobium meliloti provided a big clue (Goodner et al., 2001; Wood
et al.,, 2001; Wood, 2002). The C58 circular chromosome shared large
stretches of synteny with the S. meliloti chromosome broken by some gaps.
In several cases, sequences absent from the C58 circular chromosome are
present on the linear chromosome. Thus, the second chromosome in biovar
I strains of Agrobacterium originated from a repABC-type plasmid through
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the intragenomic transfer of several chunks of sequence from the ancestral
chromosome to this new chromosome. It is valid to call the linear chromo-
some a chromosome because several of those intragenome transfer events
involved genes essential for prototrophic growth.

4 PHYLOGENY AND WHOLE-GENOME COMPARISON

The two original genome papers show the close similarities that exist
between the A. tumefaciens genome and those of two rhizobial species, Si-
norhizobium meliloti and Mesorhizobium loti. The circular chromosomes
of all three organisms show extensive nucleotide colinearity and gene or-
der conservation, which can be readily seen in pairwise whole-replicon
alignments (Goodner et al., 2001; Wood et al., 2001). Since 2001 several
additional a-proteobacterial genomes have been sequenced, and chromo-
some colinearity can also be readily detected against Brucella and Bar-
tonella (our unpublished data). Thus it seems that chromosomal gene order
in this subgroup of a-proteobacteria has been under selective pressure to
be maintained, even though the group includes organisms with diverse
lifestyles, such as plant and animal pathogens, and plant symbionts. An in-
teresting perspective on the evolution of a-proteobacteria is given by
Boussau et al. (2004). According to this study 4. tumefaciens has under-
gone genome reduction whereas its relatives S. meliloti and M. loti have
undergone genome expansions.

Contrasting with the large scale conservation of the chromosomal
backbones, we do not see significant colinearities between other replicons
of C58 and those of S. meliloti and M. loti. The vast majority of protein-
coding genes in the three smaller C58 replicons do have orthologs in the
other two rhizobial species, but it appears that widespread gene shuffling
has taken place since divergence. It should be noted that IS elements are
relatively rare in C58 and therefore cannot by themselves explain the
highly distributed nature of orthologous genes in the smaller replicons.
One notable exception to the shuffling exists in the C58 linear chromo-
some. It has two regions that exhibit significant conservation of gene order
with a segment of the S. meliloti chromosome. The first is comprised of 46
genes (44 kb) and the second contains 65 genes (89 kb). If portions of the
linear chromosome arose via an excision event from the ancestral chromo-
some, the excision may have originated in these regions, with subsequent
insertions moving particular sections apart.
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5 DNA REPLICATION AND THE CELL CYCLE

The circular chromosome contains a putative origin of replication
(Cori) similar to the known Cori of Caulobacter crescentus (Brassinga
et al., 2002). The linear chromosome, as mentioned above, has a plasmid-
type replication system of the same type found on the two plasmids. This
system, encoded by the repABC genes, expresses a pair of segregation pro-
teins (RepA, RepB) and an origin-binding replication initiation protein
(RepC) (Li and Farrand, 2000). A number of additional papers published
in the last several years have added to our knowledge of repABC origins,
and support the annotation of these regions provided by the original C58
genome papers (Bartosik et al., 2002; Cevallos et al., 2002; Pappas and
Winans, 2003; Soberon et al., 2004; Venkova-Canova et al., 2004; Cho
and Winans, 2005; MacLellan et al., 2005; MacLellan et al., 2006).

Coordinating replication and segregation of multiple chromosomes is
critical for cell survival. The topic was initially addressed in A. tumefa-
ciens by Kahng and Shapiro (2001) who showed cell-cycle regulation by
CcrM DNA adenine methyltransferase and replication of the 4. tumefa-
ciens att locus in coordination with the cell cycle. CcrM is also critical for
cell cycle regulation in Caulobacter crescentus and appears to be a general
mechanism for cell cycle control in the a—proteobacteria (Marczynski and
Shapiro, 2002). At the time of the Kahng and Shapiro study (Kahng and
Shapiro, 2001), the att locus was thought to be located on the A. tumefa-
ciens chromosome. Their interpretation was slightly modified and ex-
panded by Goodner et al. (2001) after the genome sequence revealed atf to
be located on pTiC58. It appears that both the chromosomes and plasmids
are replicated synchronously, although the means for coordinating the two
types of replication origins remain unclear. Kahng and Shapiro later dem-
onstrated (2003) that the DNA replication origins in both A. tumefaciens
and S. meliloti are localized at the cell poles, although their precise loca-
tions don’t necessarily overlap. The multipartite genome of V. cholerae is
also replicated in a coordinated manner (Egan et al., 2004), and some of
the issues surrounding replication of multipartite genomes have been re-
cently reviewed (Egan et al., 2005).

Processive DNA replication is performed by DNA Polymerase III (Pol
III); the A. tumefaciens genome carries four paralogs of the dnaE gene
encoding the Pol III a (polymerase) subunit. Goodner et al. (2001) demon-
strated that these dnaE genes fall into two distinct sequence families,
designated as categories A and B. The category A gene of the circular
chromosome is conserved in all sequenced o-proteobacteria and probably



The Agrobacterium Tumefaciens C58 Genome 157

encodes the primary replication enzyme. Each of the A. tumefaciens re-
PABC replicons (linear chromosome, pTiC58 and pAtC58) encodes a
Category B dnaFE gene within an operon containing two other conserved
genes. The operon was found to be present in all fully sequenced o-
proteobacteria, except the Rickettsia species, and was hypothesized by
Goodner et al. (2001) to encode a novel DNA polymerase complex. In the
past several years, a broader description of these genes has been published
(Abella et al., 2004) and the operon in Caulobacter crescentus has been
characterized (Galhardo et al., 2005). As predicted, these genes form an
auxiliary DNA polymerase complex involved in repair of damaged DNA.
It is still not clear why A. tumefaciens carries three copies of these operons,
or whether all are functional.

6 GENUS-SPECIFIC GENES

The original analyses assigned the 4. tumefaciens predicted proteins to
about 500 paralogous families containing between two and 206 members.
The two largest families are composed of genes belonging to the ATPase
and membrane-spanning components of the ATP Binding Cassette (ABC)
transport family. Comparison of the genomes of 4. tumefaciens, S. meliloti
and M. loti identified genes in each organism that likely contribute to ge-
nus-specific biology. Of the 5,419 originally-predicted A. tumefaciens pro-
teins, 853 (16%) are not found in these other organisms. Of these, 97 have
a proposed function, whereas 756 are hypothetical or conserved hypotheti-
cal. The predicted products of these genes are diverse, and include proteins
involved in cellulose production, plasmid maintenance, cell growth, tran-
scriptional regulation and cell wall synthesis. Several additional proteins
are predicted to catabolize plant cell wall materials, sugars and exudates.
These include polygalacturonases, a glycosidase, an endoglucanase, a
myo-inositol catabolism protein and a cell wall lysis associated protein.
Additional specific genes, predictably found on the Ti plasmid, include
those encoding virulence, T-DNA and conjugal transfer associated pro-
teins. Conversely, nitrogen-fixing genes and others associated with
symbiosis are specific to S. meliloti and M. loti when compared to 4. tume-
faciens. With 756 Agrobacterium-specific ORFs yet to be characterized,
much remains to be elucidated regarding the genetic distinction between
A. tumefaciens and its rhizobial relatives.
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7 PLANT TRANSFORMATION AND TUMORIGENESIS

Genes involved in plant transformation and tumorigenesis are located
on all four genetic elements. The circular chromosome harbors the well-
studied chvAB genes required for synthesis and transport of the extracellu-
lar B-1,2-glucan involved in binding to plant cells, the cAvG/I, chvE, and
ros genes involved in regulation of Ti plasmid vir genes, as well as the
chvD, chvH, and acvB genes. The linear chromosome harbors the exoC
(pgm) gene required for synthesis of the extracellular 3-1,2-glucan and
succinoglucan polysaccharides, and the cellulose synthesis (cel) genes.
The cel region sequence produced by the genome projects differed from
the published sequence (Matthysse et al., 1995), and the locus was reanno-
tated by both groups, resulting in several changes to predicted proteins.

An early interaction of Agrobacterium with its plant hosts is mediated
by several attachment-related genes (Matthysse and Kijne, 1998). The att
(attachment) genes were reported to be involved in initial specific attach-
ment of the bacterium to plant cells (Binns and Thomashow, 1988). The
genome sequence showed the att genes to be present on the pAtCS8 repli-
con, rather than the bacterial chromosome, as was originally reported.
pAtC58 also has a second, partial atf locus. Since the pAtC58 replicon is
dispensable for virulence (Rosenberg and Huguet, 1984), a reevaluation of
the att genes was required. Nair et al. (2003) took on the problem and de-
termined that neither pAtC58 nor two specific a#f genes (attR and attD) are
required for T-DNA transfer to plants. They also showed that pAtC58 has
a positive effect on vir gene induction and T-DNA transfer, but did not
define the precise manner in which this positive effect is produced.

The importance of small heat-shock proteins (sHsps) in bacteria-plant
interactions has recently been identified, both in Sinorhizobium and Agro-
bacterium (Natera et al., 2000; Baron et al., 2001; Balsiger et al., 2004).
Balsiger et al. (2004) identified four sHsp proteins in A. tumefaciens C58
and investigated their expression. One gene (AspC) was located on the cir-
cular chromosome, one (4spL) on the linear chromosome, and two
(hspAT1 and hspAT2) on the pAT plasmid. They found that while AspC
was poorly or never expressed under their growth conditions, AspL is part
of the RpoH regulon and induced by heat stress. The two Asp genes on
pAtC58 are regulated independently of RpoH, via ROSE sequences in
their 5’ regions (Nocker et al., 2001a; Nocker et al., 2001b).

Our original genomic analysis identified genes whose products are
similar to plant pathogen virulence proteins required for host cell wall deg-
radation (Goodner et al., 2001; Wood et al., 2001). These include pectinase
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(kdgF), ligninase (/igE) and xylanase as well as regulators of pectinase and
cellulase production (pecS/M). A. tumefaciens may use such enzymes to
breach the cell wall of its host before T-DNA transfer. In addition, we
identified numerous orthologs of animal virulence genes. Examples in-
clude those involved in host survival, such as the bacA locus of Brucella
and S. meliloti, and two members of the widely conserved HtrA family of
serine proteases implicated in response to oxidative stress in Salmonella
and Yersinia. Invasion-related homologs include the ia/4 and ialB genes of
Bartonella henselae as well as five hemolysin-like proteins with associated
type I secretion systems. The highly conserved mviN gene, implicated in
Salmonella virulence, is also present. Two autotransporting virulence fac-
tor family members are encoded by pAtC58. Such proteins cross the
plasma membrane via the signal peptide-dependent pathway and self-insert
into the outer membrane. Typically, a large extracellular domain is ex-
posed, where it modifies cell adhesion or host cell functions. Other genes
similar to known virulence factors include putative adhesins, icmF
(macrophage killing in Rickettsia), and as many as six different iron uptake
systems.

Another potential virulence locus includes the genes Atu4334,
Atud337, Atud340, Atud4341, and Atud343. This locus encodes proteins
that are similar to members of the IcMF-associated homologous protein
(IAHP) group (Das and Choudhuri, 2003). Orthologous genes in Vibrio
cholerae and Pseudomonas aeruginosa are protein exporters that play a
role in pathogenesis of mammalian hosts (Mougous et al., 2006; Pukatzki
et al., 2006). However, this locus has not yet been analyzed in A. tumefa-
ciens.

8 TRANSPORT

Transporters comprise 15% of the 4. tumefaciens genome (Goodner
et al., 2001; Wood et al., 2001). 4. tumefaciens possesses broad capabili-
ties for the transport of common nutrients found in the rhizosphere includ-
ing sugars, amino acids and peptides. Overall, our analyses indicate that A.
tumefaciens and the other sequenced members of the Rhizobiaceae have
similar transport capabilities.

ABC transporters in A. tumefaciens constitute 60% of its total trans-
porter complement. There are 153 complete systems plus additional “or-
phan” subunits. Predicted substrates of these ABC transport systems
include sugars (53 systems), amino acids (29 systems) and peptides (25
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systems). As we speculated in the original papers, the large number of
ABC transporters in A. tumefaciens may reflect a need for high-affinity up-
take systems to facilitate the acquisition of nutrients in the highly competi-
tive soil and rhizosphere environments.

Subsequent to publication of the original genome analyses the twin-
arginine targeting system that mediates the secretion of folded proteins in a
sec-independent manner has been shown to be involved in virulence of A.
tumefaciens, symbiotic interactions of S. meliloti and pathogenesis of a va-
riety of bacterial pathogens (Ding and Christie, 2003; Meloni et al., 2003;
Lee and Bostock, 2006). Further work on this and other secretion systems
will help shed light on how this organism mediates interactions within the
complex rhizosphere environment.

9 REGULATION

Our original analyses of 4 tumefaciens indicated that at least 9% of its
genome was dedicated to regulation. This is consistent with observations
by Stover et al. (2000) who suggest that bacteria that inhabit diverse envi-
ronments tend to have large complements of regulatory genes. This regula-
tory capacity likely facilitates survival of A. tumefaciens within the
dynamic soil and rhizosphere environments. The availability of the genome
has facilitated numerous large scale studies to address regulatory issues.

An oligonucleotide-based microarrary is available from Agilent bio-
technologies and has been used to identify genes under the control of the
master VirG virulence regulon (Wood DW, Monks D, Houmiel K, Monks
S, Tompa M, Bumgamer R, Slater SC and Nester EW, unpublished data).
Preliminary data from this array indicated that the rep4BC system required
for replication of the Ti plasmid was under the control of VirG. Subse-
quent work confirmed this observation and described additional novel
genes controlled by acetosyringone induction on both the A6 and C58 Ti
plasmids (Cho and Winans, 2005). Interestingly, a recent report by Liu and
Nester suggests that indole acetic acid produced by the tumor effectively
represses vir gene expression (Liu and Nester, 2006). These results suggest
an opposing regulatory mechanism that functions to shut off the vir system
following tumor formation. A number of proteomics analyses have subse-
quently identified C58 gene products induced by heat shock and plant sig-
nal molecules (Rosen et al., 2002; Rosen et al., 2003; Rosen et al., 2004).
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Karlin and colleagues have also used the availability of the C58 genome
sequence to identify highly transcribed genes from C58 and other a-
proteobacteria, among which were genes of the TCA cycle, aerobic respi-
ration and ribosomal function (Karlin et al., 2003). These studies were
later extended to other plant associated bacteria including Ralstonia so-
lanacearum and Pseudomonas syringae (Fu et al., 2005).

We noted the presence of numerous nucleotide cyclases in the plant
symbionts S. meliloti and M. loti and in the evolutionarily distinct human
pathogen, Mycobacterium tuberculosis in our original analysis of the ge-
nome. These nucleotide cyclases have been noted previously in S. meliloti
and were postulated to function in signal transduction (Galibert et al.,
2001). Contrary to our expectation, only three proteins of this class were
identified in A. tumefaciens. It is unclear at this point why the nitrogen-
fixing plant symbionts share similarly large numbers of nucleotide cy-
clases with a human pathogen, whereas few such genes are found in the
evolutionarily related 4. tumefaciens. Since that observation at least one
additional nucleotide cyclase, conserved in C58, has been examined in
Rhizobium etli (Tellez-Sosa et al., 2002). While it is able to functionally
complement a cya mutant of E. coli, it has no discernable role in R. etli.
The authors speculate that given the large number of nucleotide cyclases,
there may be extensive functional redundancy among these systems. More
detailed analyses are required in order to tease out the specific functional-
ity of these systems in the Rhizobiaceae.

The genome of A. tumefaciens encodes two new bacterial phyto-
chromes. Typically, bacterial phytochromes contain the sensory portion of
the protein, including the tetrapyrrole chromophore-binding site, attached
to a histidine kinase domain. One of the A. tumefaciens phytochromes has
this structure and its gene is in a putative operon with a partner response
regulator. The other phytochrome is itself a response regulator. The Agro-
bacterium bacteriophytochromes have since become the subject of inten-
sive study (Lamparter et al., 2002; Karniol and Vierstra, 2003; Lamparter
et al., 2003; Karniol and Vierstra, 2004; Lamparter, 2004; Borucki et al.,
2005; Inomata et al., 2005; Lamparter and Michael, 2005; Lamparter,
2006; Oberpichler et al., 2006). These studies have characterized in detail
the crystal structure, chromophore binding, spectral properties, and his-
tidine kinase properties of these proteins. However, phenotypes associated
with deletion mutants have not yet been identified.
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10 RESPONSE TO PLANT DEFENSES

A recent study (Chevrot et al., 2006) showed that y-aminobutryic acid
(GABA) produced by the plant in wounded tissue can affect virulence of
A. tumefaciens. GABA is a well-known signaling molecule in bacteria,
plants and animals that is involved in cell-cell interactions in development
and response to stress. The Chevrot study showed for the first time that
GABA can signal between a bacterial pathogen and its host. The bacterial
quorum-sensing signal homoserine lactone (OC8-HSL) is inactivated via
the a#tM pathway in a GABA-responsive manner. Induction of the attKLM
operon was demonstrated and a moderate decrease in tumorigenicity was
documented in transgenic tobacco plants that overproduce GABA. The au-
thors propose several models by which inactivation of OC8-HSL might af-
fect A. tumefaciens interaction with its environment, including reduction of
Ti plasmid conjugation, suppression of quorum sensing by potential com-
petitor bacteria, and reduction of HSL-induced plant defense responses.

A major plant defense against bacterial infection is production of oxi-
dative bursts (primarily H,O,) designed to cripple the invading organisms.
Several recent studies have focused on Agrobacterium’s defense against
oxidation agents. Ceci et al. (2003) solved the crystal structure of the 4.
tumefaciens Dps protein, which protects DNA from damage by oxidation.
This protein was discovered in E. coli and is required for viability in sta-
tionary phase. While the protective qualities of the E. coli protein were at-
tributed to DNA-binding activity and oxidation of bound iron (Almiron
et al., 1992; Zhao et al., 2002), Ceci et al. (2003) showed that the Agro-
bacterium enzyme protects against oxidation without binding DNA.

Several additional studies have focused on regulation of the oxidative
response in A. tumefaciens, and the role of catalase in resistance to oxida-
tive stress (Ceci et al., 2003; Eiamphungporn et al., 2003; Nakjarung et al.,
2003; Prapagdee et al., 2004a; Prapagdee et al., 2004b; Chuchue et al.,
2006). These studies disrupted the regulatory genes oxyR and oxysS, plus
the katA and catE genes that encode a bifunctional catalase-peroxidase and
monofunctional catalase, respectively. They demonstrate that both the kat4
and catE genes are induced by superoxide via the OxyR protein, that the
KatA protein is primarily responsible for resistance to H,O,, and that the
CatE protein serves a supplementary role to KatA. A mutation in the kat4
gene results in an avirulent strain (Xu et al., 2001).

Chuchue et al. (2006) analyzed A. tumefaciens ohr, a gene originally
identified in Xanthomonas campestris as an organic hydroperoxidase resis-
tance protein (Mongkolsuk et al., 1998). They determined that ohr per-
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forms the same function in A. tumefaciens, and that it is regulated by the
adjacent gene, ohrR. They also disrupted five additional genes predicted to
have a similar activity, demonstrating that ohr is A. tumefaciens’ primary
(but not sole) means of resistance to organic hydroperoxides. Since their
work did not assign a specific activity to any of the five additional genes,
all remain candidates as additional enzymes capable of degrading hydrop-
eroxides. It is possible that these genes may have overlapping functions.

11 GENERAL METABOLISM

Annotation of the A. tumefaciens genome provides broad insight into
prototrophic growth mechanisms (Goodner et al., 1999; Goodner et al.,
2001; Wood et al., 2001). Entry ways for inorganic and organic sources of
nitrogen, sulfur, and phosphate are present. C58 was known to lack cate-
chol and hydroxamate-type siderophores (Penyalver et al., 2001). The ge-
nome sequence suggests that the bacterium can scavenge iron from other
organisms by transport of iron-chelate complexes such as ferric citrate
(Page and Dale, 1986). More recently, a huge gene cluster has been
analyzed that encodes a novel hybrid nonribosomal peptide-polyketide
siderophore produced by C58 under iron limitation (Rondon et al., 2004).
An unrelated siderophore identified in 4. tumefaciens MAFF0301001 by
Sonoda et al. (2002) is not present in 4. tumefaciens C58.

Complete biosynthetic pathways for amino acids, nucleotides, lipids,
vitamins, and cofactors are encoded by chromosomal genes. One interest-
ing sidelight is that C58 uses only the vitamin B12-dependent branch of
methionine synthesis involving the MetH protein, however the organism
can synthesize vitamin B12 itself. In terms of central metabolism, 4. tume-
faciens has the enzymatic machinery for the Embden-Meyeroff (glycoly-
sis), pentose phosphate, and Entner-Doudoroff pathways, but prefers the
Entner-Doudoroff pathway for glucose catabolism (Fuhrer et al., 2005).
The Embden-Meyeroff and pentose phosphate pathways may be more im-
portant for intermediary metabolism leading to biosynthetic pathways and
for scavenging biological forms of sulfur (Roy et al., 2003). 4. tumefaciens
C58 is known to grow on glycerol or ethanol, so gluconeogenesis is also a
possible role for the Embden-Meyeroff pathway. However, the genome
lacks a homolog for all seven known fructose-1,6-bisphosphatase types
suggesting a different enzyme is involved in this gluconeogenic step
(Csonka et al., 2005). Based on codon usage, the genes encoding compo-
nents of the TCA cycle and aerobic respiration are predicted to be highly
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expressed, well in line with the strong aerobic growth of C58 (Karlin et al.,
2003). There is considerable gene redundancy for TCA enzymes in C58
with 4 citrate synthase homologs, 4 malate dehydrogenase homologs, and
2 aconitases, however evidence is now available that there is not functional
redundancy for citrate synthase and aconitase (Suksomtip et al., 2005;
Whiteside D, Johnson T, Collins J, Kuhns JM, Ohlin V, Law T, Yasin R,
Dottle G, Livingston L, Wheeler C and Goodner B, unpublished data). C58
does contain the fixNOQP operon which should allow it to grow under mi-
croaerobic conditions (Lopez et al., 2001). Under anaerobic conditions, the
only well established growth route is anaerobic respiration using nitrate as
the terminal electron acceptor (see below). C58 does contain enzymes,
such as lactate dehydrogenases, that might allow for some fermentation.
While there is some evidence for fermentation under certain conditions in
related organisms, there is no experimental evidence for fermentation in
Agrobacterium (Sardesai and Babu, 2000).

Carbon metabolism is very broad in 4. tumefaciens and the C58 ge-
nome sequence predicts many routes including those for the plant-derived
sugars fructose, sucrose, ribose, xylose, xylulose and lactose as well as
compounds such as myo-inositol, hydantoin, urea and glycerol. The capac-
ity to metabolize glucuronate, galactonate, galactarate, gluconate, ribitol,
glycogen, quinate, L-idonate, creatinine, stachydrine, ribosylnicotinamide
and 4-hydroxymandelate is also implied by the genome content. The abil-
ity to break down and possibly metabolize plant-derived polymers such as
hemicellulose, pectin, lignin, and tannin has some bioinformatics support
as well. Chemotaxis systems corresponding to many of these compounds
have been experimentally verified in 4. tumefaciens (Ashby et al., 1988).
Sucrose is a preferred growth substrate and chemoattractant, and there are
at least 4 putative enzymatic routes for its degradation — 2 a-glycosidases,
a sucrose hydrolase, and a novel route involving the oxidation of sucrose
to 3-ketosucrose (Schuerman et al., 1997; Willis and Walker, 1999).
Evidence exists that there is some functional redundancy for sucrose deg-
radation, but in addition sucrose metabolism is linked to other cellular
processes such as osmoregulation (Smith et al., 1990; Goodner B,
Hardesty J, Edwards J, Reed A, Mateo V, Shelton B and Wheeler C, un-
published data). Experimental evidence has now linked C58 genes directly
or indirectly to palatinose, rhamnose, Amadori compounds, and alginate
catabolism (De Costa et al., 2003; Richardson et al., 2004; Back et al., 2005;
Baek and Shapleigh, 2005; Ochiai et al., 2006a; Ochiai et al., 2006b). Other
carbon metabolic routes that have been experimentally tested since the
C58 genome was published include the conversion of fructose to psicose,
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glycogen synthesis, hydantoin racemization, methyl and the erythritol
phosphate pathway (Ugalde et al., 2003; Martinez-Rodriguez et al., 2004;
Kim et al., 2006; Lherbet et al., 20006).

Nitrogen metabolism in Agrobacterium has long been overshadowed
by its N-fixing cousins Rhizobium, Sinorhizobium, and Mesorhizobium.
However, it is clear that nitrogen metabolism in Agrobacterium is not a
minor story and may have some real goldmines of basic knowledge and
commercial application (Cheneby et al., 2004). For example, the C58 ge-
nome contains the genes for two nitrate reductases, one an assimilatory
type (NAS) and the other a potential bifunctional type (NAP) (Richardson
et al., 2001). The extent to which these two nitrate reductases divide up or
share the nitrogen assimilation and anaerobic respiration duties is currently
under investigation (Baek and Shapleigh, 2005; Abraham N, Bennett I,
Wheeler C and Goodner B, unpublished data). Recently, nitrate and nitrite
have been shown to be chemoattractants for A. tumefaciens (Lee et al.,
2002). As another example, the C58 genome encodes six different gluta-
mine synthetases, two different glutamate synthases plus an orphan gluta-
mate synthase large subunit, and a glutamate dehydrogenase. As a final
example, biovar I strains of A. tumefaciens can grow on media lacking an
exogenous nitrogen source, especially under low oxygen tensions
(Abraham N, Bennett I, Wheeler C and Goodner B, unpublished data).
This growth can occur repeatedly through serial transfer and it is enough
growth to entice those interested in nitrogen fixation (Kanvinde and Sastry,
1990). Given that the C58 genome lacks genes for nitrogenase, it seems
likely that this is an example of high efficiency scavenging of nitrogenous
compounds. There are orthologs of a high affinity urea ABC-type trans-
porter (urtABCDE, Valladares et al., 2002), a high affinity ammonium
transporter (amtB, Meletzus et al., 1998), and a formate dehydrogenase
and urease that might also serve as a methylenediurease system for the
degradation of methyleneureas (Jahns et al., 1998). There are also weak
orthologs of several enzymes that comprise the cyanide oxygenase com-
plex in Pseudomonas flourescens (Fernandez and Kunz, 2005). That said,
it remains possible that a novel nitrogen fixation system exists in Agrobac-
terium, but highly efficient nitrogen scavenging is the hypothesis of
choice for the time being.

Once a virulent 4. tumefaciens strain, such as C58, initiates tumor for-
mation, the bacterium can also benefit from the proprietary carbon and ni-
trogen sources called opines that are produced by the transformed plant
cells (Bevan and Chilton, 1982). In C58, the Ti plasmid pTiC58 carries
most of the genes necessary for utilizing nopaline an agrocinopine.
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However, it is known that C58 derivatives lacking the pTiC58 replicon can
take up octopine and nopaline without subsequent hydrolysis. Spontaneous
mutants have been found that now express the ability to utilize octopine or
mannopine/mannopinic acid (LaPointe et al., 1992). The C58 genome con-
tains many ABC-type transport systems for amino acids and their deriva-
tives that may allow for the uptake of opines. Both the linear chromosome
and the cryptic plasmid pAtC58 harbor strong homologs of the agaE gene
that encodes an enzyme involved in mannopine metabolism (Lyi et al.,
1999).

12 CONCLUSIONS

The most striking finding from our original analyses was the extensive
similarity of the circular chromosomes of A. fumefaciens and the plant
symbiont S. meliloti, supporting the view that these bacteria originated
from a recent common ancestor. The mosaic structure of the 4. tumefa-
ciens linear chromosome and plasmids, predominantly composed of
orthologs found on each of the S. meliloti replicons, suggests that these or-
ganisms diverged following acquisition of the pSymA and pSymB ances-
tral molecules by this progenitor. Subsequent sequencing of the Brucella
suis genome by Paulsen et al. (2002) extended these analyses and showed
similar synteny between these organisms and chromosome I of B. suis and
B. melitensis. These findings, along with information on the gene content
of these three organisms, suggest that they all arose from a common plant-
associated ancestor. The intriguing divergence of this ancestor along dis-
tinctly different lineages dedicated to plant symbiosis, plant pathogenesis
and animal pathogenesis provides a fascinating model system from which
to investigate bacterial evolution. Ongoing work by us and others on the
genome analysis of Agrobacterium biovars I, Il and III representatives,
plus the recently published genomes of Rhizobium etli (Gonzalez et al.,
2006) and Rhizobium leguminosarum (Young et al., 2006) should present a
wealth of new data for this investigation.

A significant body of literature has been built upon the foundation of
the Agrobacterium genome sequence. This is representative of the explo-
sion of literature that accompanies the completion of most model genomes
and strongly supports the need for continued research into new and more
efficient sequencing technologies. Methods to elucidate the functional and
evolutionary relationships of these genome systems must expand as well.
Such functional analyses, on both the global and individual gene scales,
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are critical to expand our understanding of key biological systems and rep-

resent the next challenge of the genomic revolution.

Table 4-1. Agrobacterium tumefaciens C58 genes discussed in this chapter

Gene or Protein Name Atu Number” AGR Number®
new Type IV secretion system on 5162-5172 pAT 218-pAT bx65
PAtCS58 (avhB operon)

rctd 5160 pAT 217

retB 5116 pAT 169
vir1 6150 pTi 272
virH2 6151 pTi 273

telA 2523 C 4584
chromosome II repABC operon 3924-3922 L 1843-L 1847
chromosome 11 trad 4855 L 66
chromosome II traG 4858 L 58
chromosome Il mobC 4857 L 60
chromosome I dnaFE 1292 C 2379
chromosome Il dnaE 3228 L 3173
PAtCS8 dnaFE 5100 pAT bx5
pTiC58 dnaE 6093 pTi_175

chvA 2728 C_4944

chvB 2730 C 4949
chvGI operon 0033-0034 C 52-C 54
chvE 2348 C 4267

ros 916 C 1669

chvD 2125 C 3855
chvH 2553 C 4625

acvB 2522 C 4582

exoC 4074 L 1564

cel gene cluster 3302-3309 L 3032-L 3021
hspC 375 C 657

hspL 3887 L 1921
hspATI 5052 pAT 69
hspAT?2 5449 pAT_660
rpoH 2445 C 4439

kdglF 3145 L 3329

ligk 1121 C 2076
endo-1,4-beta-xylanase 2371 C 4304
pecSM operon 0272-0273 C_466-C_468
bacA 2304 C 4191

htrA family member 1915 C_3507

htrA family member 2043 C_3700

ialA 2772 C 5030

ialB 3275 L 3087
hemolysin 359 C 627
hemolysin 736 C 1334

(Continued)
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Gene or Protein Name Atu Number” AGR_ Number®
hemolysin 3732 L 2203

mviN 347 C_608
autotransporting virulence factor 5354 pAT 511
family member

autotransporting virulence factor 5364 pAT 528
family member

icmF 4332 L 1062

virG 6178 pTi_ 15
adenylate cyclase 1149 C 2127
adenylate cyclase 2277 C 4137
adenylate cyclase 2580 C 4673
adenylate cyclase 4013 L 1679
bacterial phytochrome 1990 C 3620
bacterial phytochrome 2165 C 3927
attKLM operon 5137-5139 pAT _197-pAT 200
dps 2477 C 4495

oxyR 4641 L 484

katA 4642 L 481

catE 5491 pAT 722

ohr 847 C 1547

ohrR 846 C 1544
siderophore biosynthetic gene 3668-3691 L 2335-L 2292
cluster

metH 2155 C_3907
verified citrate synthase 1392 C 2572
citrate synthase-related gene 4851 L 71

citrate synthase-related gene 5306 pAT 439
citrate synthase-related gene 5307 pAT 441
putative malate dehydrogenase 164 C 268
putative malate dehydrogenase 2639 C 4782
putative malate dehydrogenase 3208 L 3209
putative malate dehydrogenase 4676 L 410
aconitase A 2685 C 4866
aconitase B 4734 L 294
fixNOQP operon 1537-1534 C 2835-C 2829
NAS-type nitrate reductase operon ~ 3900-3899 L 1895-L 1897
NAP-type nitrate reductase operon ~ 4405-4410 L 921-L 913
o-glucosidase (with associated 594 C_1051
transport operon)

o-glucosidase (orphan) 2295 C_4169
sucrose hydrolase 944 C 1721
putative glutamine synthetase 193 C 326
putative glutamine synthetase 602 C_1068

putative glutamine synthetase | 1770 C 3253
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Gene or Protein Name Atu Number” AGR_ Number®
putative glutamine synthetase 2142 C 3883

putative glutamine synthetase II 2416 C 4385
putative glutamine synthetase I1I 4230 L 1262

orphan glutamate synthase large 145 C 235

subunit

bacterial-type glutamate synthase 3783-3784 L 2104-L2101
operon

archaeal-type glutamate synthase 4227-4229 L 1268-L 1265
operon

glutamate dehydrogenase 2766 C 5015
urtABCDE operon 2414-2410 C 4380-C 4373
amtB 2758 C 5001

urease operon 2401-2408 C _4357-C_4369
putative agaF 3050 L 3510
putative agaF 3414 L 2815

putative agaF 5003 pAT 5

* Gene numbering system used by Wood et al. (2001) and adopted for our subsequent
genome consortium reannotation of the A. tumefaciens C58 genome.
® Gene numbering system used by Goodner et al. (2001).
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AGROBACTERIUM—TAXONOMY
OF PLANT-PATHOGENIC RHIZOBIUM SPECIES

John M. Young

Landcare Research, Private Bag 92170, Auckland, New Zealand

Abstract. Traditionally, Agrobacterium spp. have been regarded as unique, predominantly
soil-inhabiting, oncogenic plant pathogenic bacteria, thus justifying their inclusion in a sin-
gle genus that encompassed species allocated according to the nature of symptoms pro-
duced. Tumorigenic strains have been included in A. tumefaciens and rhizogenic strains in
A. rhizogenes; each species having a wide host plant range. Other species (4. larrymoorei,
A. rubi and A. vitis and) have relatively restricted host ranges. Non-pathogenic, exclusively
soil-inhabiting strains have been allocated to A. radiobacter. From its inception, the authen-
ticity of Agrobacterium was questioned because of its possible synonymy with Rhizobium,
a genus until recently considered to be represented only by bacteria forming nodulating, ni-
trogen-fixing, symbiotic relationships with legume plants. Accumulated phenotypic and
molecular evidence now shows that these two genera can be circumscribed as single taxon.
Furthermore, Agrobacterium pathogenicity and Rhizobium nodulation characters are plas-
mid-borne and interchangeable between individual species and between members of the
two genera. This evidence militates against stable nomenclature based on pathogenic char-
acters for the genus, Agrobacterium, or for its species. According to modern approaches to
classification of the two genera, all Agrobacterium spp. should be allocated to the genus
Rhizobium, natural species being distinguished on the basis of phenotypic and genomic
data. Differences in pathogenicity can be accommodated by nomenclature referring to the
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presence or absence of different oncogenic plasmids. In this chapter, the classification and
nomenclature of Agrobacterium is chronicled in relation to the evolution of bacterial taxon-
omy as a discipline intended to inform natural relationships. The ‘agrobacteria’ are consid-
ered in the context of the diversity of related soil-inhabiting ‘rhizobia’ of which they form a
sub-population.

1 INTRODUCTION

The classification of bacteria at generic and specific levels has been
subject to repeated amendment, with frequent revisions made to keep no-
menclature in line with contemporary taxonomic approaches. The genus
Agrobacterium Conn 1942 is an exception. Although they had their origins
in diverse genera, the plant pathogenic bacteria associated with oncogenic
symptoms, commonly called ‘crown gall’ and ‘hairy root’, and other more
rece ntly identified oncogenic pathogens, have been recognized as distinct
species in the genus Agrobacterium since the genus was established
(Kersters and De Ley, 1984).

Classification of the genus Agrobacterium and of its species has been
based on its once-puzzling oncogene pathogenicity, which was the defin-
ing character of the genus (Kersters and De Ley, 1984). This was paral-
leled in the genus Rhizobium Frank 1889, originally reserved for bacteria
with the capacity to form symbiotic nitrogen-fixing symbioses with leg-
ume species. For both genera, their distinctive generic characteristics are
now known to be the result of the presence or absence of interchangeable
conjugative plasmids that confer specific oncogenic or nodulating capabili-
ties. However, a character that is the result of arbitrary acquisition or loss
of a plasmid is obviously unstable and cannot form the basis of formal
nomenclature. Although comparative phenotypic and genetic studies of
Agrobacterium spp. and Rhizobium spp. have failed to confirm differentia-
tion into separate genera based on oncogenicity and nitrogen-fixation
respectively (Young et al., 2001), an element of the bacteriological com-
munity has continued to support a special-purpose nomenclature based on
pathogenicity alone.

Pathogenicity was also used as the single defining character of individ-
ual Agrobacterium species (Kersters and De Ley, 1984) although, follow-
ing comprehensive genetic and phenotypic studies, the genus has been
revised with the recognition of natural species (Holmes and Roberts, 1981)
to accord with current interpretations of bacterial taxonomy. Nomenclature
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reflecting species epithets based on pathogenicity alone has also continued
to be strongly supported.

Although the nomenclature of the genus has been in question since its
inception (Pribram, 1933; Conn, 1942; Graham, 1964; Allen and Holding,
1974; Kersters and De Ley, 1984), formal nomenclatural revisions (Keane
et al., 1970; Holmes and Roberts, 1981) have not generally been adopted.
The account presented here of the taxonomy of oncogenic agrobacteria de-
tails the history of their classification in relation to the evolution of bacte-
rial systematic, and the implications that this has on their nomenclature. [It
is customary in papers on taxonomy to provide full author citations where
the name of a validly published taxon is mentioned for the first time. Full
citation includes the names of authors together with the date of publication
of the proposal of the taxon, although the reference is not usually recorded
in literature cited. This is largely uninformative except to indicate valid
publication, and it breaks the flow of text. Hereafter, this treatment reports
only authorities for names in Agrobacterium and Rhizobium that are val-
idly published (Lapage et al., 1992). The validity of other names can be as-
sumed unless otherwise indicated. Historic names that are not valid are
identified with a superscript (") to indicate that they have not been validly
published in the Approved Lists of Bacterial Names (Skerman et al., 1980)
or more recent proposals of new taxa in the International Journal of Sys-
tematic and Evolutionary Microbiology (IJSEM) or in Validation Lists in
IJSEM of names published elsewhere. Euzéby (1997-2006) offers a com-
prehensive reference list of published names].

2 HISTORICAL PERSPECTIVE—ORIGINS

2.1 Taxonomy, classification and nomenclature

Taxonomy, as it relates to the systematic study of bacteria, has three
main components — classification, nomenclature and identification (Young
et al., 1992) — of which the following are considered here:

1. Classification, the grouping of bacteria in taxa in a hierarchy based on
some principle and methodology (Young et al., 1992; Goodfellow and
O’Donnell, 1993; Young, 2001; Brenner et al., 2005).

2. Nomenclature, the application of names to these taxa. Refinements of
classification have usually improved understanding of bacterial rela-
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tionships and, when expressed in formal nomenclature, names help to
conceptualize those relationships. Adopting any particular nomencla-
ture should imply acceptance of a particular classification (Goodfellow
and O’Donnell, 1993; Sneath, 2005). Nomenclature therefore has the
capacity to illuminate classification but, if not strictly applied, can mis-
lead.

The evolution of bacterial taxonomy can be divided into three periods
(Young et al., 1992):

1. Inthe 19™ and early 20™ centuries (up to 1940), bacterial nomenclature
was notable for the proliferation of species names, in a period when the
principles and practices of bacterial taxonomy were relatively undevel-
oped and when bacteria were regularly given names that reflected par-
ticular characters regarded as important in areas of human endeavour
(e.g. agriculture, medicine). The eight editions of Bergey’s Manual of
Determinative Bacteriology (1923—1974) were prepared on the basis that
they provided a determinative system for bacterial identification.
Although some tests (e.g. morphology, Gram’s reaction, flagellar inser-
tion, fermentation) were considered to represent taxonomically signifi-
cant bacterial characters, it gradually became clear that much information
(colony growth, broth turbidity) was inadequate for reliable classification
of bacteria.

2. In the period 1940—1975, with progressive expansion of phenotypic
databases (Stanier et al., 1966) and the introduction of numerical com-
puter-based analysis, demonstrations of taxa based on overall pheno-
typic differences using numerical analysis (Sokal and Sneath, 1963)
supported a concept of natural classification. Colwell (1970a; 1970b)
introduced the term ‘polyphasic’ for natural classification based on all
available phenotypic data. Such natural classifications based on pheno-
typic comparisons were considered to allow predictions about the char-
acteristics of populations; at any taxonomic level, bacteria in the same
taxon were expected to have more attributes in common than with bac-
teria in other taxa at the same level. Such general purpose or natural
classifications can be contrasted with special purpose or artificial clas-
sifications (Sneath, 2005) often framed around individual characters of
significant interest in areas of human endeavour (Lelliott, 1972).

3. Since 1975, molecular methods have been used increasingly to estab-
lish classification and to generate nomenclature (Young, 2001; Young
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et al,, 1992). Early studies entailed comparisons of complex com-
pounds such as peptides and fatty acids, using SDS-PAGE and FAME,
respectively. However these have become secondary to genetic meth-
ods, especially those based on comparisons of PCR-amplified DNA se-
quences. As attention turned to phylogenetic approaches in taxonomy
(Sneath, 1988), the claim that comparative analyses of 16S rDNA
would give ‘true’ phylogenies (Stackebrandt and Woese, 1984; Woese,
1987) and the ease with which sequences could be obtained and ana-
lysed using tree-building software, has seen proliferation of names
based on phylogenetic inference. In a refinement, Vandamme et al.
(1996) proposed a revised polyphasic approach derived from Colwell
(1970a; 1970Db) that entailed investigating strain diversity by a variety
of methods in order to establish natural taxa based on overall similari-
ties (Gillis et al., 2005). An essential additional component in the new
approach was a requirement to include inference of phylogenetic rela-
tionships at taxonomic levels above species, based on comparative
analysis of 16S rDNA sequences. This is how the terms ‘polyphasic
taxonomy’ and ‘polyphasic classification’ are used today.

2.2 Early days of bacterial taxonomy

Before 1940, classification of bacteria relied on structural descriptions
based on cell morphology and colony growth on different media. For plant
pathogens, specific epithets usually referred to host species or to distinct
symptoms, it being assumed that pathogenicity represented the expression
of a major component of the underlying phenotype. Generic names were
proposed and revised, sometimes without explanation, on the basis of lim-
ited investigations of what would now be seen as ephemeral or inadequate
criteria.

Subsequently, taxa established according to these criteria were often
amalgamated. However, when these bacteria were investigated in more de-
tail, the extent of their biochemical diversity became apparent, and the
heterogeneity of named genera came to be recognized as concealing rec-
ognizable taxa based both on morphological and physiological characters.

2.3 The genus Agrobacterium

In the period around 1940 generic classifications were reassessed on
the basis of more detailed investigations of morphology, cell wall structure
(Gram’s reaction), flagellar insertion, and a relatively small number of
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physiological reactions considered to represent fundamental metabolic
processes; these are now regarded as the classic methods by which genera
were differentiated. That approach allowed the redistribution of most
pathogenic species according to broad similarity groups, to Corynebacte-
rium, Erwinia, Pseudomonas, and Xanthomonas. A new genus, Agrobacte-
rium, was proposed by Conn (1942) to include two pathogenic species
previously allocated to Phytomonas; A. tumefaciens and A. rhizogenes and
a non-pathogenic species, 4. radiobacter. The first description of the ge-
nus Conn (1942) was: ‘Agrobacterium: small, short, non-spore-forming
rods, which are typically motile with 1-4 peritrichous flagella (if only one
flagellum, lateral attachment is as common as polar). Occur primarily in
soil or as pathogens attacking roots or producing hypertrophies on the
stems of plants. Are ordinarily gram-negative. Do not produce acid or gas
in glucose-peptone media, although a certain amount of acid is evident in
synthetic media; this latter observation is ordinarily due merely to the
presence of CO, which may be produced in considerable abundance. Lig-
uefy gelatine slowly or not at all.” A slightly expanded description of the
genus was provided by Allen and Holding (1974). Although this classifica-
tion is now understood to reflect only a part of generic diversity, it allowed
more systematic comparative examination of relatively similar organisms.

2.4 History of species allocated to Agrobacterium

2.4.1 Species transferred when Agrobacterium was first proposed

1. Agrobacterium radiobacter (Beijerinck and van Delden 1902) Conn
1942
A. radiobacter was originally proposed as Bacillus radiobacter" by
Beijerinck and van Delden (1902) in a study of soil bacteria associated
with nitrogen utilization. The species was not recognized as a plant
pathogen. Subsequently, the species was reclassified as Bacterium ra-
diobacter™", Rhizobium radiobacter, Achromobacter radiobacter™’
and Alcaligenes radiobacter™" . Eventually, Conn (1942) proposed re-
classification as Agrobacterium radiobacter.

2. Agrobacterium tumefaciens (Smith and Townsend 1907) Conn 1942
Crown gall, the unregulated growth of plant tissue of many plant spe-
cies, usually occurring in the roots and crown, has probably been
known from antiquity. Proof that crown gall was a disease caused by a
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bacterial pathogen was made by Smith and Townsend (1907), who
named the organism Bacterium tumefaciens with Chrysanthemum fru-
tescens as host plant but suggesting a wider host range. This was one of
the early demonstrations of bacterial pathogenicity to plants when that
concept was still contentious. The crown gall pathogen was renamed
Pseudomonas tumefaciens”"® by Duggar (1909), who confirmed a wide
host range for this pathogen and then Phytomonas tumefaciens”" before
Conn (1942) created the combination Agrobacterium tumefaciens. Sub-
sequently, bacteria were classified as A. tumefaciens solely on the basis
of their tumorigenic pathogenicity.

3. Agrobacterium rhizogenes (Riker et al. 1930) Conn 1942

Phytomonas rhizogenes"® was the name proposed by Riker et al.
(1930) for bacteria causing the ‘hairy root’ or rhizogenic symptom in a
range of plant species. (So confused was bacterial systematics at that
time that Riker et al. (1930) also proposed Bacterium rhizogenes"" and
Pseudomonas rhizogenes"" as synonyms to ensure recognition of the
species). Conn (1942) transferred the species to Agrobacterium. Subse-
quently, bacteria were classified as 4. rhizogenes solely on the basis of
their rhizogenic pathogenicity.

2.4.2 Additional species allocated to Agrobacterium after Conn
proposed the genus

1. Agrobacterium rubi (Hildebrand 1940) Starr and Weiss 1943
Hildebrand (1940) proposed Phytomonas rubi"’ for a tumorigenic
pathogen, similar in character to Phytomonas tumefaciens but which he
considered to be specific to Rubus. Subsequently, Starr and Weiss
(1943) transferred the species to Agrobacterium.

2. Agrobacterium vitis Ophel and Kerr 1990
Ophel and Kerr (1990) re-examined a sub-population of tumorigenic
strains isolated from grape previously described as 4. radiobacter bio-
type 3 of Keane et al. (1970), biovar 3 of Kersters and De Ley (1984),
Kerr and Panagopoulos (1977), Siile (1978) and Panagopoulos et al.
(1978) and allocated them to a new species, A. vitis.

3. Agrobacterium larrymoorei Bouzar and Jones 2001
A tumorigenic pathogen isolated from aerial tumours in Ficus benja-
mina (Bouzar et al., 1995) was named A. larrymoorei by Bouzar and
Jones (2001).
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4. Incidental reference has been made to A. albertimagni®’ (Salmassi
et al., 2001; Han et al., 2005; Liu et al., 2005) but the epithet has not
been proposed legitimately and is not validly published.

2.5 Phenotypic species classification

2.5.1 Pathogenic species

After 1940 Agrobacterium classification developed within the frame-
work of understanding of plant pathogenic bacteria, that ‘.... where there is
a true difference in pathogenic ability, some other type of difference ....
cultural, biochemical, metabolic, serological, or some other category ....
should be demonstrable’ (Burkholder and Starr, 1948). For pathogens in
Agrobacterium, as for pathogenic species in other genera, it was taken for
granted that pathogenicity was the expression of significant and substantial
phenotypic, and therefore genetic, differences, and that improved methods
would eventually sustain their characterization.

The probable synonymy of A. radiobacter and A. tumefaciens has been
repeatedly noted (Heberlein et al., 1967; Moffett and Colwell, 1968;
Graham, 1976) but species nomenclature was not revised (Allen and
Holding, 1974) (Table 5-1), remaining essentially the same as described by
Bergey et al. (1939) in spite of mounting circumstantial evidence that it
expressed an over-simple, not to say mistaken, interpretation of relation-
ships. This uncertainty was acknowledged to be the result of the small
number of strains available and comparatively few established discriminat-
ing examined (Allen and Holding, 1974).

2.5.2 Comparative studies of Agrobacterium species

Numerical analysis of phenotypic characteristics (White, 1972; Kersters
et al., 1973); biochemical and physiological tests (Keane et al., 1970;
Kersters et al., 1973; Kerr and Panagopoulos, 1977; Sule, 1978) DNA-
DNA reassociation (De Ley, 1972, 1974; De Ley et al., 1973), and com-
parison of soluble proteins (Kersters and De Ley, 1975) indicated four
genetically and phenotypically distinct groups or clusters that were unre-
lated to pathogenic capability. Keane et al. (1970) were first to propose that
speciation based on pathogenicity was untenable for the agrobacteria. They
proposed that all pathogens be included in a single species, 4. radiobacter,
with biotype nomenclature to differentiate physiological differences, and
variety nomenclature to distinguish between tumorigenic, rhizogenic and
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non-pathogenic states (Keane et al., 1970) (Table 5-1). Allen and Holding
(1974) maintained species nomenclature based on pathogenicity and al-
though they did note the work of Keane et al. (1970) incidentally, for what-
ever reason, they did not appreciate the full implications of that report.

2.6 The approved lists and Agrobacterium nomenclature

Recognition of the uncertainties in Agrobacterium classification and
nomenclature occurred contemporaneously with the development (Lapage
et al., 1975) and publication of the Approved Lists of Bacterial Names
[‘the Approved Lists’ (Skerman et al., 1980)]. Realization that a high pro-
portion (>90%) of species names of bacteria were synonyms or were ille-
gitimate indicated the need for nomenclatural revision. The Approved
Lists included only species names recognized as valid where there was a
modern description and at least one extant strain which could be accepted
as the type, or name-bearing, strain (Lapage et al., 1975). Descriptions
based on pathogenic characterization alone would not justify inclusion of
species in the Approved Lists (Lapage et al., 1975; Young et al., 1978) or
in or in subsequent lists of validly published taxa (Lapage et al.,
1992). Species epithets based solely on this criterion were excluded. Little
public consideration had been given to revision of Agrobacterium nomen-
clature and, in spite of a proposal by Keane et al. (1970) for a natural clas-
sification, and a proposal based on application of pathovar nomenclature
for A. radiobacter (Kerr et al., 1978), neither of these nomenclatural alter-
natives was adopted. Notwithstanding the doubtful status of 4. radiobacter
and A. tumefaciens as independent species, as well as the uncertainty of the
standing of species based on plasmid-borne pathogenicity (Kerr et al.,
1978), A. radiobacter, A. rhizogenes, A. rubi and A. tumefaciens were in-
cluded in the Approved Lists.

2.6.1 Pathogenicity is plasmid-borne

Genetic studies of Agrobacterium spp. showed that pathogenicity, as
expressed by tumorigenic capability of A. fumefaciens, and by rhizogenic
capability of 4. rhizogenes, could be transferred between strains of Agro-
bacterium, or be lost (Kerr, 1969b). Subsequently, this behavior was
shown to be derived from transfer of plasmids as conjugative elements
(Genetello et al., 1977). Tumorigenic pathogenicity of A. tumefaciens de-
pends on acquisition of a Ti plasmid (Van Larebeke et al., 1975; Watson
et al., 1975) and rhizogenic pathogenicity of A. rhizogenes depends on the
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acquisition of an Ri plasmid (Willmitzer et al., 1980; Tepfer, 1984). It is
generally assumed that the genes for pathogenicity are plasmid-borne in all
Agrobacterium spp.

Recognition that tumorigenic or rhizogenic capability was mediated
by genes on transmissible plasmids carried by A. tumefaciens and A.
rhizogenes had important implications for species classification although
these were not immediately understood. Tumorigenic and rhizogenic popu-
lations could not be circumscribed as species in formal nomenclature be-
cause acquisition, exchange, or loss, of one of these plasmids by a bacterial
strain would lead to a change in its species identity (Kersters and De Ley,
1984; Kerr, 1992; Young et al., 2001). Furthermore, the small genetic and
phenotypic contribution of plasmids to the phenotype and genotype of bac-
teria was believed to be insignificant in terms of differentiation of species.

Pathogenic Agrobacterium spp. are represented by strains that may be
either tumorigenic, rhizogenic or non-pathogenic according to their plas-
mid complement. Pathogenicity characters are mobile. For this reason, the
epithets tumefaciens, rhizogenes and radiobacter, if restricted to use for
populations defined by their pathogenicity or lack thereof, could not refer
to stable taxa (Kersters and De Ley, 1984; Young et al., 2001).

Oncogenic activity is also associated with all Agrobacterium spp. and
there may be several additional bacterial populations that may merit classi-
fication as species (Sawada and Ieki, 1992b).

2.7 Natural Agrobacterium species

Based on their own numerical analysis of data, and on previous studies
described above, Holmes and Roberts (1981) proposed a natural classifica-
tion for A. tumefaciens and A. rhizogenes (Table 5-1):

1. A. tumefaciens corresponded to biotype 1 (Keane et al., 1970), group I
of White (1972), Agrobacterium cluster 1 of Kersters et al. (1973), bio-
var 1 of Kersters and De Ley (1984), of Willems and Collins (1993),
and of Sawada et al. (1993). The species included the type strains of
both 4. tumefaciens and A. radiobacter and, because A. tumefaciens is
type species of the genus, Holmes and Roberts (1981) considered that
the epithet ‘fumefaciens’ took priority as name of the species.

2. A. rhizogenes corresponds to biotype 2 of Keane et al. (1970), group III
of White (1972), cluster 2 of Kersters et al. (1973), biovar 2 of Kersters
and De Ley (1984), of Willems and Collins (1993) and of Sawada et al.
(1993).
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Popoff et al. (1984) supported this natural classification, including
A. rubi. They discriminated nine genomic species within A. tumefaciens
(Holmes and Roberts, 1981) based on DNA-DNA reassociation. Six of
these corresponded to phenotypic groups in A. tumefaciens reported in the
numerical analysis of Kersters et al. (1973).

Kersters and De Ley (1984) acknowledged the compelling evidence
based on the earlier studies for recognition of natural species of Agrobac-
terium. However, they stated without explanation, and apparently without
considering the possibility of emendation of species descriptions, that ac-
ceptance of a classification based on natural species would require a
change of names of A. tumefaciens and A. rhizogenes (Table 5-1). They
perceived a requirement to use the names A. tumefaciens and A. rhizogenes
but, notwithstanding Holmes and Roberts’ (1981) proposal, considered
that these were unacceptable as epithets in a natural classification. Kersters
and De Ley (1984) therefore elected to follow the earlier nomenclature
based on pathogenicity (Allen and Holding, 1974).

Classification and nomenclature of natural Agrobacterium species is
(Table 5-1):

1. Agrobacterium radiobacter as described by Holmes and Roberts (1981)
includes the type strains of oncogenic A. tumefaciens and of non-
pathogenic A. radiobacter. [The species epithet ‘radiobacter’ takes
precedence when A. radiobacter and A. tumefaciens are amalgamated
because it was the first published name. The correct name of the spe-
cies is A. radiobacter; A. tumefaciens retains its nomenclatural status as
type species of the genus as a junior heterotypic (subjective) synonym
of A. radiobacter (Young et al., 2006a). An anticipatory correction is
made here. ]

2. Agrobacterium rhizogenes as described by Holmes and Roberts (1981).

3. Agrobacterium rubi is characterized in genotypic and phenotypic terms
and is usually isolated from above-ground cane galls of Rubus spp., al-
though strains have been isolated from other hosts (Bradbury, 1986)
and are capable of infecting other plant hosts (Anderson and Moore,
1979; Sawada and Ieki, 1992b).

4. Agrobacterium vitis Ophel and Kerr (1990) was proposed as the name
for biotype 3 of Keane et al. (1970), biovar 3 of Kersters and De Ley
(1984), Kerr and Panagopoulos (1977), Siile (1978) and Panagopoulos



Agrobacterium—Taxonomy of Plant-Pathogenic Rhizobium Species 195

et al. (1978). The predominant Agrobacterium species in grape is A. vitis
but strains of this species have also been isolated from Actinidia
(Sawada and Ieki, 1992a).

Following the report of Holmes and Roberts (1981) of a natural classi-
fication for Agrobacterium spp. the application of species epithets has be-
come ambiguous. The names may be used either in a natural classification
(Bradbury, 1986; Moore et al., 2001), or in special-purpose nomenclature
based on differences in pathogenicity (Kersters and De Ley, 1984). Pre-
liminary clarification is therefore always necessary when they are used
now.

2.7.1 Pathogenic designations

Several approaches have been made to describing pathogenic strains as
part of natural species classification (Kerr et al., 1978) and subsequently
(Kersters and De Ley, 1984) proposed the application of pathovar nomen-
clature in terms of the International Standards for Naming Pathovars (Dye
et al., 1980). However, the fact that pathogenicity genes are carried on
plasmids means that the pathogenic character of any strain is unstable.
This lack of stability would make uncertain the application of pathovar
names to particular strains, most notably to pathotype strains. For patho-
genic agrobacterial strains, therefore, formal pathovar nomenclature seems
inappropriate. Holmes and Roberts (1981) recognized pathogenic strains
within species according to their ‘tumorigenic’, ‘rhizogenic’ or ‘non-
pathogenic’ states. Species comprising pathogenic or non-pathogenic
strains can also be reported as tumorigenic (‘Ti’), as rhizogenic (‘Ri’), or
as non-pathogenic strains of the species, where relevant and necessary.
There is no taxonomic basis for according pathogenicity of strains greater
nomenclatural formality.

3 AGROBACTERIUM—RHIZOBIUM RELATIONSHIPS

Agrobacterium has long been recognized as closely related to Rhizo-
bium. Without explanation, Pribram (1933) proposed the combination
Rhizobium radiobacter, anticipating the debate concerning the common
generic relationship of Agrobacterium spp. to Rhizobium. In proposing the
new combination Achromobacter radiobacter, Bergey et al. (1934) noted
that the species was indistinguishable from Rhizobium spp. except for a
few characters that would not now be recognized as adequate generic



196  John M. Young

determinants. Conn (1942) also noted the close relationship of Agrobacte-
rium spp. to known Rhizobium spp. but, on advice, proposed Agrobacte-
rium as new genus that included tumorigenic and soil-inhabiting bacteria.

3.1 Phenotypic comparisons of Agrobacterium
and Rhizobium

In almost every discussion of Agrobacterium and Rhizobium the close
similarity of their descriptions has been pointed out, and amalgamation of
the genera has often been suggested (Bonnier, 1953; Graham, 1964;
Heberlein et al., 1967; De Ley, 1968; White, 1972; Graham, 1976; Kerr
et al., 1978; Kerr, 1992). The only systematic difference recorded between
the genera has been their oncogenic (4Agrobacterium) or symbiotic (Rhizo-
bium) interactions with plants. Allen and Allen (1950) listed a number of
tests that they claimed discriminated the two genera. However, their study
compared only a few of the Rhizobium species recognized today with A4.
radiobacter alone, and none of the differentiating tests described are ac-
knowledged as significant in the literature today. Recent comprehensive
studies of phenotypic data (De Lajudie et al., 1994) and a study of fatty
acid profiles by Tighe et al. (2000) confirm the integrity of individual
agrobacterial and rhizobial species, but neither study supports differentia-
tion of Agrobacterium and Rhizobium as separate taxa.

4 GENOTYPIC RELATIONSHIPS

4.1 Comparative molecular analysis of Agrobacterium

4.1.1 16S rDNA

Early studies based on comparative molecular analyses were made at a
time when 16S rDNA was considered to provide a reliable means of estab-
lishing accurate phylogenetic inferences, following the work of Stacke-
brandt and Woese (1984) and Woese (1987). Comparative analyses of 16S
rDNA sequences of Agrobacterium, Rhizobium and related genera showed
that the two genera were not distinguished as separate monophyletic clades
(reviewed in Young et al., 2001). These studies were based on compari-
sons of 16S rDNA sequences from type strains only, in which minor
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Figure 5-1. Relationships of Rhizobium species, including oncogenic (4grobacterium) spe-
cies, inferred from a comparative analyses of 16S rDNA using Maximum Likelihood (from
Young et al., 2004). Sequences from type strains are marked *.
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variations in indicated relationships were the result of different methods of
analysis. Young et al. (2004) obtained the same result when 16S rDNA se-
quences of several strains from each species were compared using a selec-
tion of phylogenetic inference models. Considered as rooted trees, analyses
expressed R. undicola, A. vitis, R. giardinii, R. daejoenense, A. rubi, A.
larrymoorei and A. radiobacter as intermingled species in Rhizobium
(Figure 5-1).

Dependence on comparisons of this sequence is questionable (Young
2001; Young et al., 1992; Zeigler, 2003) because ribosomal DNA, al-
though ubiquitous in living organisms, is only privileged in the sense that
all bases are conserved; there is no third position redundancy as occurs in
codons of open reading frames. The moiety is subject to the same selective
pressures that are applied to all conserved sequences (Ueda et al., 1999;
Eardly et al., 2005).

4.1.2 Other sequences

In a comparative analysis of housekeeping sequences (16S rRNA,
atpD, recA), Gaunt et al. (2001) obtained similar results for each moiety,
indicating that Agrobacterium species were closely related to, or intermin-
gled with, nodulating Rhizobium species. In summary, there was a period
after 1980 when it seemed possible that comparative sequence analysis of
16S rDNA, then seen as the touchstone of generic relationships (Ludwig
and Schleifer, 1999), or other comparative sequence analyses might dem-
onstrate generic differences between oncogenic Agrobacterium and nodu-
lating Rhizobium species. However, such comparative sequence analyses
have given no support for differentiation and hope of such an outcome in
future is speculative.

In their study of rhizobium-specific intergenic mosaic elements (RIMEs),
Osteras et al. (1995) reported the presence of RIMEs in Rhizobium (now
Sinorhizobium) meliloti, R. leguminosarum and unassigned Rhizobium
spp., as well as in A. rhizogenes, but not in 4 tumefaciens. However, be-
cause they presented data from only a few strains, Osterds et al. (1995)
make a limited contribution to the discussion of generic differences be-
tween Agrobacterium and Rhizobium.

4.1.3 Genomic comparisons

A genomic comparison of Agrobacterium, Rhizobium and Sinorhizo-
bium by Jumas-Bilak et al. (1998) indicated a high level of diversity with-
out demonstrating a systematic difference between these genera. A recent
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study (Young et al., 2006b), comparing 4. radiobacter (as A. tumefaciens),
R. leguminosarum, Sinorhizobium meliloti, Mesorhizobium meliloti,
Brucella melitensis and Bradyrhizobium japonicum indicated the same re-
lationships as those inferred by 16S rDNA sequence analyses. This study
also indicated extensive structural variation between chromosomes, and
that a significant number of nitrogen fixing symbiotic species share num-
bers of genes not found in A. radiobacter.

5 PLASMID TRANSFER AND GENUS
RECLASSIFICATION

5.1 Transfer of oncogenic Ti and nodulating Sym plasmids

Intergeneric transmissibility of Ti and nodulating plasmids has been
demonstrated from nodulating Rhizobium to tumorigenic Agrobacterium
species (Martinez-Romero et al., 1987; Brom et al., 1988; Abe et al.,
1998), and from Agrobacterium species to Rhizobium species (Hooykaas
et al., 1977) and occurs in nature (see section 6.1).

A further confusion arises because of transfer of Sym plasmids to
genera outside the Rhizobiales. Sawada et al. (2003) record nodulation
of legumes by Blastobacter, Burkholderia, Devosia, Methylobacterium,
Photorhizobium and Ralstonia, indicating the probable horizontal transfer
of oncogenic plasmids between these genera and members of the Rhizobia-
les. The need for rigour in the correct application of nomenclature for
strains named on the basis of plasmid-borne characters is becoming in-
creasingly important.

5.2 Revision of oncogenic Rhizobium species

5.2.1 Plant pathogenic Rhizobium species

As the extent of species diversity became increasingly clear so the case
for retaining the separate genera has become more obscure (Young et al.,
2001, 2003; Kuykendall et al., 2005; Young et al., 2005) [The manuscript
for Young et al. (2005) was submitted in 2000]. Indeed it is hard to find
any justification in the literature for separation of Agrobacterium from
Rhizobium as a genus representing the pathogenic populations. Comparison
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of the reported phenotypic characters of the two genera indicates that only
nodulating and oncogenic behaviour differentiate the two genera and, as
noted, these characters are plasmid borne.

Species nomenclature of these strains based on symbiosis and patho-
genicity fails to indicate their underlying relationships. Because there was
no support in any systematic studies for considering them as separate gen-
era, Young et al. (2001) proposed that Agrobacterium and Rhizobium spe-
cies be amalgamated in a single genus, Rhizobium, comprising pathogenic,
symbiotic nitrogen-fixing, and unspecialized soil populations. An emended
description of the genus Rhizobium that includes Agrobacterium is de-
scribed in Box 5-1 and Rhizobium spp. known to include oncogenic strains
are listed in Box 5-2. Future studies might justify the division of the genus
comprising Rhizobium and Agrobacterium species, but there is no basis for
thinking that such a division would lead to the reinstatement of Agrobacte-
rium based on pathogenic species.

6 DIVERSITY WITHIN RHIZOBIUM

6.1 Symbiotic Agrobacterium and oncogenic Rhizobium
(and other genera)

Recent advances in rapid molecular methods have resulted in more
extensive surveys of reliably identified rhizobial and agrobacteria popula-
tions than was possible in the past. There are now several reports of
nodulating rhizobia belonging to the 16S rDNA clade associated with gall-
forming agrobacteria, as members of ‘Agrobacterium tumefaciens’ (Han
et al., 2005; Liu et al., 2005) or closely related to this or other Agrobacte-
rium spp. (Chen et al., 2000; Gao et al., 2001; Hungria et al., 2001; Kwon
et al., 2005; Wolde-Meskel et al., 2005). A strain (TAL 1145) nodulating
Leucaena leucocephala, Phaseolus vulgaris and a wide range of tropical
tree legumes (George et al., 1994) is in the ‘Agrobacterium rhizogenes’
clade (B.S. Weir, Landcare Research, Auckland, New Zealand, pers.
comm.). Rhizogenic strains of Rhizobium spp., Ochrobactrum spp., and
Sinorhizobium sp. have been isolated from hydroponicly grown cucumber
exhibiting hairy root (Weller et al., 2004). Velazquez et al. (2005) recorded
strains identified as Rhizobium (Agrobacterium) rhizogenes with both on-
cogenic and nodulating capabilities. As further investigations are made of
nodulating rhizobia of the more than 14 000 known legume species (Jordan,
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Genus Rhizobium Frank 1889

= Agrobacterium Conn 1942; Allorhizobium de Lajudie, Laurent-Fulele,
Willems, Torck, Coopman, Collins, Kersters, Dreyfus & Gillis 1998)

Rhi.zo’bi.um. Gr. n. rhiza a root; Gr. n. bios life; M.L. neut. n. Rhizobium that
which lives in a root.

Rods 0.5-1.0 x 1.2-3.0 um. Non-spore-forming. Gram-negative. Motile by 1-6
flagella. Insertion usually peritrichous, or peritrichous/sub-polar. Fimbriae have
been described on some strains. Aerobic, possessing a respiratory type of
metabolism with oxygen as the terminal electron acceptor. Optimum temperature,
25-30°C some species can grow at temperatures >40°C. Optimum pH, 6-7; range
pH 4-10. Generation times of Rhizobium strains are 1.5-3.0 h. Colonies are usually
white or beige, circular, convex, semi-translucent or opaque, raised and
mucilaginous, usually 2-4 mm in diameter within 3-5 days on yeast-
mannitol-mineral salts agar (YMA). Growth on carbohydrate media is usually
accompanied by copious amounts of extracellular polysaccharide slime. Chemo-
organotrophic, utilizing a wide range of carbohydrates and salts of organic acids
as sole carbon sources, without gas formation. Cellulose and starch are not
utilized. Produce an acidic reaction in mineral-salts medium containing mannitol
or other carbohydrates. Ammonium salts, nitrate, nitrite and most amino acids can
serve as nitrogen sources. Strains of some species will grow in a simple mineral
salts medium with vitamin-free casein hydrolysate as the sole source of both
carbon and nitrogen, but strains of many species require one or more growth
factors such as biotin, pantothenate or nicotinic acid. Casein, starch, chitin and
agar are not hydrolyzed. Members of Rhizobium are distinguished from those in
the related genera, Mesorhizobium and Phyllobacterium, by differences in growth
rate, fatty acid profiles and 16S rDNA sequence. Closely related in terms of 16S
rDNA sequence similarity, all known Rhizobium species include strains which
induce hypertrophisms in plants. Hypertrophisms in most species are either root
nodules with or without symbiotic nitrogen fixation while in other species they
occur as unregulated oncogenic (tumorigenic or rhizogenic) growths. Some cells
of symbiotic bacterial species enter root hair cells of leguminous plants (Family
Leguminosae) and elicit the production of root nodules wherein the bacteria may
engage as intracellular symbionts to fix nitrogen. Many well-defined nodulation
(nod) and nitrogen fixation (nif) genes are clustered on large or megaplasmids
(pSyms). Nod factors produced. Strains of plant pathogenic Rhizobium (previously
Agrobacterium) species invade the crown, roots and stems of many
dicotyledonous and some gymnospermous plants, via wounds. Self-proliferating
tumors are induced by the genetic transfer of a small DNA region carried on large
tumor-inducing Ti, or hairy root-inducing Ri, plasmids into the host plant genome.
Plasmid transfer between species results in the expression of the particular plant-
interactive properties of the plasmid-donor species.

The mol% G + C of the DNA is 57-66 (T,,).

Type species: Rhizobium leguminosarum (Frank 1879) Frank 1889

Box 5-1. The emended description of the Rhizobium as proposed in Young et al. (2001).
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1. Rhizobium larrymoorei (Bouzar and Jones 2001) Young 2004
= Agrobacterium larrymoorei Bouzar and Jones 2001
Type strain: ATCC 51759; CFBP 5473; ICMP 14256; LMG 21410; NCPPB 4096

2. Rhizobium radiobacter (Beijerinck and van Delden 1902) Young et al. 2001
= Agrobacterium radiobacter (Beijerinck and van Delden 1902) Conn 1942

= Agrobacterium tumefaciens (Smith and Townsend 1907) Conn 1942

Type strain: ATCC 19358; DSMZ 30147; ICMP 5785; LMG 140; NCPPB 3001

3. Rhizobium rhizogenes (Riker et al. 1930) Young et al. 2001
= Agrobacterium rhizogenes (Riker et al. 1930) Conn 1942
Type strain: ATCC 11325; DSMZ 30148; ICMP 5794; LMG 150

4. Rhizobium rubi (Hildebrand 1940) Young et al. 2001
= Agrobacterium rubi (Hildebrand 1940) Starr and Weiss 1943
Type strain: ATCC 13335; CFBP 1317; ICMP 6428; LMG 156; NCPPB 1854

5. Rhizobium vitis (Ophel and Kerr 1990) Young et al. 2001

= Agrobacterium vitis Ophel and Kerr 1990
Type strain: ATCC 49767; ICMP 10752; LMG 8750; NCPPB 3554

Culture Collection Abbreviations:

ATCC American Type Culture Collection

CFBP Collection Frangaise de Bactéries Phytopathogenes

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen

ICMP International Collection of Micro-organisms from Plants

LMG Collection of the Laboratorium voor Microbiologie en Microbiele Genetica
NCPPB National Collection of Plant Pathogenic Bacteria

Box 5-2. Rhizobium spp. that include oncogenic strains

1984; Lindstrom et al., 1998) it seems likely that more examples will arise
of Agrobacterium spp. with nodulating capabilities and more strains with
oncogenic capabilities will be isolated from rhizobial species hitherto
associated with nodulating capabilities. These reports indicate functional
diversity that will be difficult, if not impossible, to express in formal no-
menclature, and will be misleading, if binomial nomenclature based on
pathogenicity and symbiosis is used.

6.2 Clinical ‘Agrobacterium’ species

Based on DNA-DNA reassociation, Popoff et al. (1984) demonstrated
that A. radiobacter is represented by nine genomic species, three of which
comprised non-oncogenic strains isolated from clinical human sources.
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These genomic characterizations are supported by a study using AFLP
(Mougel et al., 2002). More detailed studies are needed to investigate the
internal structure of this species, and to authenticate these species as for-
mal taxa. These species have an equal claim for recognition as Rhizobium
spp. and indicate a level of diversity in ‘Agrobacterium’ not easily recon-
ciled within present concepts of the genus or its species as being specifi-
cally associated with plant oncogenicity.

6.3 Soil agrobacteria

Interest in the distribution of agrobacteria from sources other than
plants has largely been confined to oncogenic plasmid-bearing strains in
soils (Sadowsky and Graham, 1998). However, avirulent agrobacterial
populations have long been known to be widely distributed in soils (Conn,
1942; Kerr, 1969a; Panagopoulos and Psallidas, 1973; Sule, 1978; Burr
et al., 1987; Sadowsky and Graham, 1998) but only recently have been the
subject of more detailed study. It is now clear that these act as recipients of
Ti- or Ri-plasmids resulting in oncogenic sub-populations that strains fluc-
tuate according to the presence or absence of susceptible host plants. Ap-
parently, some sub-populations, as Agrobacterium spp., are more likely to
act as recipients of oncogenic plasmids but they can also act as recipients
of Sym plasmids (Chen et al., 2000; Gao et al., 2001; Hungria et al., 2001;
Kwon et al., 2005; Velazquez et al., 2005; Wolde-Meskel et al., 2005).
Recognition that agrobacteria are sub-populations of a wider rhizobial
population has been slow and to some extent is inhibited by a divisive no-
menclature. All available evidence points to the identity of the rhizobia as
a diverse population of soil-inhabiting bacteria with the capacity to ex-
change plasmids that confer oncogenic and nodulating capabilities
(Segovia et al., 1991). It can also be expected that novel species of Rhizo-
bium will be identified that are uncharacteristic of the genus as it is identi-
fied as present. Salmassi et al. (2001) record the isolation and characterization
of Agrobacterium albertimagni, as an arsenite oxidizing bacterium. The
record of a sulfur-oxidizing chemolithoautotrophic Mesorhizobium spp.
from legume rhizosphere soil (Ghosh and Roy, 2006) is an early indication
of greater phenotypic diversity in the rhizobia.
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7 REVISION OF AGROBACTERIUM NOMENCLATURE

7.1 Why is the revision of Agrobacterium nomenclature
controversial?

Following the proposal of Young et al. (2001), Farrand et al. (2003) re-
sponded in a note co-signed by 83 individuals, objecting to inclusion of
Agrobacterium spp. in Rhizobium. Farrand et al. (2003) argued that Young
et al. (2001) misinterpreted earlier data, and that data not considered by
them were adequate support for continued recognition of Agrobacterium as
a distinct genus. Concerns indicated by Farrand et al. (2003) have already
been addressed (Young et al., 2003), though they may not have been satis-
fied. Agrobacterium nomenclature remains in vogue, especially in the
large literature of biotechnical reports of plant transformation, a field in
which oncogenic Agrobacterium plays a major part. It continues to be used
in reports specifically discussing the characteristics of the oncogenic
pathogens. This is not unexpected because in most studies of this kind, bi-
nomial nomenclature is redundant; names being treated as special-purpose
nomenclature, with no requirement to indicate relationships to other taxa.
On the other hand, Rhizobium nomenclature encompassing Agrobacterium
is increasingly accepted for reporting ecological and taxonomic studies,
and for cataloguing culture collections (e.g. ATCC, DSMZ, ICMP, LMG).

Since the Approved Lists were published, all other genera containing
plant pathogenic species have been the subject of substantial revision. For
instance, plant pathogenic Pseudomonas spp. have been transferred to Aci-
dovorax, Burkholderia and Ralstonia. Erwinia spp. have been allocated to
Brenneria, Dickeya, Pantoea, Pectobacterium and Samsonia. Corynebac-
terium spp. have been transferred to Clavibacter, Curtobacterium and Leif-
sonia. The taxonomic basis of some of these proposals is questionable, yet
none has raised such a controversy as the proposal of Agrobacterium—
Rhizobium amalgamation. As indicated, there is little or no taxonomic data
to support Agrobacterium as a genus separate from Rhizobium. Why then,
has this proposal proved so controversial? Perhaps it arises from a misun-
derstanding of the nature of names in taxonomy, from over-emphasis given
to the particular implied characters of the two genera, and from a habit of
thought.
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7.1.1 Names are not descriptive

The tradition of proposing bacterial names that describe a significant
character of the taxon has generated a perception that names express a par-
ticular meaning and descriptive intention. Taken literally, the etymology of
the name ‘Rhizobium’ implies an association of the bacterium with plant
roots; however subsequent use has resulted in the name being applied to
nitrogen-fixing symbionts of legumes. The etymology of the name ‘Agro-
bacterium’ implies an association of the bacterium with soil, but subse-
quent use has resulted in the named being applied to oncogenic pathogens.
To apply the epithets ‘tumefaciens’ to strains inducing crown-gall and the
epithet ‘rhizogenes’ to strains that induce hairy root, and to refer all onco-
genic stains to ‘Agrobacterium’ would make common-sense if it were not
for the fact that binomial nomenclature has the intention of indicating a hi-
erarchy of natural relationships (Sneath, 1988; Goodfellow and O’Donnell,
1993).

Descriptive terms necessarily refer to one or a few characters, often
regulated by a few genes that may not be present in all members of a
taxon, especially after revision in classification (Young, 2000b; Young
et al., 2003). As taxa are redefined to include or exclude populations that
do not conform to all the characters of the original description, so names
lose their descriptive relevance (Young, 2001; Sneath, 2005). The etymol-
ogy of generic names Agrobacterium and Rhizobium is not indicative of
their current use, nor can the epithets fumefaciens and rhizogenes be ap-
plied descriptively to species.

7.1.2 Binomial names should indicate natural relationships

The task of modern systematics has been to determine natural relation-
ships that are indicated by application of binomial names. In cases where
genera have been divided, or species distributed into genera unfamiliar to a
scholar, the application of novel binomials has created little tension, as
when comprehensive revisions of Pseudomonas has resulted in transfer of
species to genera distributed across the Proteobacteria (Kersters et al.,
1996), or when plant pathogenic Corynebacterium spp. were transferred to
Clavibacter and Curtobacterium. However, in this particular case, two
genera with popular and long-standing names, Agrobacterium and Rhizo-
bium, have been amalgamated. This poses a burden on translation from the
old to the new nomenclature for those who have a developed familiarity
with Agrobacterium nomenclature, but it is not insuperable, and is unlikely
to pose difficulties for those who approach bacterial nomenclature for the
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first time. The reward is a nomenclature that allocates due weight to taxo-
nomic and pathogenic differences.

7.2 The status of Agrobacterium nomenclature

7.2.1 Species

Before 1981, application of Agrobacterium species names was univer-
sally applied to strains based on pathogenicity. Following publication of
nomenclature based on phenotypic species (Holmes and Roberts, 1981)
and support for this concept (Bradbury, 1986; Moore et al., 2001), species
circumscriptions could no longer be assumed. Application of names,
whether as references to pathogenic (Kersters and De Ley, 1984) or natural
(Holmes and Roberts, 1981; Bradbury, 1986; Young et al., 2005) species,
must always be made explicit.

The taxonomic literature contains nomenclature based on distinct
pathogenic characters (Jarvis et al., 1966; Sawada et al., 1993; Weibgen
et al., 1993; Bouzar, 1994; Broughton, 2003; Farrand et al., 2003; Weller
et al., 2004, and many recent reports of plant conjugation using the tu-
morigenic capabilities of agrobacterial strains carrying a Ti plasmid), as
well as nomenclature reflecting natural classification (Bradbury, 1986;
Nour et al., 1995; Rome et al., 1996; Tan et al., 1997; De Lajudie et al.,
1998a; 1998b; Moore et al., 2001; Young et al., 2001; Eardly et al., 2005;
Kwon et al., 2005; Young et al., 2005). Both forms of Agrobacterium no-
menclature are now used.

7.2.2 Genus

The genus Agrobacterium and its species are validly published. Amal-
gamation with the genus Rhizobium does not affect the validity of the ear-
lier nomenclature and the relevant nomenclature can still be used, although
the special purpose nature of the nomenclature should not be lost sight of.
A possible complication would only arise if in future a novel oncogenic
pathogen was proposed as an Agrobacterium sp. In such a case, as well as
a circumscription of the novel species, it might be required of proposers of
novel Agrobacterium species that they produce a circumscription to justify
Agrobacterium as a genus distinct from Rhizobium.
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7.2.3 Vernacular alternative

Alternative to using genus and species names as binomials for the
pathogens, which are both misleading and ambiguous, could be to use
vernacular names. Rather than applying Agrobacterium spp. epithets to
pathogenic strains in the sense proposed by Kersters and De Ley (1984),
‘Agrobacterium crown gall bacterium’ and ‘Agrobacterium hairy root bac-
terium’ could be terms used that accurately describe particular pathogens.

The term ‘agrobacteria’ can be used with little ambiguity to refer spe-
cifically to bacteria with oncogenic capability based on the expression of
Ti or Ri plasmids irrespective of taxon, in a way analogous to the applica-
tion of ‘rhizobia’. The Subcommittee on the Taxonomy of Agrobacterium
and Rhizobium of the International Committee on Systematics of Pro-
karyotes suggest that ‘.... the word rhizobium (plural rhizobia) can be used
as a common name for legume-nodulating, nitrogen-fixing bacteria irre-
spective of genus’ (Lindstrom and Martinez-Romero, 2005). The term
agrobacteria will need to be carefully applied in future if more widespread
examples are discovered of Agrobacterium species with legume-
nodulating, nitrogen-fixing capabilities, or of Rhizobium species with
oncogenic capabilities, or of ‘Agrobacterium’ species from other environ-
ments (Popoff et al., 1984).

8 RELATIONSHIP OF RHIZOBIUM TO OTHER
MEMBERS OF THE RHIZOBIACEAE

In the past, attempts to establish bacterial taxa above the level of genera
foundered on the lack of common characters for comparison. Conn (1938)
proposed the bacterial family, Rhizobiaceae, which originally included
Rhizobium, Chromobacterium and Alcaligenes. Subsequently it included
Agrobacterium and Rhizobium (Jordan and Allen, 1974), and Agrobacte-
rium, Rhizobium and Bradyrhizobium.

Most recently, genera included in the family Rhizobiaceae are Rhizo-
bium, Agrobacterium, Allorhizobium, Carbophilus, Chelatobacter, and
Ensifer. The family as now defined is a phenotypically heterogeneous as-
semblage of aerobic, Gram-negative rod-shaped bacteria and is based
solely on a 16S rRNA sequence analysis (Kuykendall, 2005). Young et al.
(2001) noted that Allorhizobium was proposed solely on the basis of a 16S
rDNA sequence comparison, but the analysis did not differentiate it from a
clade comprising R. galegae, R. huautlense, A. radiobacter, A. rubi, and
A. vitis. Willems et al. (2003) reported the synonymy of Ensifer and
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Sinorhizobium Chen et al. (1988) and proposed that the name Sinorhizo-
bium take priority although it was the later published name. Because the
stability of names depends on priority of publication, a central principle of
the International Code of Nomenclature of Prokaryotes (formerly the In-
ternational Code of Nomenclature of Bacteria — (Lapage et al., 1975;
1992), this proposal was not accepted by the Judicial Commission of the
International Committee on the Systematics of Prokaryotes (B. Tindall,
pers. comm.). Carbophilus Meyer et al. (1994), isolated from soil, is
strictly aerobic with facultative chemolithotrophic capacity. It does not fix
nitrogen (Meyer, 2005). Members of Chelatobacter are obligately aerobic,
nitrilotriacetate (NTA)-utilizing bacteria. The relationships of these genera
are likely to be modified by more detailed studies based on a wider selec-
tion of sequence data that include more representatives of related taxa.

As noted, caution is in order when classification is based solely on a
single sequence comparison because analyses give differing results de-
pending on the chosen algorithm and, most particularly, on the selection of
included sequences as shown by comparison of inferred phylogenies.
Strains representing Bartonella, Brucella, Blastobacter, Phyllobacterium
and Mesorhizobium have been reported as interspersed between the mem-
bers of the Rhizobiaceae (Young and Huakka, 1996; De Lajudie et al.,
1998; Young et al., 2001). Expanded studies can be expected to resolve
these anomalies.

9 OTHER ‘AGROBACTERIUM’ SPECIES

Based on phenotypic characterizations of bacteria isolated from marine
and brackish environments, Riiger and Hofle (1992) proposed new species,
Agrobacterium atlanticum and A. meteori, and reinstatement of A. ferrugi-
neum, A. gelatinovorum and A. stellulatum. A. atlanticum has since been
reclassified as Ruegeria atlantica, and A. stellulatum as Stappia stellulata
by Uchino et al. (1998), who also proposed that 4. meteori is a synonym of
A. atlanticum. A. ferrugineum has been reclassified as Pseudorhodobacter
ferrugineus by Uchino et al. (2002), and subsequently as Hoeflea marina
by Peix et al. (2005). 4. gelatinovorum has been reclassified as Ruegeria
gelatinovorans by Uchino et al. (1998), and subsequently as Thalassobius
gelatinovorus by Arahal et al. (2005).
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10 SUMMARY

For most of the history of the genus, the unusual symptoms, aetiology,
and genetics of pathogenicity shaped classification and nomenclature of
Agrobacterium spp. However, as now understood, the distribution, diver-
sity and systematics of these pathogenic bacteria is similar to those of
other bacteria. They are small but significant populations of the soil micro-
flora that comprise closely related bacteria with the capacity to exchange
characteristic plasmids that usually confer oncogenic capabilities affecting
plants, but can also form symbiotic nitrogen-fixing associations with leg-
ume plants. Clinical isolates have also been reported. The oncogenic spe-
cies are members of the genus Rhizobium, whose species, until now, have
largely been characterized on the basis of their symbiotic nitrogen-fixing
associations with legume plants. However, the present record of character-
ized species is strongly biased in favour of organisms of anthropocentric
interest and there is little basis for believing even that nitrogen-fixing or
oncogenic strains are the predominant representatives of species with
which they are associated; these nitrogen-fixing strains almost certainly
represent only a small part of the greater diversity of soil bacteria poten-
tially identifiable with this genus. The past literature that has separated
these similar bacteria into distinct taxa has been an obvious hindrance to
conceptualizing their ecology. If formal nomenclature is to serve the pur-
pose of indicating natural bacterial relationships then oncogenic strains
must be identified in Rhizobium. It can be expected that novel species of
Rhizobium will be identified that are uncharacteristic of the genus as now
understood, and in these circumstances, names established and maintained
as keys to characters such as tumorigenic capabilities or nitrogen fixation
can be expected only to become more confusing.
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Abstract. The biology of host recognition in Agrobacterium tumefaciens has set the tone
for host interactions and xenognosis for several decades, and the twists and turns of the dis-
coveries provide many valuable lessons and insights. From transposon mutagenesis ena-
bling discovery of the initial chemical exchanges to two-component signal transduction and
receptor identification, this organism continues to enrich our understanding of chemical
ecology and pathogenic strategies. The complexity of the host commitment and the intricate
nature of the evolved machinery remains awe inspiring. This system is now poised with the
necessary chemical and biological resources, for both host and parasite, to reveal the de-
tailed chemical biology that occurs within the host tissues. Here we review our current un-
derstanding of the signal exchanges, and highlight the many questions that remain to be
addressed. We use this perspective to set the stage for the rich chemical biology this organ-
ism continues to offer.
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1 INTRODUCTION

Transformation of plants by wild type strains of Agrobacterium tume-
faciens results from the transfer of the Ti plasmid’s T-DNA into host cells
where it is ultimately integrated into chromosomal DNA and expressed
(see other chapters in this volume). The virulence (vir) genes of the Ti
plasmid required for virulence (Klee et al., 1983; Stachel and Nester,
1986) encode, for example, proteins involved in the processing, transport
and ultimate integration of the T-DNA in the host (see other chapters). The
resultant ‘crown gall’ tumors potentially yield great benefits to the infect-
ing bacteria in the form of opines produced via enzymes encoded on the T-
DNA (De Greve et al., 1982), yet the process requires significant energy
expenditures by the bacterium and, accordingly, should be tightly regu-
lated. In agreement with this hypothesis is the finding that the virulence
genes are essentially silent unless the bacteria are exposed to a plant or
plant derived molecules (Stachel et al., 1985b; Stachel et al., 1986). Acti-
vation of the genes in response to the host or host derived signals was first
shown via experiments exploiting vir.:lacZ fusions (Stachel et al., 1985a),
and further experiments, importantly, showed that two virulence proteins
encoded on the Ti plasmid, VirA and VirG, were required for the host-
induced expression of the vir genes (Stachel and Zambryski, 1986; Eng-
strom et al., 1987; Winans et al., 1988).

Early studies of VirA and VirG demonstrated that they were related to
the just discovered class of bacterial regulatory ‘two component’ systems
(TCS) (Winans, 1991; Charles et al., 1992). TCS are comprised, mini-
mally, of a histidine autokinase (often called sensor kinase) that responds,
either directly or indirectly to environmental input, and a response regula-
tor that is phosphorylated by its cognate histidine kinase (Robinson et al.,
2000; Stock et al., 2000; West and Stock, 2001). Often, but not exclu-
sively, the response regulator controls transcription of sets of genes via
binding to specific regions of promoters and recruiting the RNA poly-
merase (Makino et al., 1993; Kenney et al., 1995). The phosphorylation
status of the response regulator, which can also be affected by phosphatase
activities of the sensor kinase as well as other proteins (Perego and Hoch,
1996), determines its activity. VirA is a membrane bound sensor kinase
that has a large periplasmic domain (Melchers et al., 1989b; Chang and
Winans, 1992), and VirG is the response regulator that binds to vir operon
promoters resulting in their activation (Jin et al., 1990; Charles et al.,
1992). Together, these proteins form the central control unit governing vir
gene expression, though their activity is modulated by a series of other
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proteins encoded on the chromosome, most notably ChvE, a periplasmic
protein with significant homology to periplasmic sugar binding proteins
from a variety of bacteria (Cangelosi et al., 1990).

As noted above, the vir genes are essentially silent unless the bacterium
is exposed to plants or plant derived molecules. Stachel et al (1985b) dem-
onstrated that a particular phenol, 3,5-dimethoxy acetophenone (acetosy-
ringone (AS)), isolated from medium in which plant roots or leaves had
been cultured, is capable of inducing expression of the vir genes as re-
ported by vir::lacZ expression. A wide variety of other related phenols
were shown to be vir gene inducers (Stachel et al., 1985b; Melchers et al.,
1989a; Duban et al., 1993; Lee, 1997; Peng et al., 1998), and the mecha-
nistic and biological significance of this diversity will be considered in de-
tail below. Soon after the discovery of the role played the phenols, several
other conditions were found to be critical for optimal induction — low pH,
low phosphate, temperature <30°C and sugars (Stachel et al., 1986;
Winans et al., 1988; Cangelosi et al., 1990; Chang and Winans, 1992) —
though phenols appear to be the only signal that is absolutely required. A
variety of studies indicate that the response to each of these conditions is
mediated by the VirA/VirG system, though in some cases they do so in
concert with other gene products (e.g. ChvE).

The objectives of this review are to examine the diversity of signals and
control mechanisms involved in vir gene expression from two different
perspectives. First, what, exactly, are the signals, how are they recognized
and what is the functional significance of the diversity? Second, how are
the diverse signals integrated by the recognition system(s) to control re-
sponse regulator activity? In relation to this question, we will explore the
possible role played by other control systems, as well as understand how
the induction of vir gene expression may have a more global (though pos-
sibly indirect) affect on bacterial gene expression in general.

2 SIGNAL DIVERSITY

2.1 Discovery of signals

The first demonstration of plant-induced vir gene expression came as a
result of the development of the Tn3HoHol transposon (Stachel et al.,
1985a). When inserted into an operon, in the correct orientation, the trans-
poson creates a transcriptional or translational fusion, and, thus, could be
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used to monitor expression of the operon. Cosmids carrying portions of the
vir region of the Ti plasmid were mutagenized with Tn3HoHol and then
moved into a strain carrying a wild type Ti plasmid. The fundamental ob-
servation was that the vast majority of these insertions were silent, but ac-
tivity was observed in response to co-cultivation of bacteria with plant
cells (Stachel et al., 1985a; Stachel et al., 1986). Quickly it became appar-
ent that conditioned medium from the cultured plant cells could induce
expression of the vir genes, and the role of phenols in this process was dis-
covered (Stachel et al., 1985b; Stachel et al., 1986). In these reports, the
diversity of phenols was noted, including the critical role of the hydroxyl
group and the ortho methoxy substituents (see below for more detail). Ad-
ditionally, Stachel et al. (1986) reported a distinct pH optimum, and above
pH 6.0, very little activity was observed. Intriguingly, low pH has a role in
both AS-independent expression of virG (Winans et al., 1988), as well as
in the VirA/VirG mediated control of phenol dependent vir gene expres-
sion (Melchers et al., 1989a). Examination of factors released by wheat
seedlings that could induce vir gene expression, as well as the characteri-
zation of Agrobacterium chromosomal mutants that were deficient in viru-
lence, lead to the discovery that certain monosaccharides could enhance
the vir inducing activity of the phenols through the activity of a periplas-
mic protein, ChvE, which has homology to many known bacterial perip-
lasmic sugar binding proteins (Cangelosi et al., 1990; Shimoda et al.,
1993). Here we examine the chemical features of the signals and what that
suggests about activity requirements, their location(s) in the host plant, and
the possible relevance of the chemical and spatial diversity of the signals.

2.2 Structural Class and diversity

Signaling in Agrobacterium pathogenesis is unique among TCS for
many reasons, but central among them is the inherent interplay between
the specificity and generality that forms our current understanding of sig-
naling function. The ability of Agrobacterium to recognize and respond to
seemingly all dicotyledonous plants must underpin the success of this
multi-host pathogen. Consistent with this hypothesis, the VirA/VirG sys-
tem responds to four distinct classes of molecular signals — phenols, sug-
ars, phosphate and H" — and the magnitude of the response depends on
integration across many of the inputs. For example, while the phenol is
necessary and sufficient for VirA/VirG activation, both the sensitivity and
the maximal response to the phenol are significantly enhanced in the pres-
ence of sugar and low pH (Chang and Winans, 1992).
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Even more mechanistically interesting are the broad structural require-
ments within many of these molecular classes. Even though the sugar
response requires reducing hexoses, several of the hexose diastereomers
mediate similar responses. Even more remarkable, almost 70 different
phenols have been reported to be active inducers (Palmer et al., 2004).
While ortho-methoxy substituents do enhance activity, many other substi-
tutions on the ring are compatible with the inducing activity. Therefore,
not only is the response to many different classes of signal molecules a
hallmark of Agrobacterium pathogenicity, but within each structural class,
a broad range of structures can be accommodated to mediate the response.

2.3 Signal landscape

As described above, the host-sensing system of Agrobacterium recog-
nizes and integrates at least 4 different signals, raising the critical question
of why such a complex recognition landscape may have evolved. A logical
hypothesis is that the presence of all the signals at some specific location,
and/or developmental state, indicates an organ, tissue or cell type that is
maximally susceptible to the pathogen. Interestingly, little is known about
the specifics of this ‘signal landscape’ in the plants and how it might
change during, for example, development, environmental stress or infec-
tion by Agrobacterium or by other pathogens. We do know that, for exam-
ple, root exudates, conditioned culture medium and extracts of seedlings
and plants are sources of vir inducing signals. Yet thorough qualitative and
quantitative information is surprisingly scarce. An example of what might
be occurring in relation to the vir inducing phenols is reflected in the com-
position of lignin during development of some plants. In many cases, the
relative ratio of monomethoxy- (guaicyl) vs dimethoxy- (syringyl) phenols
found in lignin varies significantly within different developmental stages
of the plant (Dixon et al., 2001). This diversity is likely to reflect the avail-
ability of the phenolic monomers that are used in the biosynthesis of this
polymer rather than post-polymerization modification of the constituents.
The observation that the monomethoxyphenols are less efficient inducers
of vir induction than the dimethoxy derivatives (Melchers et al., 1989a;
Duban et al., 1993) suggests that different regions or cell types in the plant
are likely to present different inducing environments as they relate to phe-
nols. It is also likely that similar variation in the amounts and/or types of
available sugars varies significantly throughout the plant.

Wounds on host plants are common sites of transformation by 4. fume-
faciens. While the wound may simply be a ‘portal of entry’, other specific
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processes may occur at the wound site and facilitate transformation
(Braun, 1952). Identification of the vir inducing signals described above
has provided one likely explanation for the importance of the wound site:
high activity of the phenylpropanoid pathway, low pH, and sugars associ-
ated with cell wall synthesis are routinely associated with wound repair
(Matsuda et al., 2003). Even at this most widely hypothesized source, the
actual distribution of the signal molecules is not known. For example, are
all wounds equal in their capacity to produce quantities (and types) of phe-
nols and sugars; are they sufficiently acidified to efficiently induce vir
gene expression? While the wound site is of obvious importance in vir
gene induction and tumorigenesis, two studies have established that trans-
formation can occur in unwounded tobacco seedlings and in one case, vir
gene expression could be observed in the bacteria in the absence of
wounding (Escudero and Hohn, 1997; Brencic et al., 2005). These obser-
vations raise important questions concerning the infection process and the
role of wounding. What is the relative efficiency of vir induction, for ex-
ample, at wounded vs. non-wounded tissues of the same tissue type? How
does the signal landscape differ in these two cases? And, importantly, is
the efficiency of transformation the same or different at such sites and is
this efficiency related only to vir induction? Answering these questions
will provide not only information about the specifics of vir induction, but
also let us determine whether the signal landscape is monitored by the bac-
terium in order to provide information about the competence of the plant
cells for transformation.

3 SIGNAL RECOGNITION, INTEGRATION
AND TRANSMISSION

3.1 Signal recognition

As noted above, numerous signals regulate the VirA/VirG system.
While the identification of host signals involved in controlling pathogene-
sis has been accomplished, only in one case — the sugars — is there good
evidence for the means by which the signal is recognized. The physical ba-
sis of signal perception, integration and transmission will be impossible to
understand if the sites of signal perception are not defined. Here we will
review the progress towards identifying specific regions of the VirA/VirG
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control system that are involved in signal recognition and the means by
which physical proof of this might be accomplished.

3.1.1 Phenols

Biochemical evidence now exists for the interaction of the inducing
phenols with a receptor. The chirality of the para-substituent is critical for
activity (Campbell et al., 2000); consistent with the three dimensional
structure being recognized by a “receptor” and necessary for function. The
ortho-methoxy groups and para-substituents all potentially contribute to
binding affinity. On the basis of the broad structural and physical attributes
of the phenols necessary for induction and the general correlation with
phenol pKa, a ‘proton transfer model’ of signal recognition and receptor
activation has been put forward (Palmer et al., 2004). This model holds
that activation involves donation of a proton to a basic site on the receptor,
initiating allosteric changes and activation via the ultimate phosphotransfer
to VirG.

While the chemistry of the inducing phenols has led to models suggest-
ing particular features of a receptor as described above, there remains no
evidence for a physical interaction between these compounds and any of
the components of the VirA/VirG system. Affinity labeling and affinity
chromatography protocols identified several proteins in Agrobacterium
that can interact with phenols (Lee et al., 1992; Dye and Delmotte, 1997),
but VirA was not amongst them, nor is there evidence that the identified
phenol binding proteins are required for vir induction. Despite this paucity
of physical evidence, genetic evidence strongly suggests that VirA is, in-
deed, the phenol perceiving element. The clearest genetic evidence comes
from studies in which a phenol responsive VirA/VirG mediated signal
transduction system could be reconstructed in E. coli (Lohrke et al., 2001).
To be successful, the RpoA alpha-subunit of RNA polymerase from A. fu-
mefaciens had to be present in E. coli as well as VirA and VirG — VirG-P
apparently requires RpoA to initiate transcription at the vir promoter
(Lohrke et al., 1999).

Strong evidence now exists that phenol perception can be moderated by
a variety of factors that are not part of the phenol binding site. One exam-
ple is mutations in the receiver domain of VirA that have been reported to
broaden the range of phenols capable of activating vir gene transcription,
despite the fact that this domain is not necessary for the phenol response
(Chang et al., 1996). A similar case is seen in the capacity to recognize
sugars via ChvE (see below) and alter phenol specificity (Peng et al., 1998).
In each of these cases, one could envision a binding site, or ‘activation
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energy’, necessary for phenol mediated signaling being altered as a result
of changes in the VirA conformation. Yet another case is the report of mu-
tations in A. tumefaciens that alter sensitivity to phenols but that do not
map to the Ti plasmid or vird (Campbell et al., 2000). The genes responsi-
ble for this phenotype have, however, not been isolated. Thus, the picture
of how phenols are perceived by A. tumefaciens is not clear and remains a
fundamental goal of current research.

3.1.2 Sugars

The sugar environment is critical in terms of vir gene activation
through the VirA/VirG system, and two major types of responses to these
sugars have been noted. First, the sensitivity towards the inducing pheno-
lics is greatly increased in the presence of sugar. For example, the dose of
AS required for half-maximal vir inducing activity can be 20-50 fold lower
in the presence of ‘inducing’ sugars (Cangelosi et al., 1990; Shimoda et al.,
1990). Second, the maximal level of vir gene induction in response to phe-
nols is 10-20 fold higher in the presence of such sugars. Both of these phe-
notypes require the presence of ChvE, a chromosomally encoded protein,
as well as VirA and VirG. ChvE is an abundant periplasmic protein and
most homologous to a series of periplasmic sugar-binding proteins that are
involved in sugar transport (via ABC transporters) and chemotaxis to sug-
ars. Of these, ChvE is most similar to the ribose-binding protein (RBP) of
E. coli (Gao et al., 2006). X-ray crystal derived structures of several such
proteins, in the presence or absence of sugars, has revealed the sugar bind-
ing site (Ricagno et al., 2006; Tremblay et al., 2006). When the ChvE se-
quence is modeled via threading onto this structure, the sugar-binding site
is apparent (Gao and Lynn, 2005). Genetic and physical analysis of ChvE
and its interaction with VirA remains critical to an understanding of how
this interaction is transmitted through the inner membrane to regulate phe-
nol perception. Early models of this transfer of information are just now
emerging through investigations of different alleles of VirA (Gao and
Lynn, 2007).

3.1.3 pH

A mildly acidic pH (optimum pH 5.5) has a marked affect on vir gene
expression and does so through several mechanisms. virG expression is in-
duced by low pH through activities on the “P2” portion of the virG pro-
moter, and this regulation is independent of VirA (Mantis and Winans,
1992; Chang and Winans, 1996). The means by which regulation is
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controlled is not known, though one possibility is via the ChvG/Chvl two
component system which appears to be involved in the regulation of nu-
merous genes via acidic pH (Li et al., 2002). The sensor kinase ChvG is
required for this regulation, but the means by which it is responding to pH
is unknown. Beyond its affects on virG expression, low pH affects vir gene
expression through VirA. Expression of virG from promoters (Pj,. or Pnys)
that are not sensitive to pH results in Agrobacterium strains that remain pH
sensitive (Chang and Winans, 1996; Gao and Lynn, 2005): 10-20 fold in-
crease in the expression of VirA dependent vir-reporter fusions occur at
pH 5.5 in comparison to pH 7.0. The genetic basis of this regulation is
complex and involves both the periplasmic domain of VirA and ChvE
(Gao and Lynn, 2005). When ChvE is absent, the VirA/VirG system is
responsive to phenols but, neither sugar or pH (pHS5-7) affect the that
response (Gao and Lynn, 2005). Additionally, a large deletion of the perip-
lasmic domain (Melchers et al., 1989b) or small insertions at numerous
locations across the periplasmic domain (Nair GR and Binns AN, unpub-
lished), results in the capacity of those forms of VirA to support vir gene
expression at pH 7. An important interpretation of these results is that
pHS5.5, along with ChvE, is required to relieve a repressive influence of the
periplasmic domain of VirA. Intriguingly, two mutant forms of VirA—
VirA®**>7 and VirA®™" result in strains that respond poorly if at all to
sugar, but continue to exhibit pH regulation, thereby uncoupling these
activities (Gao and Lynn, 2005).

3.2 Signal integration and transmission

3.2.1 HK/RR structures and transmission

As shown in Figure 6-1, the structures from several histidine kinases
(HK) and response regulators (RR) have been reported recently (Robinson
et al., 2000; Stock et al., 2000; West and Stock, 2001). The data suggest
two conserved domains in the HKs: the dimerization domain, a four-helix
bundle containing the conserved histidine reside, and the ATP-binding
phosphotransfer domain. The RRs contain a five strand o/f fold with the
conserved aspartate residue located in an acidic pocket (Figure 6-1b)
(Robinson et al., 2003). Recently, the crystal structure of the HK from
Thermotoga maritima was solved (Figure 6-1a) (Marina et al., 2005), po-
sitioning each domain and limiting the possibilities for inter-domain
phosphotransfer as well as the inter-molecular association of HK and RR
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proteins. Both HK and RR are generally highly conserved in primary se-
quence, and yet the real power of the TCSs resides in their broad scope and
utility. From nutrients such as amino acids, monosaccharides and oxygen
to osmoregulation, pathogenicity and cell density, bacteria rely on signal
perception and functional integration through these elements. Most of the
signal sensing domains reside at the N terminus of HK (in cis) and regulate
HK activity intramolecularly. An example is the heme-binding oxygen
sensing PAS domain in FixL of Bradyrhizobium japonicum (Figure 6-1c¢)
(Gong et al., 1998). The HK activity turns ‘ON’ without oxygen binding to
the sensing domain, and turns ‘OFF’ when oxygen binds. On the other
hand, some of the HKs have the signal sensing domain separated, in frans,
and regulate kinase activity intermolecularly. The most well-known exam-
ple is the signal sensing domains of E. coli chemotaxis histidine protein
kinase CheA (Falke and Hazelbauer, 2001; Wadhams and Armitage, 2004).

Figure 6-1. Structures of some functional and regulatory domains of TCS. (a) Crystal struc-
ture of the Thermotoga maritima HK0853 showing a dimer of HK0853 with each subunit
containing dimerization and ATP-binding domains. (b) Crystal structure of the response
regulator DrrB of T. maritima with the receiver domain colored in blue and yellow, the
conserved Asp residue in red, and the DNA binding domain in gray. (c) The crystal struc-
ture of the PAS domain of Bradyrhizobium japonicum oxygen sensing protein FixL. The
bound heme cofactor is shown as a ball-and-stick representation. (d) NMR structure of a
HAMP domain of Af1503 from Archaeoglobus fulgidus. The dimeric domain maintains a
coiled-coil structure.
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CheA responds to various chemoattractants by coordinating with different
transmembrane signal binding proteins, for example Tar for aspartate sens-
ing, Trg for ribose and galactose sensing, and Tap for dipeptide sensing.
Since the signal sensing domain controls the conserved kinase activity,
understanding the signal sensing domain structure becomes critical to elu-
cidating the regulation mechanisms.

Two of the most commonly seen domains in the signal sensing region
of two-component systems are the PAS (Per, ARNT, Sim) and the HAMP
(histidine kinases, adenylyl cyclases, methyl-binding proteins and phos-
phatases’) domains (Ponting and Aravind, 1997; Aravind and Ponting,
1999; Williams and Stewart, 1999). In addition to the oxygen binding PAS
domain of FixL (Figure 6-Ic), B. subtilis KinA, B. bronchiseptica BvgS,
E. coli ArcB and NtrB all contain one or more PAS domains, but few of
their signals have been identified (Ponting and Aravind, 1997). The
HAMP domain, which is ~50aa in length, is also observed in histidine
kinases and methyl-accepting proteins (Aravind and Ponting, 1999;
Williams and Stewart, 1999). This domain usually presents as a linkage
between the signal perception region and the kinase domain, and has a
coiled-coil like structure (Figure 6-1d) with both rotation and piston mo-
tions possible for signal transmission (Ottemann et al., 1999; Hulko et al.,
2006).

3.2.2 Model for signal integration in VirA/VirG

While several complex phosphorelay systems exist, including sporula-
tion in Bacillus subtilis and osmosensing in Saccaromyces cerevisiae, and
rely on more than one pair of HK/RR for signal transmission (Varughese,
2002; Stephenson and Lewis, 2005), the basic chemical phosphotransfer
steps are expected to provide critical points for the regulation signal input.
At this point, studies of the signal-mediated kinase activity have been lim-
ited by knowledge of the signal. In contrast, the signals for the VirA/VirG
system in Agrobacterium tumefaciens are well characterized, and the ac-
cumulated evidence points toward specific domains responsible for signal
sensing (Chang and Winans, 1992). The limitation in the VirA/VirG sys-
tem is how multiple input domains, the periplasmic domain responsible for
pH and monosaccharide sensing, the cytoplasmic linker domain for phenol
signaling, and the receiver domain, which is highly homologous with the
dimerization domain of most response regulators, all function coopera-
tively to optimize output.



232 Yi-Han Lin, Andrew N. Binns and David G. Lynn

These cooperative functions certainly appear intricate and tightly inte-
grated. As mentioned above, the presence of sugar and low pH not only in-
crease the sensitivity of the system for the phenol but also increase the
level of the response. The previously assigned repressive role of the re-
ceiver domain (Chang et al., 1996) now appears to be a function of the
cytosolic VirG concentration; at low VirG levels the receiver domain func-
tions as an activator (Fang F, Lynn DG, Binns AN, Wise AA, submitted).
As discussed above, there has been significant debate as to whether auxil-
iary proteins are responsible for phenol binding, similar to those seen for
ChvE and sugar binding (Lee et al., 1992; Lee et al., 1995, 1996; Campbell
et al., 2000; Lohrke et al., 2001; Joubert et al., 2002), and a precise role for
these proteins has yet to be assigned.

Recently predicted secondary structure analyses of the linker domain
finds homology with GAF domains (Figure 6-2) (Gao and Lynn, 2007).
Like the PAS domains, the (cGMP-specific and -stimulated phosphodi-
esterase, Anabaena adenylate cyclase, and E. coli FhlA) GAF domain is a
small molecule binding element which usually localizes at the N terminus
of functional proteins, including histidine kinases (Aravind and Ponting,
1997; Ho et al., 2000). These elements appear to regulate functional activity

Figure 6-2. Alignment of VirA linker with known GAF structures. Sequence alignment is
from PFAM database and refined based on structures (protein data bank ID: IMCO, 1YKD,
1VHM and 1F5M). H and E represent a-helices and B-strands observed in the structure, re-
spectively. The secondary structure of VirA linker was predicted by SAM-T02 method.
Predicted o-helices and B-strands are marked as cylinders and arrows. The dotted arrow in-
dicates a B-strand but not conserved among GAF structures. Residues with remote homol-
ogy were colored as the following: blue, hydrophobic and aromatic residues (L, I, V, M, C,
A, F, W); red, charged residues (D, E, K, R); orange, G; yellow, P; green, (S, T, N, Q). He-
lix C refers to the region of al and a2, while helix D is a4.
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by small molecule binding, however, the mechanism of regulation remains
unclear. The VirA linker domain regulates the kinase activity upon phenol
binding, and the signal transmission is proposed to be through two amphi-
pathic helixes, helix C — located at the N terminus of the linker domain
connected to TM2, and helix D — located at the C terminus of the linker
domain and connected to K domain (Figure 6-2). These helices organize in
an anti-parallel dimer in the GAF structural predictions.

Fusing a GCN4 helix at the N terminus of either linker helix success-
fully ‘ratchets ON’ kinase activity in the absence of phenols (Figure 6-3)
(Wang et al., 2002). GCN4 provides a strong leucine-zipper homo-dimeri-
zation interface, so that fusing GCN4 in front of the amphipathic helix C

Figure 6-3. N’-fused GCN4 leucine zipper of helix C/D of the linker domain. (a) The hep-
tad repeats registry of LZ(0/3/4) chimeras. Fused at aa294 is the helix C fusion (LZ-LKR),
while fusion made at aa426 is the helix D fusion (LZ-KR). LZ residues are shown in blue,
the inserting amino acids between LZ and VirA are in red, and VirA sequence in black. (b)
B-galactosidase activity of different LZ-LKR (helix C) fusions. G665D is a constitutive on
mutant of VirA, using this high activity mutant simplified the activity measurement. (c) -
galactosidase activity of different LZ-KR (helix D) fusions with ON mutant also at G665D
(see Gao and Lynn, 2007).
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or D, with different amino acid insertions at the fusion point, could change
the registry of the heptad repeats of each helix (Figure 6-3a), mimicking a
rotational motion of the coiled-coil. Successfully engineering the kinase
locked in ‘ON’ or ‘OFF’ positions by GCN4 is consistent with a model in
which phenol binding induces a rotational motion, a motion proposed in
other signaling events (Kwon et al., 2003; Hulko et al., 2006), and this in-
formation is propagated through a four-helix bundle model for signal
transmission to the kinase (Figure 6-4) (Gao and Lynn, 2007). In the ab-
sence of phenol, VirA is at the ‘OFF’ state; upon phenol binding, the rota-
tion of the helices switch the protein to the ‘ON’ state. In this model, the
sugar and pH sensed by the periplasmic domain would effectively fine-
tune the four-helix bundle orientation, and recent mutagenesis studies have
argued this occurs through a piston motion to lower rotational barriers and
enhance the maximal activity (Gao and Lynn, 2007).

Figure 6-4. Signal integration and transduction of VirA linker. A central four-helix bundle
formed by Helix-C and D (a1l and a4 in predicted GAF structure) is critical for both perip-
lasmic and cytoplasmic signaling. Helix-D is directly connected to the histidine containing
helix of kinase and the rotational motion modulates the phophosrylation of the histidine
residue (pentagon). Phenol perception by the linker domain is postulated to initiate the rota-
tion within the four-helix bundle. The periplasmic sensing of pH/sugar is proposed to in-
duce a sliding of the signaling helices, thus enhancing the phenol response.

The secondary structure predictions and the crystal structure of the his-
tidine kinase of Thermotoga maratima (Marina et al., 2005) suggest that
Helix D is directly connected to the major helix of the K domain and rota-
tion may well position the critical histidine for phosphorylation. Like other
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kinases, the VirA dimer appears to mediate phosphotransfer intermolecu-
larly between the two subunits of this dimer (Pan et al., 1993; Brencic
et al., 2004; Wise et al., 2005), arguing that both kinase and linker re-
gions exist as a four-helix bundle. Although mutageneses studies have
identified several residues which abolish phenol sensing and support this
model (Toyoda-Yamamoto et al., 2000), acquiring physical evidence for
the rotational motion of the four-helix bundles, in both the linker and the
kinase, stands as the critical challenge for future experiments.

Unlike other histidine kinases, VirA maintains an extra receiver domain
at its C terminus. When tested in otherwise wild type strains, this domain
is required for phenol mediated activation in the absence of sugar, and is
critical for maximal activation by phenols in the presence of sugar (Fang F,
Lynn DG, Binns AN, Wise, AA, submitted). Earlier studies indicating that
the receiver domain was repressive were all done in the presence of consti-
tutively expressed VirG (Chang et al., 1996), further enriching our under-
standing of the role played be the receiver. Moreover, the homology of the
VirA receiver domain with the N-terminal of VirG has suggested that
phosphorylation at D766 may be critical to this regulatory activity, but
in vivo phosphorylation analysis suggested that the receiver is not phos-
phorylated at an aspartic acid residue. It may well be that the R domain
functions as a guide for VirG phosphorylation at low VirG concentrations
and this function is disrupted as the VirG concentration is elevated. Accord-
ingly, the physiological significance of the regulatory role of the receiver
domain is just now emerging.

In contrast to the R domain, VirG is readily phosphorylated in in vivo
experiments (Mukhopadhyay et al., 2004). These experiments suggest that
the accumulation of phosphate on VirA occurs in the absence of phenol,
and that phosphoryltransfer to VirG takes place when phenol is added.
Moreover, the conserved aspartate at position 52 directly accepts the phos-
phate from VirA (Jin et al., 1990). The molecular mechanism of switching
VirG ‘ON’ was deconvoluted with two AS-independent alleles, 177V/
D52E and N54D (Scheeren-Groot et al., 1994; Gubba et al., 2005; Gao
et al., 2006). An ‘aromatic switch’ mechanism for response regulator
dimerization was proposed for VirG (Gao et al., 2006), but how this VirG
phosphorylation is regulated by the extra R domain in VirA, and the
physiological significance of the VirG concentration difference has not
been resolved.
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4 SUMMARY

Taken together, the VirA/VirG system presents a model for our under-
standing of pathogenesis signaling and highlights the highly modular pro-
tein nature of TCS. That said, major questions remain as to how the signals
are actually perceived and how the information is integrated and transmit-
ted to output. Maybe even more important are how these precise signaling
networks exploit the biological matrix in which pathogenesis has evolved.
While we know the signals and the protein components involved in signal
transmission, the signaling landscape within the host and the regulation
that enables Agrobacterium tumefaciens to function as a successful multi-
host pathogen is only now emerging. We hope that this review sets these
questions in clear contrast for those designing experiments to resolve the
critical chemical events occurring at the host/pathogen interface.
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Abstract. Physical association with host plant tissue is a prerequisite to Agrobacterium tu-
mefaciens infection and subsequent disease. Mechanisms of tissue adherence have been ex-
tensively studied in mammalian pathogens, but less so in plant-associated bacteria. Cells of
A. tumefaciens often attach to plant tissue by a single pole. In the appropriate environment,
these attached bacteria eventually develop into multicellular assemblies called biofilms,
enmeshed within exopolymeric material produced by the bacteria and possibly the plant
host. It remains unclear whether all modes of plant attachment can lead to interkingdom
gene transfer, or whether the conformation of the infecting agrobacterial population influ-
ences this process. A two-step model was proposed in which the bacterium initially attaches
reversibly by way of interactions between a bacterial adhesin structure(s) and a plant recep-
tor(s), followed by a more tenacious attachment coincident with production of cellulose fi-
brils. This adherence model, while potentially still valid, remains largely untested. Possible
A. tumefaciens adherence functions, including lipopolysaccharides and cyclic $-1,2-glucans
have been identified, but none has been definitively shown to mediate productive attach-
ment to plants. Similarly, despite some promising leads, no confirmed plant receptor candi-
dates have been identified. A. tumefaciens forms biofilms on a variety of surfaces including
but not restricted to plant tissues. Studies of biofilm formation by 4. tumefaciens on model
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surfaces have revealed a degree of structural and functional overlap with plant association,
including several common cell surface structures and key regulatory pathways.

1 INTRODUCTION

Agrobacterium tumefaciens attaches to plant tissues during initial
stages of crown gall pathogenesis and this physical interaction is required
for subsequent DNA transfer (Lippincott and Lippincott, 1969). Adherent
A. tumefaciens can accumulate on these plant tissue surfaces to form ag-
gregates and biofilms, and similarly adhere to abiotic surfaces in the terres-
trial environment (Figure 7-1). This chapter will address the process of at-
tachment and subsequent biofilm formation by 4. tumefaciens, examine
the molecular requirements for these processes, and consider their impact
on plant disease.

Figure 7-1. Plant tissue attachment and biofilm formation. Adherent A. tumefaciens C58
harboring GFP on Arabidopsis thaliana WS seedling root. (a) Bright field microscopy, (b)
Fluorescence microscopy, bacteria are pseudocolored red. Images captured on a Deltavision
deconvolution microscope.

Bacterial attachment to host tissues is an obligatory first step to disease
progression for many plant and animal pathogens. Host binding and recog-
nition has been intensively explored for several mammalian pathogens. In
these systems, attachment can be highly specific, often mediated through
receptors that decorate the exterior of host cells and the extracellular ma-
trix (Boyle and Finlay, 2003; Pizarro-Cerda and Cossart, 2006). For sev-
eral well-studied systems, such as enteropathogenic Escherichia coli
(EPEC), host association is comprised of multiple steps, initiating with
surface engagement and followed by a more intimate interaction in which
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receptors on the target cells are recognized and tightly complexed
(Nougayrede et al., 2003). Binding of these receptors by infecting patho-
gens often causes profound alterations in cytoskeletal elements, disruption
of internal signaling pathways or uptake of the bacteria into the target
cells. Adhesins are cell surface structures produced by the infecting bacte-
ria that engage host cells, often via specific receptors, and promote inti-
mate association of the pathogen with its target cells. In mammalian
pathogens, adhesins are strictly defined as those cell surface structures in-
cluding pili, flagella, or other surface proteins, that directly engage host re-
ceptors (Nougayrede et al., 2003). Other surface structures may act to
promote physical interaction between microbes and their hosts, but are
considered to be accessory adherence functions.

Colonization of host tissue may lead to establishment of localized, ad-
herent populations that share many attributes with environmental biofilms,
sessile populations of bacteria, associated with the surface and with each
other through an extracellular matrix material usually produced by the bac-
teria themselves (Parsek and Fuqua, 2004). Several mammalian pathogens
clearly proceed through a biofilm state during disease progression (Parsek
and Singh, 2003). For example, uropathogenic E. coli (UPEC) can enter
into a persistent infective state in which they form dense biofilm-type
populations within cells that line the bladder (Justice et al., 2004). For
many other mammalian pathogens, the link between biofilm formation and
infection is less established, but the persistence of these microbes within
environmental reservoirs involves residence within biofilms.

In contrast to animal pathogens, far less is known regarding attachment
of plant pathogens to their hosts and the role of biofilm formation. Only a
few potential bacterial adhesins have been identified in plant-associated
bacteria, and even fewer have been functionally evaluated (Rojas et al.,
2002; Guilhabert and Kirkpatrick, 2005; Laus et al., 2006). In the associa-
tion of rhizobial species with legumes host specificity at the level of bacte-
rial attachment is mediated in part through plant-produced sugar-binding
lectins which presumably recognize the appropriate rhizobial symbiotic
partner (Hirsch et al., 2001). Plant lectins are likely common targets for
bacterial attachment, although no other plant attachment systems are
known to this level of detail. Furthermore, biofilm formation among plant-
associated bacteria, while a common observation in microscopic studies, is
only now being examined for its role in plant tissue interactions during
disease and symbiosis, and as a mechanism for persistence within envi-
ronmental reservoirs (Ramey et al., 2004a).
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1.1 A simple model for agrobacterial attachment to plants?

The attachment of Agrobacterium tumefaciens to plant tissues during
crown gall pathogenesis has been the subject of study for decades. Despite
years of work and an exquisite level of detail on plant-microbe signaling
and cross-kingdom DNA transfer, there is a very limited understanding of
the recruitment and attachment processes that bring forth A. tumefaciens
from the soil into contact with the plant to initiate pathogenesis. Further-
more, the structure and complexity of the agrobacterial population that
forms on plant tissues during benign and pathogenic interactions, and in
response to infected tissue, has never been systematically examined.

Studies of microbial surface interactions in many different environ-
ments have led to the concept that bacteria attach to abiotic surfaces in
two discrete stages, first via relatively weak interactions that comprise a
reversible stage, followed by a stronger, relatively irreversible stage
(Marshall et al., 1971; Fletcher, 1996). Reversible attachment of motile
bacteria in aqueous environments is often mediated by flagellar locomo-
tion overcoming repulsive forces at the surface. The irreversible stage of
attachment involves inhibition of motility and synthesis of extracellular
polymeric substances, including polysaccharide, protein and DNA that act
to hold the bacteria in place.

Matthysse (1983) proposed a dual-stage model for A. tumefaciens at-
tachment that shares some, but not all of the features of the general two-
step model. In this model, it was proposed that A. tumefaciens attached via
an interaction with plant cell receptors and bacterial adhesins. This stage
was considered reversible because cells could be removed from plant
tissues with washing or vortexing. Certain avirulent 4. tumefaciens mu-
tants were reported to be deficient specifically at the reversible stage of
attachment, lending support to the importance of this step. The second, ir-
reversible binding stage was proposed to be concomitant with synthesis of
cellulose fibrils by the bacteria, that appeared to be induced in response to
plant-released signals (Matthysse et al., 1981). Electron micrographs of
plant cell bound bacteria revealed the presence of cellulose fibrils, pre-
sumably anchoring cells to the infected tissue (Matthysse, 1983). Cellu-
lose-deficient A. tumefaciens mutants were somewhat attenuated for
virulence and are more readily washed from wound sites than the wild
type (Matthysse, 1983; Minnemeyer et al., 1991). The observation that these
mutants remained virulent was interpreted to indicate that the irreversible
stage of attachment was dispensable for pathogenesis, although whether
the virulence assays employed would reflect conditions in situ can be
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debated. It may be that irreversible attachment is required for virulence
under natural infection conditions or perhaps a subset of these conditions.

There is no reason to question the general framework of this two-step
attachment model, particularly given its facile similarity to the more gen-
erally supported two step models of bacterial sorption to surfaces. How-
ever, in the more than 20 years since the attachment model was proposed
for A. tumefaciens, the details that would validate and provide mechanistic
insights into this process have remained elusive. Despite some tantalizing
leads, the bacterial adhesins and attachment factors involved in the pre-
sumptive early interactions with plant receptors have not been definitively
identified, and the interpretation of mutant phenotypes that seemed defi-
cient at this stage are confounded by pleiotropic effects. The production of
cellulose fibrils following initial attachment, although an appealing obser-
vation, has not been substantiated by identification of relevant regulatory
pathways or by additional mechanistic insights. Meanwhile, the impor-
tance of cellulose in more general bacterial attachment and biofilm forma-
tion by diverse microbes has gained tremendous experimental support
(Romling, 2002). Substantial progress has been made in understanding
plant functions involved in interkingdom genetic exchange, most notably
through the use of Arabidopsis thaliana, but even here, the 4. tumefaciens
attachment receptor or receptors have not been identified (Zhu et al.,
2003). In short, our understanding of attachment processes leading to T-
DNA transfer and otherwise, remains at a relatively rudimentary level, and
this area warrants significant attention

2 PRESUMPTIVE ADHERENCE FACTORS

Many different approaches have been employed to identify 4. tumefa-
ciens functions required for plant attachment. Lippincott and Lippincott
(Lippincott and Lippincott, 1969) reasoned that lipopolysaccharide (LPS)
from A. tumefaciens would contact the plant surface, and evaluated the ef-
fect of adding purified LPS preparations during A. fumefaciens infection
on tumorigenesis (Lippincott and Lippincott, 1969; Whatley et al., 1976).
Other studies, including the analysis of the presumptive adhesin called rhi-
cadhesin, adopted a similar approach (Smit et al., 1989). Douglas et al.
(1982) identified an avirulent mutant in a gene they designated chAvB
(chromosomal virulence gene B), encoding a B-1,2-glucan biosynthetic
function, and subsequently concluded that it manifested an attachment de-
ficiency. Matthysse used binding of A. tumefaciens to carrot tissue culture
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cells as a direct attachment assay, and in so doing identified the Att genes
(Matthysse, 1987). More recently, A. tumefaciens mutants with deficien-
cies in attachment to model surfaces (PVC plastic and glass) have been
identified and subsequently screened for plant attachment deficiencies
(Ramey et al., 2004b). Although it is possible and perhaps likely that these
and similar approaches have identified some of the important adherence
functions, it remains unclear whether any of these are primary adhesins re-
sponsible for attachment processes that lead to T-DNA transfer (Table
7-1). Support of major roles in attachment for several of these identified
functions has diminished, complicated by complex phenotypes, or has
been refuted by more recent work.

2.1 Flagellar motility and chemotaxis

Passive deposition of bacteria onto root surfaces may foster limited
colonization, but this process is greatly enhanced by swimming, swarming
and gliding motility. Flagellar-based locomotion, including swimming and
swarming, is a well established factor in the colonization of plant tissues
by bacteria and aflagellate mutants often manifest deficiencies in attach-
ment processes (Burdman et al., 2000; Lugtenberg et al., 2002). In addi-
tion, flagella may also function as adhesins, directly contacting surfaces
and promoting cellular association. A. tumefaciens elaborates several fla-
gella, arranged circumthecally towards one pole of the cell, and exhibits
swimming, but not swarming motility (Kado, 1992). There are four differ-
ent presumptive flagellin genes, flaA, flaB, flaC and flaD in A. tumefaciens
C58 (Deakin et al., 1999). Nonmotile 4. tumefaciens transposon mutants
were deficient in root colonization (Shaw et al., 1991). Analysis of a
“bald” mutant, with defined deletions for three of the four flagellins
(AflaABC) revealed a modest deficiency in tumor size when manually in-
oculated into wounds on several different plant hosts (Chesnokova et al.,
1997). Aflagellate pseudomonads only reveal significant plant coloniza-
tion deficiencies when examined in competition with motile bacteria
(Lugtenberg et al., 2002). A. tumefaciens motility mutants have not been
examined using more quantitative assays or in competition, and it is un-
clear whether the manual inoculation virulence assays would reveal more
subtle attachment deficiencies.

Directed motility through chemotaxis and aerotaxis is also very likely
to play a role in plant colonization in the environment. A. tumefaciens is
reported to chemotax towards plant-released compounds including vir-
inducing phenolic compounds and opines (Ashby et al., 1988; Kim and
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Farrand, 1998). There are as many as 20 different methyl-accepting

chemotaxis protein (MCP) homologues annotated in the A. tumefaciens

C58 genome sequence suggesting diverse chemotactic behavior (Goodner
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et al., 2001; Wood et al., 2001). Chemotaxis mutants have not been thor-
oughly tested for plant interactions. Similar to other soil microbes, it seems
virtually certain that chemotaxis plays a role in recruiting agrobacteria
from the soil environment into the rhizosphere, and that these functions
may also have a more direct impact in surface colonization and perhaps at-
tachment.

2.2 Lipopolysaccharide (LPS)

Studies in the late 1960s and 1970s by Barbara and James Lippincott
and colleagues examined the effect of LPS preparations on crown gall tu-
morigenesis, using the rationale that externalized A. tumefaciens LPS
might be the molecule in most intimate contact with plant tissue during at-
tachment (Whatley et al., 1976). The recognized importance of LPS in
animal defense responses also provided significant precedence for this
work. Interestingly, crude envelope preparations and purified LPS from
virulent strains were effective at inhibiting tumor formation on pinto bean
leaves (Whatley et al., 1976). Similar preparations from at least some
avirulent 4. fumefaciens derivatives were noninhibitory. The interpretation
was that free LPS was binding to receptors on the plant surface, and thus
blocking binding of agrobacterial cells. Treatment with LPS was much less
effective when administered after 4. tumefaciens was provided a short pre-
binding period. These studies did not directly evaluate binding to the leaf
tissue, but rather measured binding indirectly as formation of tumors on
the infected tissue after seven days. Subsequent work has not further im-
plicated LPS as an important A. tumefaciens attachment factor, although
there is significant debate whether rhizobial LPS might function during
legume symbiosis (Noel and Duelli, 2000). It remains possible that LPS
plays a role in A. tumefaciens attachment. The preparations used in these
early studies were however very likely to have had impurities. Such impu-
rities, including abundant cellular components such as EF-Tu and even
LPS itself, are now known to elicit plant basal defense response in plants
and can effectively reduce tumorigenesis (Zipfel et al., 2006).

2.3 Rhicadhesin

A promising candidate for a bacterial adhesin involved in plant attach-
ment has been called rhicadhesin. Examination of the calcium (Ca™) de-
pendence of rhizobial attachment to pea root hairs led to the identification
of rhicadhesin, a small Ca""-binding protein, that could block root attach-



Agrobacterium-Host Attachment and Biofilm Formation 251

ment when added in semi-purified form to attachment assays (Smit et al.,
1989). Similar proteins have been reported for other members of the
Rhizobiaceae, including A. tumefaciens, but have not been identified out-
side of this group (Dardanelli et al., 2003). Rhicadhesin preparations from
A. tumefaciens and other rhizobia share the Ca™ -dependent ability to in-
hibit bacterial attachment to pea roots. An A. tumefaciens chvB mutant,
deficient for attachment and synthesis of B-1,2-glucans (see below), was
unable to synthesize detectable rhicadhesin, and addition of rhicadhesin
corrected its attachment deficiency, suggesting a connection between these
functions (Swart et al., 1993). Cell-surface Ca"™ along with rhicadhesin, is
released at pH < 6.5, and therefore rhicadhesin has been proposed to func-
tion in plant attachment specifically under non-acidic conditions (Swart
et al., 1993; Laus et al., 2006). These observations all are supportive of
rhicadhesin functioning to foster early stage plant interactions, but the ex-
periments rely on observations in which semi-purified protein is added to
plant binding assays.

Despite the availability of several rhizobial and agrobacterial genome
sequences, the gene(s) encoding rhicadhesin and its elaboration has not
been identified nor have rhicadhesin-deficient mutants been isolated.
Therefore the simple experiment of asking whether rhicadhesin is required
for productive plant attachment, has never been performed, and its true
role, if any, in attachment has never been confirmed. In promising recent
work, additional studies in the rhizobia have identified several secreted
Ca'"" binding proteins presumptively called Rap adhesins, one of which
may be rhicadhesin (Ausmees et al., 2001a; Russo et al., 2006). Several
Rap protein amino acid sequences were determined, but none of these
matched sequences in the A. tumefaciens C58 genome (Fuqua C, unpub-
lished data). It is unclear what role the presumptive rhicadhesin might play
in crown gall disease. Conditions known to induce the Vir regulon at
wounds sites include acidic pH, and these would apparently promote the
loss of rhicadhesin from the cell surface (Winans, 1992). It is possible that
rhicadhesin functions at attachment sites other than wounds. It was re-
cently shown that T-DNA transfer and subsequent opine production does
not require wounding (Brencic et al., 2005).

2.4 ChvA/B and cyclic p-1,2-glucans

In the early 80s Carl Douglas, Eugene Nester and colleagues developed
a plant attachment assay that utilized adherence to Zinnia leaf mesophyll
cells to screen a series of avirulent transposon mutants (Garfinkel and
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Nester, 1980; Douglas et al., 1982). A non-attaching mutant was isolated
with clearly diminished binding to Zinnia tissue relative to the parent
strain. Subsequent genetic mapping and sequence analysis revealed a
transposon insertion within a two gene operon designated chv4B (Douglas
et al., 1985; Zorreguieta et al., 1988). Many studies since this time have
repeatedly validated the avirulent, non-attaching phenotype of the 4. tume-
faciens chvAB mutant, both for T-DNA transfer to plants and engineered,
Agrobacterium-dependent DNA transfer to human tissue culture cells
(Swart et al., 1993; Kunik et al., 2001). The chvAB genes encode synthesis
and export of cyclic B-1,2-glucans in 4. tumefaciens (Puvanesarajah et al.,
1985; Cangelosi et al., 1989). This polysaccharide in 4. tumefaciens and in
numerous rhizobia can be periplasmic or secreted and is typically cyclized
with 17-40 sugar residues (Breedveld and Miller, 1994). Although the his-
torical pedigree of the ChvAB proteins and f-1,2-glucans linking virulence
and attachment in A. fumefaciens seems promising, a precise role for these
gene products in these processes has never been defined. Rather, the pri-
mary function ascribed to B-1,2-glucans is as periplasmic osmoregulators,
controlling the movement of water and protecting against osmotic shock
(Breedveld and Miller, 1998). The changes in periplasmic osmolarity lead
to a variety of pleiotropic effects in chvAB mutants including reduced
numbers of flagella, increased antibiotic sensitivity, differences in cell sur-
face proteins, and increased exopolysaccharide synthesis (Breedveld and
Miller, 1998). It is therefore difficult to distinguish between a direct role
for chvAB in plant association, or such significant alteration of cell surface
properties that mutants in these genes are dysfunctional in localization or
elaboration of other attachment factors, or simply elevated sensitivity to
the rhizosphere environment. The attachment deficiencies and the avirulent
phenotype, as well as several pleiotropic cell surface properties are how-
ever, reported to be corrected at lower temperatures (Bash and Matthysse,
2002). The chvB mutant does not produce the presumptive attachment pro-
tein rhicadhesin, perhaps due to osmotic stress, and is corrected for at-
tachment deficiencies by addition of exogenous rhicadhesin (Swart et al.,
1993). These observations and better evidence for the adherence function
of rhicadhesin, could clarify the underlying cause of the cAvAB mutant
phenotypes, although a conservative assessment at this juncture is that re-
duced attachment and avirulence are the indirect consequence of misregu-
lated osmolarity and resulting changes in cell surface properties.
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2.5 The attachment (Att) genes—not required for attachment?

Recognizing the limitations of assays that inferred attachment effi-
ciency through effects on virulence, Matthysse employed a painstaking
microscopic screening method to isolate mutants of A. tumefaciens with
decreased attachment to carrot tissue culture cells (Matthysse, 1987). Sev-
eral A. tumefaciens C58 transposon mutants that did not attach to carrot
cells were isolated and found to have insertions within a common EcoRI
restriction enzyme cleavage fragment of 12 kb. These attachment or Att
mutants were reported to be avirulent when manually inoculated onto
Bryophyllum (Kalanchoe) diagremontiana leaves. The attachment and
virulence deficiencies were complemented with a pair of overlapping cos-
mids from an 4. tumefaciens C58 genomic library (Matthysse et al., 1996;
Matthysse et al., 2000). Transposon insertions throughout these cosmids
abrogated complementation and allelic replacement mutants generated
with these insertions and by other means resulted in non-attaching, aviru-
lent A. tumefaciens mutants.

The DNA sequence of the 29 kilobases region spanned by these over-
lapping cosmids, and subsequently designated the Att region, revealed
genes with a wide range of predicted functions including an ABC-type
transporter system, polysaccharide synthesis and modification enzymes,
peptidases, Mg transporters and transcription regulators (Matthysse et al.,
1996; Matthysse et al., 2000). Mutations in most of the Att genes resulted
in loss of attachment and virulence, while consistent with earlier reports,
mutations in one subregion (atrd-attG), could be rescued by addition
of conditioned medium derived from A. tumefaciens-plant co-culture
(Matthysse, 1994). The attR gene was the most extensively studied att
gene, with the most consistent attachment defect (Matthysse and
McMabhan, 2001). The attR gene product is a predicted transacetylase and
was demonstrated to be required for the synthesis of an acidic polysaccha-
ride, consistent with a surface structure that might promote attachment
(Reuhs et al., 1997).

The concept of a large genetic cluster devoted to attachment was quite
intriguing, but it was difficult to envision how genes of such diverse pre-
dicted functions might all impinge upon the attachment process. The at-
tachment mutants described above were isolated from and characterized in
A. tumefaciens C58. The complete genome sequence of C58 revealed a
multipartite composition with a circular (2.84 Mb) and a linear chromo-
somes (2.07 Mb), the Ti plasmid pTiC58 (0.21 Mb), and another large
plasmid (0.54 Mb) pAtC58 (Goodner et al., 2001; Wood et al., 2001). The
genome sequence revealed that the Att gene cluster resides on pAtCSS,
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and that there are several apparent atf gene copies elsewhere in the genome
(e.g. attH). This was a puzzling result, as several earlier studies had sug-
gested that pAtCS58 was dispensable for virulence (Hooykaas et al., 1977;
Rosenberg and Huguet, 1984; Hynes et al., 1985). A recent study using
isogenic derivatives of C58 carefully examined the effect of this plasmid
on virulence and found that although it was not required, it did have a
modest positive impact on tumor size and induction of vir genes (Nair
et al., 2003). In this same study a targeted disruption of the a#/R gene on
pAtC58 did not influence virulence, and did not abolish the positive im-
pact of the pAtC58 on virulence and vir gene induction. It remains unclear
what gene(s) on pAtC58 is responsible for the enhanced vir regulon induc-
tion. These results strikingly contradict the earlier work on the att genes. If
pAtC58 is dispensable for virulence, an observation verified by several
labs in multiple publications, why do transposon insertions in the att genes
lead to avirulent and non-attaching mutants? Additionally, several pub-
lished studies suggested that the a##R mutant was avirulent and manifested
a strong attachment deficiency, while the more recent work found no viru-
lence role for attR (Matthysse and McMahan, 1998, 2001; Nair et al.,
2003).

Several other genes in the Att region, attJ and attKLM, are now known
to direct the degradation of acylhomoserine lactone (AHL) quorum sensing
signals and thereby modulate cell-cell signaling (so-called quorum-
quenching) (Zhang et al., 2002). AttM is a lactonase enzyme that cleaves
the lactone ring on the AHL signal molecule, Att] and AttK may assist in
further degradation, and AttJ is a transcriptional regulator of the a#tKLM
genes. Mutations in these A. tumefaciens genes had previously been re-
ported to result in avirulent, non-attaching derivatives (Matthysse et al.,
2000). There is no evidence linking the quorum sensing process in 4. fu-
mefaciens to plant attachment or virulence, and it is therefore difficult to
reconcile the now established biochemical activity of these proteins with
their previously proposed role in attachment.

The role of genes within the Att region in the process of attachment for
which they were named, now seems tenuous at best. It seems plausible that
some of the original transposon mutants might have generated dominant-
negative alleles that interfered with attachment and virulence. The number
of different Att mutant derivatives, the uniformity of the reported pheno-
types, and the effective complementation results reported with cosmids
and smaller plasmids however, make this possibility much less likely
(Matthysse et al., 1996; Matthysse et al., 2000). Perhaps more plausible is
the possibility that the C58 derivative in which these were first isolated



Agrobacterium-Host Attachment and Biofilm Formation 255

possessed a second site mutation, that indirectly affected the attachment
process, and that this was aggravated by the mutations in the Att region.
Either way, the observations that pAtC58 is dispensable for virulence and
manifests no attachment defect argues strongly that the Att genes are not
directly required for these processes. In the end, a comprehensive re-
analysis of the so-called att genes on pAtCS58, in a bona fide wild type C58
genetic background, is required in order to better elucidate a function for
these genes.

2.6 Synthesis of cellulose fibrils and irreversible attachment

The production of cellulose fibrils is often cited as the visual indication
that A. tumefaciens and other rhizobia have transitioned to the irreversible
stage of attachment (Matthysse and Kijne, 1998). Elaboration of these fi-
brils is observed to be induced during interaction with plant tissue surfaces
and cells. These fibrils are not observed in electron micrographs of cellu-
lose synthesis (Cel’) mutants (Matthysse et al., 1981). The Cel- mutants are
more easily washed from inoculation sites and exhibit attenuated viru-
lence, suggesting a role in adhesion. In 4. tumefaciens, cellulose produc-
tion requires genes encoded within the celABCG and celDE operons on the
C58 linear chromosome (Figure 7-2) (Matthysse et al., 1995b). Mutations
in celA, celB, celC, celD and celE abolish cellulose biosynthesis, while dis-
ruption of celG results in its overproduction (Matthysse et al., 2005).
Based largely on analysis of homologous systems, the Cel proteins are
thought to form a membrane-associated complex that directs cellulose syn-
thesis and export (Figure 7-2). CelA is a membrane-associated cellulose
synthase (CS) enzyme, utilizing the precursor UDP-glucose. Homologues
of CelB bind cyclic diguanosine monophosphate (c-di-GMP), an allosteric
regulator of CS activity (see below), and physically interact with CS in the
membrane (Romling, 2002). CelC is a secreted protein similar to endoglu-
canases, and CelDE are cytoplasmic proteins that may be required for lipid
carrier activity (Matthysse et al., 1995a). Regulation of cel gene expression
is not well understood, but recently a cellulose-overproducing mutant has
been identified with a lesion in a gene designated cell (cellulose synthesis
Inhibitor) encoding a MarR/ArsR type repressor protein (Matthysse et al.,
2005).

The CS activity of 4. tumefaciens is allosterically regulated by the in-
tracellular signal molecule c-di-GMP, which strongly stimulates cellulose
synthesis in cell extracts (Amikam and Benziman, 1989). Originally identi-
fied as an allosteric regulator of cellulose synthase in Gluconacetobacter
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xylinus, the role of c-di-GMP as a cellular signal is an emerging theme in
bacterial physiology (D'Argenio and Miller, 2004). Synthesis of ¢-di-GMP
is catalyzed by proteins with a so-called GGDEF domain (also called
DUF1), and conversely c-di-GMP turnover is mediated through proteins
that share the EAL signature motif (also called DUF2). The same proteins
may often contain both motifs (Paul et al., 2004). Bacterial genome se-
quencing has revealed a large number of GGDEF and EAL proteins in
bacteria, commonly multiple different derivatives encoded within the same
genome. The GGDEF and EAL domains appear to be highly modular and
are often associated with other recognized motifs involved in signal per-
ception, such as PAS and HAMP domains (Jenal, 2004). Although cellu-
lose synthesis is a confirmed target for c-di-GMP, there are clearly other
processes under its control. It is not known how multiple signaling systems
directing synthesis of the same compound, c-di-GMP, would impart spe-
cific responses. The current view is that GGDEF/EAL proteins provide
environmentally-responsive control over cell surface properties through
modulating cellular pools of c-di-GMP.

Cellulose
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Figure 7-2. Cellulose biosynthesis in 4. tumefaciens. Gene map of cellulose biosynthesis
operons, model of membrane-associated cellulose synthase complex, and a depiction of
c-di-GMP synthesis and turnover by GGDEF/EAL proteins.

Analysis of the 4. tumefaciens C58 genome reveals 31 gene products
with GGDEF domains, 16 of which also have EAL domains (Goodner
etal., 2001; Wood et al., 2001). It is clear that c-di-GMP influences A. tume-
faciens CS activity in vitro and that ectopic expression of a heterologous
GGDEF protein enhances cellulose synthesis (Amikam and Benziman,
1989; Ausmees et al., 2001b). Therefore, we hypothesize that one or more
of the A. tumefaciens GGDEF proteins regulates cellulose biosynthesis,
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thereby affecting plant attachment and biofilm formation (see Figure 7-2
and below). It is plausible that the induction of cellulose fibrils upon plant
interactions may require c-di-GMP signaling. Other A. tumefaciens GGDEF
proteins are likely to control different cell surface features.

2.7 Plant attachment via the T-pilus?

The VirB gene products plus the VirD4 protein comprise a Type IV
Secretion (T4S) system that transfers the T-DNA as a nucleoprotein com-
plex into targeted plant cells and independently also introduces several
other proteins, including VirE2 and VirF (Christie et al., 2005). A subset
of the eleven VirB gene products are involved in elaboration of an ex-
tracellular pilus structure, called the T-pilus, visible in electron micro-
graphs of cells grown under vir-inducing conditions (Fullner et al., 1996).
The VirB2 protein is the propilin protein, and is cyclized in the process of
polymerization into the T-pilus (Lai et al., 2002). Recent work suggests
that VirB proteins are localized to a single pole of the A. tumefaciens cell,
consistent with the observation that the T-pilus is also elaborated from a
pole (Lai et al., 2000; Judd et al., 2005). Although it has not been experi-
mentally proven, it seems reasonable to speculate that the pole to which
the T-pilus and the VirB proteins localize is the same, and that this is also
the end of the cell that contacts the plant surface during infection. During
adhesion of E. coli to the mammalian intestinal tract during EPEC infec-
tion, an extracellular filament comprised of the EspA protein and perhaps
EspB and EspD, elaborated through the type III secretion system, acts as
an adhesin (Knutton et al., 1998). Similarly, it seems plausible that a com-
ponent of the T-pilus functions as an adhesin prior to and perhaps during
T-DNA transfer. Electron micrographs of A. tumefaciens associated with
Streptomyces lividans cells reveals a filamentous structure that bridges be-
tween the pole of the 4. tumefaciens cell and the S. lividans hyphae (Kelly
and Kado, 2002). T-DNA is successfully transferred from A. tumefaciens
to S. lividans. Although it is not certain whether this filament is synthe-
sized by A. tumefaciens or S. lividans, it was absent in vir gene mutants nor
under non-inducing conditions. Given these observations, it seems possible
that components of the T-DNA transfer machinery act as attachment or
adhesion factors DNA transfer to S. /ividans and by extension, to plants.
However, avirulent Agrobacterium species with no functional Vir system
and A. tumefaciens vir mutants that do not elaborate a T-pilus attach effi-
ciently to plants, so it appears that any role in attachment for the Vir T4S
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system is either ancillary or restricted to sites at which T-DNA transfer
occurs.

3 PLANT RECEPTORS RECOGNIZED DURING
A. TUMEFACIENS INFECTION

Does A. tumefaciens recognize specific structures on the plant tissue
surface? A. tumefaciens has a strikingly wide host range and can infect a
variety of tissues including roots, stems and leaves (De Cleene and De
Ley, 1976). For rhizobial systems, legume surface-localized lectins impart
a signicant portion of host specificity, presumably through productive
binding of the rhizobial cell to root hairs (Hirsch et al., 2001). The wide
host range of A. tumefaciens however argues for the recognition of multi-
ple structures or a more general feature of plants. Appropriately induced 4.
tumefaciens also can productively attach and transfer DNA to other bacte-
ria, fungi and even mammalian cells (Kunik et al., 2001; Kelly and Kado,
2002; Lacroix et al., 2006). This impressive host range suggests that a spe-
cific structure may not be required for T-DNA transfer or that the requisite
structure is conserved among the major domains of life. A. tumefaciens
may still however interact with specific plant surface components during
attachment, even if these are not absolutely required for transfer to all
hosts.

Several mutants of Arabidopsis thaliana resistant to A. tumefaciens (rat
mutants) appear to be colonized poorly by A. tumefaciens (Zhu et al.,
2003). One of the rat mutants (ratl), blocked at an early stage of the host-
microbe interaction, carries a T-DNA insertion in a gene required for syn-
thesis of arabinogalactans, polymers that localize to the plant cell wall
surface. Another mutant (raz4), also blocked at an early step, is disrupted
in a cellulose-synthase like protein, again related to plant surface func-
tions. Screens for plant proteins that interact directly with A. tumefaciens
VirB2, the T-pilin, have identified additional candidate receptors (Hwang
and Gelvin, 2004). Three VirB2-interacting proteins (BTIs) with no known
function were identified, as well as a membrane-associated GTPase.
Tagged versions of these proteins physically associate with VirB2 and lo-
calize proximally to the plant cell wall in transgenic Arabidopsis. Further-
more, inhibition of their expression leads to plants that are poorly infected
by A. tumefaciens, and elevated expression of at least one BTI protein
(BTI1) enhances transformation by A. tumefaciens. All of these properties
are consistent with BTI proteins functioning in recognition or productive
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interactions with the A. tumefaciens T-pilus, and they are promising candi-
dates for plant features recognized by the T-pilus during Arabidopsis
infection. Whether the BTI proteins function at early stages of plant inter-
action, including attachment, or in later stages following attachment is yet
to be determined. Additionally, it is not clear how uniformly these proteins
are conserved among other plants.

4 BIOFILM FORMATION BY A. TUMEFACIENS

A natural consequence of bacterial attachment to surfaces is the forma-
tion of multicellular adherent populations collectively called biofilms.
Biofilm formation has received increasing attention as the ubiquity of
these structures and their importance to medicine, industry and agriculture
have become apparent (Hall-Stoodley et al., 2004; Parsek and Fuqua,
2004). In general, biofilms are surface-associated microbial populations in
which the individual cells are affixed to surfaces and cohered to each other
through an extracellular polymeric matrix, often produced by the bacteria
themselves. Biofilms can range from relatively flat, featureless films to
highly structured, discontinuous and porous complexes. The point at which
adherent cells may be considered biofilms varies widely between different
investigators with some considering any adherent cells to be a biofilm,
while others only classifying adherent populations as biofilms when they
have reached some minimum level of structure. Conceptually, the point at
which the presence of multiple cells adhered to the surface changes the at-
tributes of the population as a whole, can arguably be considered a biofilm.
Operationally this point can be difficult to define, and varies among differ-
ent microbes and different environments.

4.1 Adherent bacterial populations on plants
and in the rhizosphere

Biofilms have been most extensively studied on abiotic surfaces in
aquatic environments. More recently, biofilms that form on living tissues
during interactions with metazoan host organisms have gained attention,
and the role of biofilm formation in pathogenesis has become an active
area of research (Parsek and Singh, 2003). Bacterial adherence to plant
surfaces, in both commensal and pathogenic relationships, shares many
features with adherence on abiotic surfaces. In both cases, the bacterial
populations form complex, structured assemblages (Morris and Monier,
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2003; Ramey et al., 2004a). Large and small clusters of microbes along
roots, stems, leaves, and within the plant vasculature have been variably
described as aggregates, microcolonies, symplasmata and biofilms (Morris
and Monier, 2003). Many plant-associated bacteria also reside as sapro-
phytes in the terrestrial environment, adhered to soil particles and decaying
plant matter. Metabolically active plant tissue presents a unique surface
that can vary among different plants and for different tissues of the same
plant. Gradients of nutrients, balanced by sequestration and exudation
make the plant surface a dynamic environment (Walker et al., 2003). In
general, plant-associated bacteria must recognize, adapt to and interact
with both living and inert surfaces, and these interactions are critical fea-
tures of their life cycles.

4.2 Biofilm formation and structure

A. tumefaciens forms architecturally complex biofilms on host tissues,
as well as model abiotic surfaces (Figure 7-3). Confocal laser scanning
microscopy has revealed that A. tumefaciens biofilms on model surfaces
are characterized by densely packed, but relatively shallow layers of cells
along the surface, punctuated by larger, globular aggregates of 20-30 cells
in depth (Danhorn et al., 2004; Ramey et al.,, 2004b). Early stages of
biofilm formation exhibit a large proportion of cells attached to surfaces
via their poles (Figure 7-3). In contrast to other well-studied biofilm form-
ing bacteria, A. tumefaciens cells remain attached by single poles, consis-
tent with the manner in which they bind to root tissues (Douglas et al.,
1982; Pueppke and Hawes, 1985; Hinsa et al., 2003). As the biofilm ma-
tures, more complex cellular arrangements emerge. On plant root surfaces,
the adherent biomass is somewhat more heterogeneous, but quite substan-
tial, sharing many of the structural features observed on abiotic surfaces
(Matthysse et al., 1995b; Ramey et al., 2004b).

It is clear that A. tumefaciens cells can and do form biofilms on a vari-
ety of surfaces. As with other bacteria, the ability to form a biofilm is
likely to enhance nutrient acquisition, provide protection from dessication
and predation, and improve tolerance towards chemical and physical stress
(Hall-Stoodley et al., 2004). Does biofilm formation influence the process
of pathogenesis? T-DNA transfer is recognized as a relatively inefficient
event. Although single cells are capable of T-DNA transfer, it is much
more common for aggregates and other multicellular assemblies to form at
the site of infection (Escudero and Hohn, 1997; Brencic et al., 2005). In
practical transformation applications, huge numbers of 4. tumefaciens cells
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are inoculated onto plants and other hosts, compensating for overall ineffi-
ciency. It seems intuitive, that the larger number of bacteria in physical
proximity to the infected tissue afforded through biofilm formation, the
greater the likelihood of successful transformation. Additionally, the
biofilm may promote productive in situ activation of the vir genes by con-
centrating or slowing the diffusion of phenolics and other vir inducers.
Biofilms might also provide protection or overall resistance to the plant
basal defense response.

Figure 7-3. A. tumefaciens biofilm formation. Adherent A. tumefaciens C58 harboring GFP
on a glass surface over time. Images were acquired using a confocal laser scanning micros-
copy and Volocity software to render the image. In collaboration with Dingding An and
Matthew Parsek.

4.3 Mutations that diminish biofilm formation and plant
attachment

Genetic screens of 4. tumefaciens C58 transposon mutant libraries have
lead to identification of several functions important for biofilm formation
(Ramey, 2004 and Table 7-2). These screens were performed using a
modification of the O’Toole and Kolter approach, isolating mutants with
reduced surface adherence to polyvinylchloride (PVC) 96-well microtitre
plates (O'Toole et al., 1999). Several of the functions identified thus far
were also implicated in previous work on A. tumefaciens plant association.
An existing mutant for the chvB gene and therefore unable to make cyclic
B-1,2 glucans, did not adhere efficiently to PVC (Danhorn T and Fuqua C,
unpublished data). A chvA transposon mutant was isolated from the
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biofilm screen and manifested the same attachment deficient phenotype as
the chvB mutant (Table 7-2). This suggests that mutants unable to synthe-
size cyclic B-1,2-glucans are generally deficient for adherence, irrespective
of the surface. Nonmotile transposon mutants (disruptions in fIgD and fliR)
were also biofilm deficient, consistent with reduced virulence for a nonmo-
tile mutant (Afla4BC) in a previous study (Chesnokova et al., 1997). A
transposon insertion in the t/pA4 gene, the first gene in the A. tumefaciens
C58 chemotaxis operon, results in a motile, but nonchemotactic phenotype
on motility agar, and a biofilm deficiency (Table 7-2). A nonpolar deletion
within the cheAd gene of the same operon, encoding the two-component
sensor kinase known to interact with methyl-accepting chemotaxis proteins
and in turn control flagellar rotation, manifests the identical phenotype as
the original #/pA mutant (Merritt PM and Fuqua C, unpublished data).

Transposon insertions in a gene homologous to the amid gene and
separately to a gene similar to sodB also result in biofilm deficiencies
(Table 7-2). The disrupted genes encode proteins similar to N-
acetylmuramoyl-l-alanine amidases, involved in cell wall synthesis and
superoxide dismutase, converting superoxide to peroxide, respectively.
The underlying reasons that the amid and sodB mutants are compromised
for biofilm formation remain unclear.

4.4 Control of surface attachment by the ExoR protein

Two independent biofilm deficient derivatives were isolated with
transposon insertions in an A. tumefaciens gene highly similar to exoR
from Sinorhizobium meliloti (Reed et al., 1991). These two mutants mani-
fest a dramatic inability to colonize surfaces, with no significant biofilm
formation (Tomlinson et al., in preparation). Additionally, the 4. tumefa-
ciens exoR mutants are quite mucoid and brightly fluorescent when plated
on medium containing Calcoflour, a polysaccharide B-linkage-specific dye.
These features are consistent with the S. meliloti exoR mutant, in which the
exo genes encoding synthesis and export of succinoglycan (SCG), a differ-
entially modified exopolysaccharide required for plant nodulation, are
derepressed (Reed et al., 1991). 4. tumefaciens also synthesizes SCG and
has homologues of the exo genes (Cangelosi et al., 1987). Deletion of the
exoA gene, directing the first unique step of SCG biosynthesis, reduced the
mucoidy and Calcofluor staining in the wild type and exoR mutant back-
grounds (Becker and Puhler, 1998). The 4. tumefaciens exoA SCG™ mutant
forms biofilms qualitatively similar to wild type, suggesting that this
exopolysaccharide is not required for biofilm formation. It seemed likely
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that the biofilm formation deficiency in the exoR mutant was due to ele-
vated SCG production. The exodexoR double mutant, although unable to
synthesize SCG, exhibits the identical biofilm deficiency as the exoR
mutant, indicating that SCG overproduction is not responsible for this
phenotype (Tomlinson AD, Ramey BE, Day TW, Rodriguez JL, Lawler
ML Fuqua C, unpublished data). It was recently reported that the S.
meliloti exoR mutant is aflagellate and nonmotile (Yao et al., 2004). Al-
though the A. tumefaciens exoR mutant and the exo4dexoR mutant remain
motile, they are clearly less active on motility agar than the wild type
(Tomlinson AD, Ramey BE, Day TW, Rodriguez JL, Lawler ML Fuqua C,
unpublished data). Flagellar staining suggests that A. tumefaciens exoR
mutants produce or retain fewer flagella than wild type. Given the estab-
lished relationship between motility and adherence in A. tumefaciens this
may explain the exoR phenotype on abiotic surfaces, although the severity
of the biofilm deficiency suggests additional problems.

Table 7-2. A. tumefaciens C58 biofilm mutants

Gene Atu Presumptive function Reference
name number”
chvA Atu2728 B-1,2-glucan synthesis; chromo- (Douglas et al., 1982)

somal virulence factor
flgD Atu0579 Flagellar synthesis; hook protein (Ohnishi et al., 1994)

fliR Atu0582 Flagellar synthesis; hook/basal (Armitage et al., 1997)
body

tipA Atu0514 Cytoplasmic methyl-accepting (Kawagishi et al., 1992)
chemotaxis protein

sodB Atud726 Iron superoxide dismutase (Cortez et al., 1998)

amiA Atul340 N-acetylmuramoyl-; -alanine (Langaee et al., 2000)
amidases

exoR Atul715 Negative regulator of exopolysac-  (Reed et al., 1991)
charide production
SinR Atu2394 FNR homologue, DNR subfamily  (Ramey et al., 2004)
*Atu gene designation as available through http://depts.washington.edu/agro/genomes/ ¢58/
c58homeF.htm

The exoR mutant is virulent when manually inoculated into wound sites
on the stems of cowpeas and on potato disks (Tomlinson AD, Ramey BE,
Day TW, Rodriguez JL, Lawler ML Fuqua C, unpublished data). In con-
trast, the mutant manifests a striking binding deficiency on Arabidopsis
roots, with very few attached cells, similar to its phenotype on abiotic sur-
faces. Surprisingly, the inability to bind Arabidopsis roots is corrected by
the exoA deletion, suggesting that the binding deficiency on plant roots is
due to SCG overproduction, opposite to the findings on abiotic surfaces. It
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is interesting that a disruption of exoR leads to a virtually identical nonad-
herent phenotype on biotic and abiotic surfaces, but that the cause of these
phenotypes is different depending upon the surface. It is therefore apparent
that ExoR regulates multiple surface properties relevant to surface interac-
tions.

ExoR is not a standard regulatory protein but rather contains an N-
terminal secretion signal, a possible trans-membrane segment, and a single
tetratricopeptide repeat sequence, a motif known to promote protein-
protein interactions (Blatch and Lassle, 1999). ExoR is therefore likely to
reside within the periplasm, perhaps associated with the cytoplasmic
membrane, interacting with an as yet unidentified signal transduction sys-
tem(s) that directly regulates target functions such as exo gene expression.
Perhaps in this location ExoR can influence adaptation to surfaces and the
transition from planktonic to sessile life styles.

4.5 Control of biofilm maturation by an FNR homologue

One of the 4. tumefaciens biofilm deficient transposon mutants identi-
fied was proficient in initial attachment to surfaces, but never attained the
density or surface coverage of wild-type (Ramey et al., 2004b). This mu-
tant was disrupted for an FNR-type transcription factor designated SinR
(surface interaction Regulator), and expression of the sinR gene from a
plasmid not only corrected the deficiency, but accelerated and exaggerated
the density of the biofilm. FNR is an oxygen-responsive regulatory protein
best studied in E. coli where it controls expression of a wide range of
genes involved in the switch from aerobic to anaerobic growth (Lazazzera
et al., 1996). FNR is the founding member of a large family of regulators,
often, but not always involved in oxygen responsive gene regulation
(Korner et al., 2003). SinR lacks the conserved cysteine residues found in
the amino terminus of the FNR, and thus is unlikely to coordinate an [4Fe-
4S] cluster and provide direct oxygen-responsiveness. The presence of a
canonical FNR binding site centered at -42 relative to the sinR transcrip-
tion start hinted that this gene is itself regulated by an FNR-type protein.
The A. tumefaciens FNR orthologue FnrN, is required to activate sinR ex-
pression under oxygen limitation and within biofilms (Ramey et al.,
2004b). FnrN does have the four conserved cysteines and regulates a num-
ber of A. tumefaciens genes involved in the oxygen limitation response (Li
P, Ramey BE and Fuqua C, unpublished data). SinR also regulates its own
expression. It is as yet unclear whether SinR is ligand-responsive or simply
constitutive in activity. We hypothesize that SinR functions to promote the
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spread of the biofilm along surfaces in response to the oxygen limitation
that occurs as a consequence of oxygen utilization within the biofilm. The
sinR mutant also exhibits a maturation defect on Arabidopsis roots, and
when the regulator is overexpressed, forms strikingly dense biofilms
(Ramey et al., 2004b). Tumorigenesis assays on tobacco leaf cuttings re-
vealed a modest, but significant deficiency for the sinR mutant, whereas
overexpression increases the efficiency of tumor formation (Ramey, 2004).

4.6 Phosphorus limitation stimulates biofilm formation

The nutrient composition of the environment is known to have a pro-
found effect on surface interactions. Phosphorous limitation is known to
augment the virulence of 4. tumefaciens in part through increased expres-
sion of the virG transcription factor (Winans, 1990). Limiting the source of
inorganic phosphorous (P;) enhanced biofilm formation in 4. tumefaciens
(Danhorn et al., 2004). Despite significant reductions in planktonic culture
density, biofilms observed under Pi limitation are as much as 4-fold more
dense than those formed in Pi replete conditions, with much greater overall
surface coverage. The enhanced biofilm formation was designated the
Sin"™ phenotype (surface interactions under P; limitation). This observation
was in contrast to those of Monds and colleagues with Pseudomonas
aureofaciens in which Pi-limitation (simulated by a pstC mutation) re-
duced biofilm formation (Monds et al., 2001).

The increase in A. tumefaciens biofilm formation was coincident with
induction of alkaline phosphatase activity, the standard indicator of the
Pho regulon. This suggested that the PhoR-PhoB two-component system
might be responsible for the enhanced biofilm formation (Wanner, 1995).
Surprisingly it was discovered that the phoR and phoB genes are essential
even under Pi-replete conditions in A. tumefaciens, as the chromosomal
copies of either of these regulators could only be disrupted if an intact
copy was present (Danhorn et al., 2004). A recent publication has sug-
gested that the essentiality for phoR and phoB might be due to a nonfunc-
tional low affinity, high capacity PO, transporter (Pit) and a PhoB re-
quirement to express the high affinity P; transport systems PstSCAB and
PhoCDET (Yuan et al., 2006). To circumvent the problem of essentiality, a
tightly controlled phoB expression plasmid was introduced into 4. tumefa-
ciens. In the presence of the phoB expression plasmid, a chromosomal
phoB disruption was generated (Danhorn et al., 2004). Induction of the
plasmid-borne phoB gene under P;-limiting and Pj-replete conditions ele-
vated alkaline phosphatase activity and reproduced the Sin"" phenotype.
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Examination of Pho regulon induction during early stages of surface at-
tachment on abiotic surfaces revealed significantly greater numbers of
adherent cells under Pho-inducing conditions compared to wild type
(Danhorn T and Fuqua C, unpublished data). Strikingly, two-to-three fold
more cells were attached by their poles to the surface, and polarly aggre-
gated, in the Pho-inducing conditions. These patterns were observed with
wild type 4. tumefaciens C58 under Pi limitation, and when phoB expres-
sion was induced under P;-replete conditions. Increased polar adherence is
likely to lead to the increased biomass we observe in mature Sin™"
biofilms, but there may be other PhoB-regulated phenomena that also
come into play. There are uniformly P;-limiting conditions in the soil envi-
ronment and even greater P; depletion through plant sequestration from the
thizosphere (Holford, 1997). It is therefore highly likely that the Sin""
phenotype is engaged during plant interactions, and thereby contributes to
plant adherence.

5 A MODEL FOR ADHERENCE AND BIOFILM
FORMATION

Although the requisite components and sub-processes of the adherence
process are only partially defined, we can expand upon the original
two-step model for A. tumefaciens attachment originally proposed by
Matthysse (Matthysse, 1983). Contact with the surface is enhanced by ac-
tive flagellar motility and chemotaxis, perhaps simply through increasing
the chances of collision (Figure 7-4). Binding the surface often occurs on a
single pole, perhaps through the function of a cell surface protein such as
rhicadhesin. Phosphorous limitation, as sensed via the PhoR-PhoB system
increases the efficiency of this polar adherence. Cyclic B-1,2-glucans are
required for this process, although these may be indirectly involved by
their function as periplasmic osmoregulators. ExoR is required to control
several processes relevant to attachment including but not restricted to mo-
tility and synthesis of exopolysaccharide(s). On or in close proximity to
plant tissues, Vir-inducing conditions can stimulate initiation of T-DNA
processing and transfer, and these conditions do not necessarily require
wounding of the plant tissue. The T-pilus may contribute to intimate asso-
ciation with plant tissues, functioning as an additional adhesin. The transi-
tion from reversible adherence to irreversible binding, has been defined
by visible synthesis of cellulose fibrils. Other polysaccharides and bio-
film matrix components are also likely to be produced during this time.
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Subsequent clonal growth of attached cells and additional colonization
from the planktonic phase can result in formation of a biofilm. SinR and
perhaps FnrN are involved in late maturation of the biofilm. Although this
model is deliberately generalized to include abiotic and biotic surfaces,
there are clearly aspects of each specific surface that are unique, and proc-
esses that are specifically adapted to that surface (Figure 7-4). The best
examples of this are the induction of vir genes by plant released signals
and the presence of specific receptors on the plant surface, but there are
certain to be many others awaiting discovery.

Figure 7-4. Current model for surface interactions by 4. tumefaciens. Reversible and irre-
versible stages are depicted. Features marked with an asterisk are specific to plant surfaces.

6 A WIDE RANGE OF SURFACE INTERACTIONS

Many agrobacteria benignly reside on the surfaces of plants and soils as
saprophytes, and are not directly engaged in pathogenesis (Bouzar and
Moore, 1987; Burr et al., 1987). In fact, soils that have never demonstrated
crown gall infections can carry high numbers of Ti+ and Ti- (avirulent)
Agrobacterium species. As with other soil bacteria, agrobacteria associate
with inert material of biotic and abiotic origin in the soil environment
(Mills and Powelson, 1996). The soil is the ultimate reservoir for both
pathogenic and non-pathogenic agrobacteria and the distribution of 4. fu-
mefaciens in the terrestrial environment largely determines whether intro-
duced plants will acquire crown gall (Burr et al., 1987). 4. tumefaciens can
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be divided into two functional populations: those engaged in pathogenesis
and actively inciting crown gall, and those associated with the soil or plant
tissues but existing as saprophytes or commensals. As with other patho-
gens, these bacteria are likely to be in perpetual flux as sub-populations
that can mobilize from benign environmental reservoirs to cause disease in
response to environmental conditions and host susceptibility. Interactions
of A. tumefaciens with plant tissue surfaces that result in pathogenesis may
therefore be viewed as a subset of the larger group of interactions of the
pathogen with a variety of biotic and abiotic surfaces in the terrestrial envi-
ronment. A. tumefaciens is well adapted to colonization of the plant sur-
face, and both virulent and a virulent isolates are effective plant-associated
microbes. Not all attached agrobacteria can or will incite disease. Although
wounds provide effective sites from which infections can initiate, a recent
study suggests that vir gene induction, T-DNA transfer and integration can
occur on unwounded tissue and that subsequent opine production can hap-
pen without visible tumor formation (Brencic et al., 2005). It is certain that
in addition to vir induction there are other aspects of the colonization site
and perhaps the mechanism and density of bacterial adherence that dictate
whether plant-association leads to pathogenesis.

7 CONCLUSIONS

A large body of excellent work in many laboratories has provided a
relatively sophisticated understanding of many aspects of A. tumefaciens
pathogenesis including plant-microbe signaling, interkingdom DNA trans-
fer, T-DNA integration, tumorigenesis, opine production and bacterial cell-
cell communication. Despite years of work however, the processes leading
to productive physical association with host plant tissues remain largely
undefined. With all of the presumptive adherence and colonization func-
tions identified to this point, there are ambiguities as to their identity, their
role in the process, or their general function. Perhaps this complex picture
simply reflects that bacterial adherence and attachment are not a single
process, but multiple processes that can dramatically differ between hosts
and surfaces, and are highly sensitive to prevailing environmental condi-
tions? The recognition that biofilm formation and structured adherent
populations may also strongly influence the outcome of plant-microbe in-
teractions, adds additional potential complexity to understanding initial
steps in pathogenic as well as benign associations. Future work will need
to determine whether there is a primary underlying process common to all
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surface interactions with baroque modifications adapted to specific condi-
tions, or whether there are truly discrete and separable mechanisms that are
largely independent of each other. There remains a great deal to be done in
defining this area A. tumefaciens biology, with the promise, as in so many
other areas of study on this fascinating and adaptable microbe, that this
work will also illuminate other areas of prokaryotic biology and host-
microbe associations.
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PRODUCTION OF A MOBILE T-DNA BY
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Abstract. Agrobacterium tumefaciens transfers tumor-inducing (Ti) plasmid-encoded
genes and virulence (Vir) proteins into plant cells, where this DNA stably integrates into
the plant nuclear genome. The transferred DNA (T-DNA) region of the Ti plasmid is stably
inherited and expressed in plant cells, causing crown gall tumors. DNA transfer from A.
tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA)
is exported from the bacteria via a type IV secretion system (T4SS) comprised of VirB1-
VirB11 and VirD4. The bacteria also secrete certain Vir proteins into plant cells through
this system. VirD2 (together with VirD1) nicks border sequences at the T-DNA ends and
attaches covalently to the 5’ end of the nicked strand. The VirB/VirD4 secretion system
exports the VirD2-T-DNA complex (T-complex) as well as VirE2 single-stranded DNA-
binding protein and ancillary virulence proteins VirF and VirE3. VirE2 and VirF are re-
quired only in plant cells. Nuclear localization signals (NLS) in VirD2 and VirE2 target the
T-complex into the nucleus where T-DNA integrates into the genome. T-DNA transfer and
integration does not require tumorigenesis or T-DNA encoded proteins. This fact has al-
lowed genetic engineers to use A. tumefaciens to transfer beneficial genes into plants in
place of the T-DNA oncogenes.
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1 INTRODUCTION

Crown gall tumors form on most dicotyledonous plants (De Cleene and De
Ley, 1976) when virulent strains of Agrobacterium tumefaciens, contain-
ing a 200-kilobase-pair (kb) Ti plasmid (Figure 8-1), infect wounded plant
tissue. A specific segment of the Ti plasmid, the T-DNA (Figure §-2), en-
ters plant cells and stably integrates into plant nuclear DNA (Chilton et al.,
1977; Chilton et al., 1980). The T-DNA encodes enzymes for biosynthesis
of plant growth hormones indole acetic acid (IAA, an auxin) from trypto-
phan and isopentenyl adenosine monophosphate (ipA, a cytokinin) from
adenosine monophosphate, thereby causing transformed cells to grow as
crown gall tumors (Binns, 2002). However, T-DNA transfer and integra-
tion does not require tumorigenesis or T-DNA encoded proteins (Hoekema
et al., 1983; Ream et al., 1983). This fact has allowed genetic engineers to
use A. tumefaciens to transfer beneficial genes into plants in place of the
T-DNA oncogenes (Gelvin, 2003).

2 A. TUMEFACIENS—NATURE’S GENETIC ENGINEER

Agrobacterium tumefaciens is nature’s genetic engineer. The first ge-
netically modified plant cells were not produced by humans. Instead,
plants were first engineered by 4. tumefaciens (Furner et al., 1986). These
bacteria genetically transform host cells with genes that cause rapid growth
and production of large quantities of opines, which are used as nutrients by
the tumor-inducing bacteria (Guyon et al., 1980; Petit et al., 1983). Many
opines are derived from sugars and amino acids, which provide both car-
bon and nitrogen to the bacteria (Winans, 1992). Transformed plant cells
synthesize and secrete significant quantities of specific opines, and the tu-
mor-inducing bacteria carry genes (outside the T-DNA and usually on the
Ti plasmid) required to catabolize the same opines synthesized by the
tumor. More than 20 different opines exist, and each strain induces and
catabolizes a specific set of opines. Generally, each A. tumefaciens strain
catabolizes only the opines synthesized by tumors it induces. In addition,
some opines induce conjugal transfer of self-transmissible Ti plasmids be-
tween strains of Agrobacterium (Petit et al., 1978; Ellis et al., 1982),
thereby conferring on other strains the ability to catabolize extant opines.
Apparently, A. tumefaciens strains create a niche (a crown gall tumor syn-
thesizing particular opines) that offers an environment favorable for
growth of the inducing strain.
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3 INTERKINGDOM GENE TRANSFER

3.1 Overview

Agrobacterium tumefaciens transfers the T-DNA portion of its Ti
plasmid and virulence proteins VirD2, VirD5, VirE2, VirE3, and VirF into
host cells during crown gall tumorigenesis (Sheng and Citovsky, 1996;
Zhu et al., 2000; Christie, 2004; Vergunst et al., 2005). VirD2 nicks border
sequences at the T-DNA ends and attaches covalently to the 5 end of the
nicked strand (Yanofsky et al., 1986; Wang et al., 1987; Herrera-Estrella
et al., 1988; Ward and Barnes, 1988; Young and Nester, 1988; Durrenberger
et al., 1989; Howard et al., 1989). A type IV secretion system encoded by
the virB operon and virD4 (Christie, 2004) mediates export to plant cells of
the VirD2-T-DNA complex (T-complex) as well as VirE2 single-stranded
DNA (ssDNA) binding protein (SSB) (Gietl et al., 1987; Christie et al.,
1988; Citovsky et al., 1988; Das, 1988; Citovsky et al., 1989; Sen et al.,
1989) and ancillary virulence proteins VirD5, VirF, and VirE3 (Vergunst
et al., 2005). VirE2 and VirF function in plant cells; transgenic plants that
express either of these proteins produce tumors when inoculated with A.
tumefaciens mutants that lack intact copies of the corresponding vir gene
(Citovsky et al., 1992; Regensburg-Tuink and Hooykaas, 1993). Nuclear
localization signals in VirD2 and VirE2 target the T-complex into the nu-
cleus where T-DNA integrates into the genome (Citovsky et al., 1994;
Sheng and Citovsky, 1996; Zupan et al., 1996; Citovsky et al., 1997).

3.2 Key early experiments

A series of key observations led to the discovery of interkingdom gene
transfer. Crown gall tumor cells continue to proliferate and produce opines
even after the tumor-inducing bacteria are killed with antibiotics (Braun,
1958). These observations suggested that A. tumefaciens transmits genes
for tumor maintenance and opine synthesis to plant cells and that, once es-
tablished, these genes encode all the functions necessary to confer the
transformed phenotype. Because virulence depends on the presence of a Ti
plasmid (Van Larebeke et al., 1974; Watson et al., 1975), this extrachro-
mosomal element seemed likely to carry the oncogenes. Hybridization
between specific Ti plasmid sequences and DNA isolated from axenic
(bacteria-free) tumor cells proved this hypothesis; DNA from nontransformed
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plant cells did not hybridize (Chilton et al., 1977). Subsequent work estab-
lished that tumor cells often contain a specific portion of the Ti plasmid,
called the T-DNA, integrated into the nuclear DNA of the host (Chilton
et al., 1980; Thomashow et al., 1980; Willmitzer et al., 1980), and tumor

Figure 8-1. Map of an octopine-type tumor-inducing plasmid. The octopine-type Ti plas-
mid contains two separate T-DNAs, shown in red. TL, the oncogenic T-DNA, encodes pro-
teins for synthesis of two phytohormones, auxin and cytokinin, as well as octopine, which
is derived from arginine and pyruvate. TR does not promote tumor growth, but it encodes
proteins for synthesis of the mannityl opines (agropine and mannopine), which are derived
from mannose and glutamine.

Figure 8-2. Genetic map of the TL transferred DNA (T-DNA) of an octopine type Ti plas-
mid. The arrowheads in the box represent the left and right borders of the T-DNA, and they
indicate the direction of T-DNA transfer, from right to left. iaaH (indoleacetamide hy-
drolase), iaaM (tryptophan monooxygenase), ipt (isopentenyl transferase), ops (octopine
secretion), tm! (tumor morphology large), ocs (octopine synthase). Arrows indicate the di-
rection and length of T-DNA encoded mRNAs produced by transformed plant cells.
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cells express genes responsible for the transformed phenotype (Garfinkel
and Nester, 1980; Garfinkel et al., 1981; Willmitzer et al., 1982). We now
have a reasonably detailed understanding of this gene transfer system, and
recently the complete DNA sequences of Ti and Ri plasmids (Zhu et al.,
2000; Moriguchi et al., 2001) and an 4. tumefaciens genome were com-
pleted (Goodner et al., 2001; Wood et al., 2001). The remainder of this
chapter will cover T-DNA transfer: genetic analysis of cis-acting T-DNA
border (origin of transfer) sequences and biochemical characterization of
VirD2 protein, which interacts with border sequences, becomes covalently
attached to T-DNA, pilots T-DNA into plant cells, and helps target T-DNA
to the nucleus.

3.3 Protein secretion apparatus

Export of the T-DNA-VirD2 complex and other virulence proteins
(VirE2, VirE3, and VirF) requires at least twelve membrane-associated
proteins: eleven encoded by the virB operon and another encoded by virD4
(Cascales and Christie, 2003; Ding et al., 2003; Christie, 2004; Li et al.,
2005). The VirB proteins and VirD4 belong to a family of type IV secre-
tion systems, which includes the Bordetella pertussis toxin liberation (Ptl)
proteins (Covacci and Rappuoli, 1993; Weiss et al., 1993), Legionella
pneumophila vir homologs (Lvh) and some Icm/Dot proteins (Segal et al.,
1999), Helicobacter pylori Cag proteins (Tummuru et al., 1995; Censini
et al., 1996), Rickettsia prowazekii VirB proteins (Andersson et al., 1998),
and conjugation proteins (Trb, Tra, and Trw) from IncPa plasmid RP4
(Lessl et al., 1992), IncN plasmid pKM101 (Pohlman et al., 1994), and
IncW plasmid R388 (Kado, 1994). Thus, type IV secretion systems facili-
tate two important processes: 1) secretion of virulence factors from patho-
gen to host, and 2) promiscuous (broad-host-range) conjugation of plasmid
DNA. The A. tumefaciens VirB/VirD4 transporter is the most versatile of
these systems and mediates both promiscuous gene transfer and export of
virulence proteins.

The genes that encode type IV secretion systems of A. tumefaciens,
L. pneumophila, H. pylori, B. pertussis, R. prowazekii, and plasmids RP4,
pKM101, and R388 share sequence similarities and similar arrangements
within operons (Segal et al., 1999). Functional similarities also exist. For
example, both the A. tumefaciens VirB/VirD4 and L. pneumophila
Icm/Dot systems mediate conjugation of IncQ plasmid RSF1010 between
bacteria, and the presence of RSF1010 abolishes the virulence of both
pathogens (Binns et al., 1995; Segal and Shuman, 1998; Stahl et al., 1998;
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Vogel et al., 1998). In addition, VirD4 from A. tumefaciens can substitute
for TraG from pTiC58 in plasmid conjugation (Hamilton et al., 2000). The
involvement of closely related type IV secretion systems in both conjugation
and protein export suggests that conjugation may be a specialized form of
protein export in which the exported protein — the DNA-nicking protein
VirD2 in this case — is covalently attached to DNA.

3.4 The conjugation model of T-DNA transfer

3.4.1 Promiscuous conjugation

In many ways T-DNA transfer from A. tumefaciens to plant cells re-
sembles broad-host-range plasmid conjugation between bacteria. In each
case, a multi-subunit endonuclease binds an origin of transfer (oriT) se-
quence forming a relaxosome, and one endonuclease subunit (relaxase)
nicks the DNA and covalently attaches to the 5’ end (Herrera-Estrella
et al., 1988; Ward and Barnes, 1988; Young and Nester, 1988; Howard
et al., 1989; Pansegrau et al., 1993; Jasper et al., 1994; Lessl and Lanka,
1994). The donor transfers a single DNA strand, together with the bound
protein, to the recipient via a type IV secretion system.

The conjugation model of T-DNA transfer gained strong support from
an unexpected quarter. The 4. tumefaciens VirB/VirD4 system can transfer
a broad-host-range mobilizable bacterial plasmid (RSF1010), which does
not contain a T-DNA border sequence, into plant cells where the plasmid
DNA integrates into the nuclear genome (Buchanan-Wollaston et al., 1987).
In addition to the VirB/VirD4 secretion system, interkingdom transfer of
RSF1010 requires the oriT sequence and mobilization (mob) proteins,
which create a site-specific nick within oriT. The ability of 4. tumefaciens
to mobilize a broad-host-range plasmid into plant cells supports the conju-
gation model and opens the possibility that plants potentially receive a
great variety of information from many species of gram-negative bacteria.
The A. tumefaciens VirB/VirD4 system also promotes conjugation of
plasmid DNA into other bacteria (Gelvin and Habeck, 1990; Beijersbergen
et al., 1992; Fullner et al., 1996; Fullner and Nester, 1996a; Fullner and
Nester, 1996b), plants (Buchanan-Wollaston et al., 1987), fungi (Bundock
et al., 1995; de Groot et al., 1998)}, or human cells (Kunik et al., 2001) in-
dicating that type IV secretion systems can export a variety of proteins and
protein-DNA complexes in to a broad range of recipient cells.



Production of a Mobile T-DNA by Agrobacterium Tumefaciens 285

At least one A. tumefaciens vir protein can function as part of a differ-
ent conjugation system. An essential conjugation protein, known as the
coupling protein, appears to link the relaxosome to the transmembrane
DNA/protein secretion apparatus, which is also called the mating pair
formation system. Several coupling proteins, for example, TraG of plasmid
RP4 and TraD of F, show limited sequence similarity to 4. tumefaciens
VirD4 (Lessl and Lanka, 1994). In fact, VirD4 can substitute for its
pTiC58 homolog, TraG, during conjugation of RSF1010 via the pTiC58
trb-encoded mating bridge, thereby proving that VirD4 is a conjugation
protein (Hamilton et al., 2000).

3.4.2 Border sequences

T-DNAs from several different Agrobacterium strains have very simi-
lar 23-base-pair (bp) border sequences at each T-DNA end (Table 8-1). T-
DNA transfer requires the right-hand border in its wild-type orientation
(Shaw et al., 1984; Wang et al., 1984; Peralta and Ream, 1985). Inversion
of the right border reduces virulence drastically (Wang et al., 1984; Peralta
and Ream, 1985), and the rare tumors that develop contain most or all of
the 200-kb Ti plasmid (Miranda et al., 1992). Deletion of the right border
abolishes tumorigenesis (Hepburn and White, 1985), whereas removal of
the left border does not affect virulence (Joos et al., 1983), indicating that
T-DNA transfer begins at the right border, moves leftward through the T-
DNA, and (sometimes) terminates at the left border. T-DNA borders share
both sequence and functional similarities with the oriT of broad-host-range
conjugative plasmid RP4 (Lessl and Lanka, 1994). Thus, T-DNA transfer
from A. tumefaciens into plants strongly resembles plasmid conjugation
between bacteria.

Another cis-acting sequence, called overdrive, flanks right-hand (but
not left-hand) border sequences and stimulates T-DNA transfer several
hundredfold (Table §-1) (Peralta et al., 1986). Unlike the border sequence,
overdrive functions in either orientation and at considerable distances on
either side of the right-hand border sequence (Ji et al., 1988). Efficient
T-DNA transfer requires only two cis-acting sequences: the right-hand
border sequence and overdrive. The following paragraphs will explore the
interaction of these DNA sequences with virulence proteins.
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Table 8-1. T-DNA Border and Overdrive Sequences

Plasmid/ Border Repeat Spacer Overdrive
T-DNA
CONSeNsSUS  TGGCAGGATATAT-CTGTTGTAAAT T---TC-CTGTGTATGTTTGTTTG
a m
pTiAG TL TGGCAGGATATATACCGTTGTAATT 14 bp  TAAGTCGCTGTGTATGTTTGTTTG
right
pTiA6 TR TGGCAGGATATATGCGGTTGTAATT 13 bp  TAAATTTCTGTATTTGTTTGTTTG
right
pTIAB3 TA  TGACAGGATATATACCGTTGTAATT 14 bp  TAAATCGCTGTGTATGTTTGTTTG
rt
pRiA4 TR TGACAGGATATATCTTGTGGTCAGG 8 bp  TTTGTGAGGAGGTATGTTTGTTTA
right
pRiA4 TL TGACAGGATATATGTICCTGTCATG -3 bp  —-——-———-———- ATGTTTGTTCA
right
77 bp  TTTTAAAAATAGTATGTTTGACTG
pTiT37 TGACAGGATATATTGGCGGGTAAAC 62 bp  TTCGTCCATTTGTATGTGCATGCC
right
pTiA6 TL CGGCAGGATATATTCAATTGTAAAT none
left
pTiA6 TR TGGCAGGATATATCGAGGTGTAARA none
left
pRiA4 TL TGGCAGGATATATTGTGATGTAAAC none
left
pRiA4 TR TGGCAGGATATATGCCAACGTAARA none
left
pTiT37 left  TGGCAGGATATATTGTGGTGTAAAC none

Strongly conserved bases are underlined; moderately conserved bases are shaded.

3.4.3 The relaxosome

Several vir operons encode proteins that participate in DNA-protein in-
teractions necessary for T-DNA transfer. The first two genes of the virD
operon (virDI and virD2) encode a site-specific nicking enzyme that nicks
the bottom strand of T-DNA border sequences between the third and
fourth base (Yanofsky et al., 1986; Wang et al., 1987; Wang et al., 1990).
[For vir operons containing more than one gene, the number that follows
the gene name indicates the position of the gene in the operon rather than
an allele number for a specific mutation.] Direct interaction between
VirD1 and VirD2 was shown using a novel protein interaction assay in
mammalian cells; this study also showed that VirD2 interacts with itself
(Relic et al., 1998). VirD2 protein attaches covalently to the 5’ end of the
nicked DNA (Herrera-Estrella et al., 1988; Ward and Barnes, 1988; Young
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and Nester, 1988; Durrenberger et al., 1989; Howard et al., 1989) via a
phosphodiester bond with a specific tyrosine near the amino terminus
(codon 29 in VirD2 encoded by pTiA6) (Vogel and Das, 1992b). The nick
within the right border sequence initiates production of T-strands, which
are full-length single-stranded copies of the bottom strand of the T-DNA
(Stachel et al., 1986; Albright et al., 1987; Jayaswal et al., 1987; Stachel
et al., 1987) that the bacteria export into plant cells (Stachel and Zambry-
ski, 1986; Tinland et al., 1994; Yusibov et al., 1994). Thus, early events in
T-DNA transfer resemble those in bacterial conjugation: a multiple-
subunit nicking enzyme binds an oriT” sequence forming a DNA-protein
complex called the relaxosome, which creates a site-specific nick in one
strand of the oriT sequence. During this process, one endonuclease subunit
covalently binds the nicked DNA.

Other relaxosomes contain more than two mobilization (Mob) proteins.
For example, RSF1010 encodes three relaxosome components, MobA,
MobB, and MobC (Scholz et al., 1989). Although the virD operon contains
five genes, only VirD1 and VirD2 are required for border nicking and T-
strand production. VirD3 is poorly conserved and not required for T-DNA
transmission (Vogel and Das, 1992a). VirD4 is a coupling protein that
connects the relaxosome to the mating bridge, and VirD5 is an ancillary
protein (Stachel and Nester, 1986) that contains a type IV secretion signal
(Vergunst et al., 2005). The VirC1 protein binds a sequence (overdrive)
adjacent to right borders, and VirC2 may also interact with this complex.
The VirC/overdrive complex may interact with the relaxosome, but these
proteins are not essential for border nicking and T-strand production.

The overdrive sequence lies near the right-hand T-DNA border (Table
8-1) and, together with the VirCl and VirC2 proteins, stimulates tumori-
genesis several hundredfold (Peralta et al., 1986). VirCl binds overdrive,
and the VirD2 nicking protein also interacts with this sequence (or with
bound VirC1) (Toro et al., 1989). Although the precise role of overdrive
and the virC-encoded proteins in the relaxosome remain unknown, they
appear to distinguish the right- and left-hand border sequences (the origin
and terminus of T-DNA transfer). Because T-DNA transfer is unidirec-
tional (Miranda et al., 1992), plant cells will receive the oncogenes and
opine synthesis genes only if transfer begins at the right border. In order to
avoid unproductive transfer events that begin at the left border, the re-
laxosome must distinguish between right- and left-hand border sequences,
which are functionally equivalent in their interaction with the VirD1/
VirD2 nicking enzyme (Yanofsky et al., 1986; Albright et al., 1987).
Apparently, overdrive allows the transfer apparatus to recognize the
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right-hand border as the origin of transfer, perhaps by helping to tether the
relaxosome to the VirB/VirD4 secretion/mating bridge apparatus. Indirect
support for this idea comes from the observation that mutations in the virC
operon stimulate (>threefold) VirB/VirD4-dependent conjugation of an
RSF1010 plasmid from T-DNA-containing A. tumefaciens (Fullner and
Nester, 1996b). RSF1010 interferes with secretion of T-DNA from A. tu-
mefaciens into plants (Binns et al., 1995; Stahl et al., 1998; Cascales et al.,
2005), apparently through competition with VirE2 and VirD2-T-strand
complexes for the VirB/VirD4 secretion system. The interactions between
the overdrive sequence and VirCl and VirD2 may help localize the T-
DNA origin of transfer (right border + overdrive) and associated proteins
(VirCl1, VirC2, VirD1, VirD2) to the VirB/VirD4 pore, competing with
RSF1010 for access. Loss of the VirC proteins may greatly reduce the abil-
ity of the T-DNA origin of transfer and associated Vir proteins to bind the
VirB/VirD4 pore, thereby allowing greater access for the RSF1010 oriT-
Mob complex.

3.4.4 T-strands

Induction of vir expression and border nicking leads to formation of in-
termediates in T-DNA transfer (T-strands), which are full-length, linear,
single-stranded DNA molecules comprised of the bottom strand of the T-
DNA (Figure 8-3) (Stachel et al., 1986, 1987; Veluthambi et al., 1988).
Following a proteinase digestion, DNA isolated from vir-induced 4.
tumefaciens cells and subjected to agarose gel electrophoresis can be trans-
ferred to nitrocellulose filters by blotting without denaturation. These con-
ditions permit hybridization of only DNAs with single-stranded regions to
complementary labeled DNA or RNA probes. Only probes corresponding
to the top strand of the T-DNA anneal to T-strands, proving that T-strands
are derived from the bottom strand. Treatment with an endonuclease (S1)
or exonuclease (E. coli exonuclease VII or T4 DNA polymerase) specific
for single-stranded DNA destroys T-strands and demonstrates the presence
of a free 3’ end (exo VII or T4 DNA polymerase) and possibly a free 5’
end (exo VII).

Mutations in vird, virG, virD1, and virD2 abolish T-strand production
(Stachel et al., 1987; Veluthambi et al., 1988); vird and virG are required
because these genes control expression of the virD operon. T-strand dis-
placement, which occurs 5’ to 3°, likely requires helicase activity and may
be accompanied by synthesis of a new copy of the bottom strand, although
this has not been shown. The genes that encode other proteins that are
probably involved in T-strand production, for example helicase, DNA
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polymerase, and topoisomerase, have not been identified and may lie on
one of the two A. tumefaciens chromosomes.

3.4.5 Secreted single-stranded DNA-binding protein: VirE2

The virE operon encodes two proteins: VirEl (65 amino acids) and
VirE2 (533 amino acids; (Winans et al., 1987). The single-stranded DNA-
binding (SSB) activity of VirE2 does not depend on VirEl (Christie et al.,
1988; Citovsky et al., 1988; Das, 1988; Citovsky et al., 1989; Sen et al.,
1989). In E. coli that contain the Lon protease, VirEl protein stabilizes
VirE2 (McBride and Knauf, 1988), suggesting that these proteins interact
physically. Indeed, protein interaction cloning (yeast two hybrid) studies
showed that VirE2 contains two separable domains that bind VirEl
(Sundberg et al., 1996; Sundberg and Ream, 1999). In A. tumefaciens,
VirE2 is equally stable with or without VirEl (Sundberg et al., 1996).
VirEl, a secretory chaperone, promotes transport of VirE2 protein into
plant cells via the VirB/VirD4 secretion system (Deng et al., 1999;
Sundberg and Ream, 1999; Zhou and Christie, 1999). Thus, both proteins
are essential for tumorigenesis (Sundberg et al., 1996).

VirE2 likely has multiple roles in T-DNA transfer. VirE2 binding pro-
tects single-stranded DNA from nuclease attack in vitro (Gietl et al., 1987;
Citovsky et al., 1989; Sen et al., 1989) and inside plant cells (Yusibov
et al.,, 1994; Rossi et al., 1996); however, absence of VirE2 does not di-
minish T-strand accumulation in 4. tumefaciens (Stachel et al., 1987,
Veluthambi et al., 1988). VirE2 may also form a transmembrane channel
that helps move T-strand DNA across membranes (Dumas et al., 2001).
The presence of nuclear localization signals (NLS) in VirE2 (Citovsky
et al., 1992) suggests that it enters plant nuclei during infection. The two
NLSs of VirE2 continue to function when VirE2 is bound to ssDNA
(Zupan et al., 1996), even though the NLS domains overlap regions of
VirE2 involved in cooperativity and ssDNA binding (Citovsky et al.,
1992). Fluorescein-labeled ssDNA bound by VirE2 enters the nucleus of
plant cells injected with the complex, whereas in the absence of VirE2, the
DNA remains cytoplasmic (Zupan et al., 1996). However, in an in vitro as-
say for nuclear import, VirE2 lost the ability to enter the nucleus upon
binding to single-stranded DNA (Ziemienowicz et al., 2001). Differences
between the assays used in these studies may explain the contradictory re-
sults; neither assay mimics transfer of T-strands and VirE2 from Agrobac-
terium to plant cells during infection. Although this apparent discrepancy
remains unresolved, inside plant cells, VirE2 likely shields T-strands from
nuclease attack and may target them to the nucleus.
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VirE2 is exported from bacterial cells and is required only inside plant
cells. VirE2 does not coat T-strands in bacterial cells due to the presence
of VirEl, a secretory chaperone that occupies the DNA-binding domain of
VirE2 (Dombek and Ream, 1997; Sundberg and Ream, 1999). This was
shown directly using the highly sensitive T-DNA immunoprecipitation
(TrIP) assay (Cascales and Christie, 2004). T-strand DNA is chemically
crosslinked to associated Vir proteins, the complexes are precipitated with
specific antibodies, and polymerase chain reaction (PCR) is used to detect
T-strand DNA (Cascales and Christie, 2004). Antibodies specific for
VirE2 did not precipitate T-strand DNA in this assay, indicating that T-
strands are not bound by VirE2 protein in 4. tumefaciens (Cascales and
Christie, 2004).

Interaction cloning experiments identified protein contacts between
VirE2 and VirE1l (Sundberg et al., 1996; Deng et al., 1999; Sundberg and
Ream, 1999; Zhou and Christie, 1999). VirEl binds VirE2 domains in-
volved in binding ssDNA and self association, and VirEl facilitates VirE2
export by preventing VirE2 aggregation and premature binding of VirE2 to
ssDNA (Deng et al., 1999; Sundberg and Ream, 1999). Instead, VirE2 is
exported separately to plant cells, where it binds T-strands (the Separate
Export Model) (Sundberg and Ream, 1999) (Figure 8-3). VirE2 is neces-
sary only in plant cells; transgenic plant cells that express VirE2 produce
tumors when inoculated with virE2-mutant 4. fumefaciens (Citovsky et al.,
1992). Coinoculation of a virE2 mutant and a virE+ strain lacking T-DNA
results in tumor formation, even though each strain alone is avirulent and
unable to exchange genes by conjugation (Otten et al., 1984). This “com-
plementation” by mixed infection requires the VirB/VirD4 transporter
(Otten et al., 1984; Christie et al., 1988), and both strains must bind to
plant cells (Christie et al., 1988). T-strands accumulate to normal levels in
bacterial cells without VirE2 (Stachel et al., 1987; Veluthambi et al.,
1988), and A. tumefaciens can transfer these uncoated T-strands into plant
cells (Citovsky et al., 1992; Sundberg and Ream, 1999). T-strands were
detected inside wild-type plant cells infected by a virE2 mutant (Yusibov
et al., 1994). Export of VirE2, but not of T-strands, from A. tumefaciens
requires VirE1l (Sundberg et al., 1996). Thus, 4. tumefaciens exports VirE2
protein and uncoated VirD2-T-strand DNA complexes independently into
plant cells; one does not depend on the other for transfer (Sundberg et al.,
1996; Sundberg and Ream, 1999). T-strand transfer resembles plasmid
conjugation in many ways (Kado, 1994; Lessl and Lanka, 1994; Baron and
Zambryski, 1996; Firth et al., 1996; Sheng and Citovsky, 1996; Winans
et al., 1996; Christie, 1997; Zupan and Zambryski, 1997; Christie, 2004);



Production of a Mobile T-DNA by Agrobacterium Tumefaciens 291

conjugal DNA metabolism appears to occur at the transmembrane export
channel, with ssDNA transferred directly to the recipient (Firth et al.,
1996). Indeed, proper contact between recipient and donor cells triggers
conjugal DNA processing (Kingsman and Willetts, 1978; Ou and Reim,
1978; Firth et al., 1996). T-strand production likely occurs in a similar
manner, at the VirB/VirD4 macromolecule export apparatus, which is lo-
calized to the poles of the bacterial cell (Kumar and Das, 2002; Atmakuri
et al., 2003). During a normal infection, T-strands may leave bacterial cells
as they are displaced from the Ti plasmid, without significant exposure to
the bacterial cytoplasm. The Separate Export model explains several ob-
servations: (i) VirE2-producing plant cells restore pathogenicity to virk-
mutant A. tumefaciens (Citovsky et al., 1992), (i) VirE2 made in one 4.
tumefaciens strain can interact productively with T-strands generated in
another (during mixed infections) (Otten et al., 1984; Christie et al., 1988),
(ii1) export of VirE2 requires VirEl (Sundberg et al., 1996) and VirB1
(K.J. Fullner, personal communication), whereas T-strand transfer does
not, (iv) the presence of plasmid RSF1010 in A. tumefaciens blocks VirE2
export but merely reduces T-strand transfer (Binns et al., 1995), and (v)
expression of the Osa (oncogenesis suppressing activity) protein in 4. tu-
mefaciens prevents export of VirE2 but not of T-strands (Lee et al., 1999).
From these studies we know A. tumefaciens can export VirE2 and T-strand
DNA separately under special circumstances. The inability of VirE2-
specific antibodies to precipitate T-strand DNA from bacterial cells shows
directly that A. tumefaciens transfers VirE2 and T-strand DNA into plant
cells separately (Cascales and Christie, 2004).
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Figure 8-3. The separate export model.



292  Walt Ream

3.4.6 A pilot protein: VirD2

VirD2 endonuclease attaches covalently to T-strand DNA through a
phosphodiester bond between the 5° end of the T strand and a conserved
tyrosine residue (tyrosine 29; Figure 8-4) in VirD2 (Vogel and Das,
1992b) [(reviewed in Sheng and Citovsky, 1996)]. T strands apparently en-
ter plant cells via the VirB/VirD4 secretion system by virtue of this at-
tachment. T-DNA border-specific endonuclease activity lies entirely
within the N-terminal half of VirD2 (Ward and Barnes, 1988). Conserved
residues at the C-terminus of VirD2 are important for tumorigenesis
(Shurvinton et al., 1992; Rossi et al., 1993), although they are not needed
for T strand production. Instead, this domain contains a bipartite NLS that
helps target T strands to plant nuclei (Howard et al., 1992; Shurvinton
et al., 1992; Tinland et al., 1992; Rossi et al., 1993). The carboxy termi-
nus of VirD2 also contains a type IV secretion signal necessary for export
from bacterial cells (Vergunst et al., 2005). This secretion signal mediates
export of VirD2, even in the absence of T-strand DNA (Vergunst et al.,
2005). Thus, VirD2 pilots T-strands into plant cells, and VirD2 may also
lead T-strands through the nuclear pore.

3.4.7 Functional domains of VirD2

VirD2 contains several known functional domains. The endonuclease
domain is highly conserved (amino acids 1-262; Figure 8-4) and includes
the active site tyrosine (position 29). This domain is sufficient (together
with VirD1) for nicking T-DNA border sequences and for T-strand pro-
duction in vivo. In vitro, purified VirD2 (in the absence of VirD1) cleaves
single-stranded DNA oligonucleotides that contain a T-DNA border se-
quence (Pansegrau et al., 1993; Jasper et al., 1994; Tinland et al., 1995).
This cleavage is sequence specific, and VirD2 remains bound to the 5’ end
of the DNA after cleavage (Pansegrau et al., 1993; Jasper et al., 1994;
Tinland et al., 1995). VirD2-mediated cleavage of single-stranded border
sequence oligonucleotides is reversible; VirD2 allows specific ligation of
the cleavage products to restore the border sequence (Pansegrau et al.,
1993; Jasper et al., 1994; Tinland et al., 1995). This suggests that VirD2
may join T-DNA to plant DNA by a similar ligation event.

The endonuclease domain also contains a conserved “HRY” motif
(Figure 8-4) also found in the Tral protein encoded by conjugative plasmid
RP4 (Lessl and Lanka, 1994) and in phage-encoded site specific integrase
proteins (Argos et al., 1986). The conserved arginine (at position 129) is
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crucial for T-strand production in vivo; conversion of this residue to
glycine (an R129G mutation) reduces T-strand levels to <1% of wild-type
(Tinland et al., 1995). However, this mutation does not affect the ability of
VirD2 to cleave, bind, and religate single-stranded border sequence oli-
gonucleotides in vitro (Tinland et al., 1995). The R129G mutation also
affects the precision of T-DNA integration. Normally, junctions between
plant DNA and the right-hand T-DNA border occur precisely at the site of
the VirD2-mediated nick that initiates T-strand production. In contrast, T-
DNAs produced by the mutant VirD2R129G protein all suffer deletions of
T-DNA sequences at their right-hand ends (Tinland et al., 1995). Thus, the
HRY motif of VirD2 plays a role in precise integration of T-DNA into the
plant genome (Tinland et al., 1995).

Except for three conserved C-terminal sequences, the C-terminal half
of VirD2 (amino acids 235-395) is not conserved (Figure 8-4), and dele-
tion of part of this region (amino acids 338-356) has no effect on T-DNA
transmission (transfer and integration) (Shurvinton et al., 1992). However,
several functional domains near the C-terminus are necessary for T-DNA
transmission to plant cells, including a nuclear localization sequence, a
type IV secretion signal, and the omega sequence (Figure 8-4). A mutation
in VirD2 that removed the omega sequence reduced (fivefold) transient
expression (in plant cells) of a T-DNA-borne reporter gene, whereas stable
incorporation of T-DNA diminished 25 fold (Mysore et al., 1998). Amino
acids within the omega sequence likely contribute to the activity of the ad-
jacent type IV secretion signal, which may explain the fivefold reduction
in transient T-DNA transfer. However, stable T-DNA integration is re-
duced to a greater extent than expected based on the effect of this mutation
on VirD2-mediated transport into plant cells. These observations suggest
that the omega sequence plays a role in both T-DNA transfer and subse-
quent integration.

3.4.8 Gateway to the pore: VirD4 coupling protein

VirD4 resembles TraG of RP4 and TraD of F (Lessl and Lanka, 1994;
Firth et al., 1996); these proteins appear to connect relaxosomes with
membrane-associated secretion/mating bridge systems (Lessl and Lanka,
1994; Firth et al., 1996; Cabezon et al., 1997). VirD4 is similar enough to
pTi-encoded TraG that it can substitute for TraG, allowing conjugal trans-
fer of RSF1010 through the pTi Trb pilus into recipient bacteria (Hamilton
et al., 2000). Unlike most VirB proteins, a VirD4 analog has not been re-
ported in the B. pertussis Ptl toxin export system. However, other type IV
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secretion systems, including those in H. pylori, L. pneumophila, and R.
prowazekii, contain a protein similar to VirD4 (Segal et al., 1999). Thus,
VirD4 and most VirB proteins have homologs not only among conjugation
proteins but also among proteins devoted solely to toxin secretion.

The function of VirD4 appears more elaborate than an interface be-
tween relaxosome and transmembrane pore. Export of VirE2 (in the ab-
sence of T-strand DNA) requires VirD4, establishing its involvement in
protein transport (Vergunst et al., 2003). Direct physical interaction be-
tween VirD4 and the C-terminus of VirE2 occurs in Agrobacterium cells
(Atmakuri et al., 2003), in which VirD4 localizes to the poles of the rod-
shaped bacterial cells (Kumar and Das, 2002). In addition, formation of the
VirB pilus requires VirD4 (Fullner et al., 1996), indicating that it partici-
pates in translocation of pilus proteins as well. In this respect, VirD4 dif-
fers significantly from TraD, which is not needed for F pilus production
(Firth et al., 1996).

4 VirD2 INTERACTS WITH HOST PROTEINS

4.1 Nuclear targeting: importin-a proteins

Upon entry into plant cells, VirD2 interacts with host-encoded importin
proteins involved in importin-mediated NLS-dependent docking at the nu-
clear pore. Yeast two-hybrid protein interaction screens identified an
Arabidopsis importin, AtKAPo (importin al), that interacts with VirD2 in
an NLS-specific manner (Ballas and Citovsky, 1997). AtKAPa shares
sequence similarities with yeast NLS-binding proteins, and At-
KAPao mediates import of VirD2 into the nuclei of yeast cells (Ballas and
Citovsky, 1997). Additional studies used yeast two-hybrid screens, coim-
munoprecipitation, and bimolecular fluorescence complementation to
show that VirD2 also interacts with importin a-2, 3, 4, 7, and 9 (L.-Y. Lee
and S. B. Gelvin, personal communication). These investigators also found
that a mutation affecting importin a4 conferred a resistant to Agrobacte-
rium transformation (raf) phenotype to Arabidopsis thaliana root explants
(Zhu et al., 2003). Because importin o4 interacts with both VirD2 and
VirE2, the Rat phenotype may result from disruption of nuclear targeting
of both proteins.
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1 68
pTil5955 MPDRAQVIIRIVPGGGTKTLQQIINQLEYLSRKGKLELQRSARHLDIPVPPDQIRELASSWVHERNGHY
pTiC58  MPDRAQVIIRIVPGGGTKTLQQIINQLEYLSRKGRLELQRSARHLDIPLPPDQIHELARSWVQETGTY
pPRiA4 MPDRAQVIIRIVPGGGTKTLQQIINQLEYLSRKGKLELQRSARHLDIPLPPDQIHELARSWVQETGTY
pRil724 MPDRSQVIIRIVPGGGTKTLQQIINQEYLSRKGKLELQRSARHLDIQVPPDEIRELARSWLQETGTY
pTiAB2  MPERAQVIIRIVPGGGTKSLQQIINQLEYLSRKGKLELQRSARHLDVIJVPPDRIIRILAKSHVQETGTY

69 136
PTi15955 DESQEDDDROODLTTHI IVSFPAGTEQEAAYEASREWAAEMFGSGEGGGRYNYLTAYHVDRDHPHLHV
PTiC58  DESQPDEERQQELTTHIIVSFPAGTSQYAAYAASREWAAEMFGSGAGGGRYNYLTAFHIDRDHPHLEV
PRiA4 DESQPDEERQQELTTHI IVSFPAGTSQE:?YAASREWAAEMFGSGAGGGEYNYLTAFHIDRDHPHLHV
PRil724 [ESQPDEERQODLTTHIIVSFPAGTSQYAAYAASREWAAEMFGSGAGGGRYNYLTAFHIDRDHPHLEV
pPTiAB2  DESZIPDEERQQELTTHI IVSFPAGTSﬁ::YAASREWAAEMEGSGAGGGEYNYLTAFHIDRDHPHLHV

137 204
pTil5955 VVNRRELLGHGWLKISRRHPQLNYDGLRFKMAEISLRHGIVLDATERAERGIERPITYAHIRRLERY
pTiC58  VVNRRELLGHGWLKISRRHPQLNYDALRIKMAEISLRHGIML.DASRRAERGITERPITYAQYRRLE
pRiA4 VVNRRELLGHGWLKISRRHPQLNYDALRIJMAEISLRHGIVLDASERAERGIERPITYAQFRRLER-
PRil724 VVNRRELLGHGWLKISRRHPQLNYDALRIKMSEISLRHGVVLEATRRAERGITERPMTFAQYRRLERS
pTiAB2 VVNRRELLGHGWLKISRRHPQLNYDAMRIKMADISLRHGIMLDATRRAERGITERPITYAQYRRLEiE

205 272
pTil5955 QAQP%IQEEDEDED. TSPl RID] sgsrnisﬁ GES
pTiC58  QAROIRFEDLDLEQSSPEGDHIFEIISOEFDTRIZIENSGEENIR IROEPAGYYS
pRiA4 OAROTRFEDDLEQS SEECDHE SOSED TN 1S e Y 1AZIE PAGIISI
PRil724 QANQIRFEDIZEREEISPEGINEIZN0SFYSHEEIZIONNATFIIR AT eV
pTiAB2  QANQIRFEDEDLEQMsHeGelormdy-————-—--———————-—-

273
pTil5955 FEERVSLESE.
pTiC58 VALETE.
pRiA4 IALETE)
pRil724
pPTiAB2

337
pTil5955 -SKRERDEENGPSGAY
pTiC58 PHDDDEGPSGAK

PRiA4 ﬁKRPRDDDI GPSGAK

pRil724 KRPREDEINISSG.
pTiAB2

424
pTil5955 BDGRGCH
pTiC58 IFRSINDGRGGNRR
PRiA4 RDIPRS®DGRGENRR
PRil724 TAN3Y DXCNRR

Figure§-4. Clustal W alignment of VirD2 amino acid sequences. Black letters on a white
background indicate amino acids that are identical in at least three VirD2 proteins. Shaded
boxes indicate similar amino acids. Groups of amino acids considered similar in this analysis
were: I, L, M, and V; A, G,and S; H, K, and R; D and E; N and Q; F, W,and Y; and S and T.
Solid boxes (white letters on a black background) indicate nonconserved amino acids. Dashes
indicate gaps placed in the sequences to maximize alignment. Numbers indicate the positions
of amino acids in VirD2 from pTil5955. The red Y at position 29 indicates the conserved ty-
rosine that forms a covalent bond with the 5° end of the T-strand (Vogel and Das, 1992b).
Conserved histidine (residue 126), arginine (residue 129), and tyrosine (residue 160) residues
shown in pink may correspond to a “HRY motif” found in seven phage-encoded site specific
integrase proteins (Argos et al., 1986) and in the Tral protein encoded by conjugative plasmid
RP4 (Lessl and Lanka, 1994). Three conserved histidine residues (positions 131, 133, and
135) shown in green comprise a “histidine triad” motif (HxHxH), which may mediate the
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4.2 Protein phosphatase, kinase, and TATA box-binding
proteins

VirD2 interacts with a type 2C serine/threonine protein phosphatase
(DIG3) produced by tomato (Tao et al., 2004). This interaction is specific
for the C-terminal region of VirD2, which includes the nuclear localization
sequence (Figure 8-4), and it may affect nuclear import of VirD2. Phos-
phorylation of serine residues near a nuclear localization sequence can
simulate nuclear import. Each of the VirD2 NLS sequences in Figure 8-4
has a serine residue immediately upstream of the NLS (residue 394 in
VirD2 from octopine-type pTil5955). Conversion of this serine to alanine
(S394A) reduces nuclear import and weakens the interaction of
VirD2S394A with DIG3 (Tao et al., 2004). Overexpression of the DIG3
phosphatase reduces nuclear import, whereas a mutant 4. thaliana line that
lacks this phosphatase shows increased susceptibility to 4. tumefaciens
(Tao et al., 2004), suggesting that nuclear import of VirD2 is stimulated by
phosphorylation of the serine residue adjacent to the NLS.

VirD2 is phosphorylated in plant cells by a nuclear cyclin-dependent
kinase-activating kinase (CAK2Ms) (Bako et al., 2003). Members of the
CAK-kinase family interact with histidine triad (HIT) proteins, including
VirD2, which contains a conserved HxHxH motif (residues 131-135; Fig-
ure 8-4). VirD2 contains S/T-P motifs for proline-directed protein kinases,
including an SP immediately upstream of the NLS in VirD2 (from
pTil5955; Figure 8-4). VirD2 is phosphorylated in two regions, one in the
relaxase domain (within residues 2-109) and another in the C-terminal
domain (residues 248-447), which includes the NLS (Bako et al., 2003).
Normally, CAK2Ms phosphorylates RNA polymerase II, which then re-
cruits TATA box-binding protein. Similarly, VirD2 interacts strongly with
TATA box-binding protein in plant cells (Bako et al., 2003). This interac-
tion may play a role in T-DNA integration: VirD2 may target bound T-
strands to free 3’ ends associated with damaged DNA (Mayerhofer et al.,
1991). The observation that TATA box-binding protein can bind to lesions

<
<

interaction of VirD2 with a nuclear protein kinase, cyclin-dependent kinase-activating kinase
(CAK2Ms) (Bako et al., 2003). Amino acids comprising the nuclear localization sequence

(KRPRDRHDGELGGRKRAR) are shown in blue. Arginine residues that correspond to the
type IV secretion signal consensus sequence (RxxxxxxxRxRxRxx) are underlined. The
C-terminal omega sequence (DGRGG) is shown in orange (Shurvinton et al., 1992). The
endonuclease domain spans amino acids 1-262. The cyclophilin CypA binds amino acids
274-337, whereas Roc1 binds amino acids 174-337. A deletion that removes amino acids

338-356 does not affect VirD2 function (Shurvinton et al., 1992).
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in DNA and initiate transcription-coupled repair (Vichi et al., 1997; Coin
et al., 1998) raises the possibility that VirD2 may direct bound T-strands to
free 3’ ends in host DNA through its interaction with TATA box-binding
protein (Bako et al., 2003).

4.3 Cyclophilins

The central domain of VirD2 interacts with plant cyclophilin proteins
CypA and Rocl (Deng et al., 1998). The cellular function of these cyclo-
philins is not known, but they may act as chaperones that assist protein
folding. The importance of the interaction between VirD2 and cyclophilins
is also unknown. CypA interacts strongly with residues 274-337 of VirD2,
whereas Rocl interacts weakly with residues 174-337 (Deng et al., 1998).
This region excludes the NLS, omega sequence, type [V secretion signal,
and most of the relaxase domain, including the active site, HRY motif, and
HIT triad (Figure 8-4). In addition, most of this region is very poorly con-
served among different VirD2 proteins (Figure 8-4), and it adjoins a re-
gion not required for VirD2 function (residues 338-356) (Shurvinton et al.,
1992). Cyclosporin A, which disrupts the interaction of VirD2 with cyclo-
philins, also inhibits Agrobacterium-mediated transformation of plant cells
(Deng et al., 1998), but it is not clear whether this effect is due to disrup-
tion of the VirD2-cyclophilin interaction.

5 T-DNAINTEGRATION

5.1 Integration products

Structures of integrated T-DNAs contributed to our understanding of
the transformation process. However, the results require cautious interpre-
tation because T-DNAs in established tumor lines may have rearranged
subsequent to the initial integration events. Thus, the structures examined
may not resemble the initial integration products, although numerous T-
DNAs remained stable after lengthy propagation of transformed tissue
(Van Lijsebettens et al., 1986). Indeed, non-oncogenic T-DNAs in trans-
genic plants remain stable through meiosis and mitosis (Barton et al.,
1983). Many integrated T-DNAs do not undergo obvious rearrangements
and remain colinear with the corresponding portion of the Ti plasmid.
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T-DNAs reside at a variety of locations in the plant genome, often as sin-
gle copies or short tandem arrays (direct or inverted repeats) (Lemmers et
al., 1980; Thomashow et al., 1980; Zambryski et al., 1980; Peerbolte et al.,
1987), and separate T-DNAs can integrate independently at different loca-
tions in the genome of a single plant cell (Chyi et al., 1986).

Alterations of the host target site that accompany T-DNA insertion
suggest that this process follows a complex pathway. In one case, T-DNA
integration produced a 158-base-pair direct repeat of host sequences as
well as a base change, a small deletion, and “filler” DNA of unknown ori-
gin that resembles nearby host sequences (Gheysen et al., 1987; Gheysen
et al., 1991). Other transformed plant cells contained a particular truncated
T-DNA integrated at several different locations in the genome. Apparently
the plant cell copied and aberrant T-DNA before integrating the copies at
multiple sites. Thus, T-DNA integration occurs via a complex mechanism
with several steps, including replication events and ligation of T-DNA to
plant DNA.

5.2 The role of VirD2 in T-DNA integration

VirD2 participates in T-DNA integration, as indicated by several ob-
servations. First, the left and right ends of T-DNAs are joined to plant
DNA via different mechanisms. Sequences of plant-to-T-DNA junctions
indicate that right-hand ends of integrated T-DNAs very often correspond
exactly to the base at which T strands attach to VirD2; in contrast, the left
end of the T-DNA varies by hundreds of bases (Matsumoto et al., 1990;
Gheysen et al., 1991; Mayerhofer et al., 1991). This preservation of right-
hand T-DNA ends suggests that VirD2 protects them from nuclease attack
(Jasper et al., 1994) and may ligate the 5’ ends of T strands to plant DNA
(Pansegrau et al., 1993; Jasper et al., 1994). Second, specific mutations in
virD2 either reduce integration (but not nuclear entry) of T-DNA
(Narasimhulu et al., 1996) or result in T-DNAs with aberrant right-hand
ends (Tinland et al., 1995), indicating that proper joining of the VirD2-
bound end of a T strand to plant DNA requires wild-type VirD2. Third,
VirD2 has ligase activity in some assays. Purified VirD2 cleaves ssDNAs
containing the bottom strand of the T-DNA border sequence (Pansegrau
et al.,, 1993; Jasper et al., 1994), and VirD2 can ligate these cut ssDNA
molecules to reform the original substrate (Jasper et al., 1994) or join the
VirD2-bound portion to another oligonucleotide in a sequence-specific
manner (Csonka and Clark, 1979). This same ligase activity may join the
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5’ end of T strands to plant DNA, although another in vitro study suggests
that plant proteins are involved in this step (Ziemienowicz et al., 2000).

6 PLANT GENETIC ENGINEERING

6.1 Agrobacterium virulence proteins help preserve T-DNA
structure

A. tumefaciens-mediated gene transfer is the preferred method to create
transgenic plants. The proteins associated with T-DNA, VirD2 and VirE2,
help maintain the integrity of the integrated genes and reduce the fre-
quency of duplications and rearrangements, which often affect transgene
expression. For example, transcription through inverted repeat copies of a
transgene will produce double-stranded RNA. This aberrant RNA may
trigger post-transcriptional silencing of the transgene through systemic
sequence-specific degradation of the RNA (Fire et al., 1998; Hamilton
and Baulcombe, 1999). Electroporation, transformation, or microprojectile
bombardment can introduce “naked” DNA into plant cells, but integration
is inefficient and almost always results in multiple tandem copies that suf-
fer frequent rearrangements.

6.2 “Agrolistic” transformation

A novel approach combines the “biolistic” or microprojectile bom-
bardment method with the integration-promoting activity of VirD2 protein.
“Agrolistic” transformation uses bombardment with tungsten particles
coated with double-stranded T-DNA to introduce DNA into plant cells
(Hansen and Chilton, 1996; Hansen et al., 1997). In contrast to standard
biolistic transformation, the T-DNA includes border sequences as well as
virDI and virD2 fused to plant promoters. Plant cells that receive the T-
DNA via particle bombardment produce VirD1 and VirD2 prior to integra-
tion of the incoming DNA. The VirD1/VirD2 enzyme nicks the border
sequences, which yields an integrated T-DNA with a precise right end
(Hansen and Chilton, 1996; Hansen et al., 1997). This approach is impor-
tant for species recalcitrant to regeneration from tissue culture, because
cells within embryos can be transformed.
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6.3 Use of the VirD2 omega mutant to create marker-free
transgenic plants

Deletion of the omega sequence at the C-terminus of VirD2
(Shurvinton et al., 1992) reduces stable T-DNA integration more pro-
foundly than it reduces T-4DNA transfer and transient expression of genes
located on the T-DNA (Mysore et al., 1998). This provides an opportunity
to obtain marker-free transgenic plants by transient selection of kanamy-
cin-resistant plant cells (Rommens et al., 2004). Host cells are cocultivated
with two disarmed 4. tumefaciens strains: a gene encoding kanamycin re-
sistance is delivered from a strain with the VirD2-omega mutation, and the
desired transgene (not linked to a selectable marker) is delivered from a
separate strain with wild-type VirD2 (Rommens et al., 2004). Plant cells
that express the kanamycin resistance gene transiently (but fail to inherit
this gene stably) can be selected by temporary growth on medium contain-
ing kanamycin, and a significant fraction of these cells are stably trans-
formed with the desired transgene (Rommens et al., 2004).

6.4 Efficient transgene targeting by homologous
recombination is still elusive in plants

All plant transformation methods, including 4. tumefaciens-mediated
transfer, suffer from one serious limitation: the inability to target trans-
genes to specific chromosomal locations at a useful frequency. In bacteria,
fungi, and mammalian cells, transgenes flanked on both sides with host
chromosomal DNA can be introduced into specific locations via homolo-
gous recombination. Although such homologous recombination events can
occur during plant transformation, they constitute a very small fraction of
the total number of integration events. The chromosomal location of a
transgene can affect expression of both the transgene and chromosomal
genes at the site of insertion. Usually, plant scientists must examine hun-
dreds (or thousands) of transformed plants to find one that exhibits appro-
priate transgene expression without affecting other important agronomic
traits. An efficient integration system based on homologous recombination
would allow engineers to place transgenes at specific chromosomal loca-
tions that allow good transgene expression without affecting host genes.
For these reasons, an efficient transformation method that allows control
over transgene insertion site is an important tool that plant genetic engi-
neers currently lack.
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Abstract. Agrobacterium tumefaciens has evolved as a phytopathogen by adapting a DNA
conjugation system for the novel purpose of delivering oncogenic T-DNA and protein sub-
strates to susceptible plant cells. This transfer system is a member of a large family of
translocation systems termed the type IV secretion (T4S) systems. The T4S systems are
structurally complex machines assembled from a dozen or more membrane proteins often
in response to environmental signals. In 4. tumefaciens and other Gram-negative bacteria,
the T4S machines assemble as a cell-envelope spanning secretion channel and an extracel-
lular pilus. Recent studies of the 4. tumefaciens VirB/D4 T4S system and closely related
systems have advanced our understanding of T4S secretion in several fundamental areas,
including: (i) T-DNA processing reactions and requirements for T-DNA and protein
substrate recruitment, (ii) stages leading to assembly and polar positioning of the transfer
apparatus, (iii) VirB subunit membrane topologies and structures and transfer channel architec-
ture, (iv) energetic contributions to machine assembly and function, and (v) the T-DNA
translocation route through the VirB/D4 transfer channel. These studies are generating a
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picture of the VirB/D4 T4S system as multifunctional and structurally dynamic. The wealth
of information generated by many laboratories in recent years has established the 4. fume-
faciens VirB/D4 T4S system as an important paradigm for unraveling the mechanistic de-
tails of DNA and protein trafficking between diverse cell types.

1 INTRODUCTION

The ability of Agrobacterium tumefaciens to transfer oncogenic T-
DNA as well as effector proteins across kingdom boundaries is a unique
aspect and hallmark feature of A. fumefaciens phytopathogenesis. The cell
surface machine mediating translocation of DNA and protein macromole-
cules is composed of proteins encoded by the virB and virD operons,
specifically, VirB1 through VirB11 and VirD4. Besides elaborating a tran-
senvelope channel allowing substrate transfer to plants and other cell
types, the VirB proteins mediate production of an extracellular pilus for es-
tablishing contact with target cells. The VirB/D4 machine is now recog-
nized as a member of a growing family of translocation systems termed the
type IV secretion systems (T4S systems or T4SS). Both in terms of their
mechanism of action and their broad biological functions, the T4S systems
are a fascinatingly diverse group of translocation systems required for in-
fection by many agriculturally and medically important bacterial patho-
gens. Today, the VirB/D4 T4S system is recognized as an important model
for the T4S superfamily, due to the dedicated efforts of many laboratories
intent on defining the molecular details underlying transkingdom T-DNA
transfer. In this chapter, we will summarize recent progress in our under-
standing of the VirB/D4 T4S system with emphasis on the mechanistic and
structural features of the translocation channel. Information will be derived
mainly from studies of VirB/D4 machines encoded by the octopine-type
pTiA6NC and nopaline-type pTiC58 plasmids.

2 A HISTORICAL OVERVIEW

We will first highlight pioneering studies that led to the discovery of
the T-DNA transfer system as an adapted conjugation machine, and dis-
coveries that resulted in renaming conjugation and related protein traffick-
ing systems as type [V secretion (T4S) systems.
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2.1 Discovery of the VirB/D4 transfer system

Stachel and Nester delimited the boundaries of the virB gene cluster
and established its importance for virulence by Tn3HoHol transposon
mutagenesis (Stachel and Nester, 1986). Nearly all transposon insertions
within an ~11-kilobase region located between vird and virG abolished
virulence. The transposon insertions generated transcriptional and transla-
tional fusions to /acZ and supplied evidence for a single operon which, like
the flanking vir operons, was strongly induced upon co-cultivation of A4.
tumefaciens with plant cells, or exposure to plant cell exudates or specific
classes of purified plant phenolic compounds, e.g., acetosyringone (Bolton
et al., 1986; Engstrom et al., 1987; Melchers et al., 1989).

Four laboratories originally sequenced virB operons from octopine
(pTiA6NC, pTil5955) and nopaline (pTiC58) Ti plasmids (Thompson
et al., 1988; Ward et al., 1988; Kuldau et al., 1990; Shirasu et al., 1990;
Ward et al., 1990). The virB operon from these plasmids encodes 11 VirB
proteins, VirB1 through VirB11. The VirB proteins from the octopine
pTiA6/pTil5955 and the nopaline pTiC58 plasmids are highly related,
with sequence identities ranging from 71% for VirB1 and VirD4 to over
90% for VirB2. Despite this high sequence conservation and the fact that
the VirB/D4 systems from the pTiA6NC and pTiC58 plasmids are studied
in the same strain C58 genetic background, there have been several ex-
perimental findings distinguishing the two systems that unlikely are due to
differences in experimental approaches; these are mentioned in the appro-
priate sections below.

In the early days, computer analyses yielded only a few clues as to pos-
sible functions of the VirB proteins for virulence (see above refs. and
Beijersbergen et al., 1994). Most notably, characteristic signal sequences
were identified at the N termini of VirB1, VirB2, VirB5, VirB7 and VirB9
suggestive of translocation across the inner membrane. Potential trans-
membrane (TM) domains near the N termini of VirB3, VirB8, and VirB10
were suggestive of bitopic inner membrane configurations oriented with C-
terminal domains in the periplasm. Multiple potential TM segments in
VirB6 were suggestive of a polytopic configuration, whereas the absence
of characteristic TM segments suggested VirB4 and VirB11 reside pre-
dominantly or exclusively in the cytoplasm. Consistent with their predicted
cellular locations, VirB4 and VirBl11 were shown to carry conserved
Walker A motifs suggestive of NTP binding activities important for ener-
gizing reactions associated with machine biogenesis and/or translocation.
Finally, VirB7 was shown to possess a signal sequence characteristic of
lipoproteins.
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Stachel and Zambryski proposed that the T-DNA transfer process
might be an adapted form of bacterial conjugation (Stachel and Zambryski,
1986). Strong support for this hypothesis emerged with the discoveries that
A. tumefaciens can deliver the mobilizable IncQ plasmid RSF1010 to plant
cells (Buchanan-Wollaston et al., 1987). VirD2 and T-DNA border se-
quences respectively were shown to resemble proteins termed relaxases
and cognate origin-of-transfer (ori7) sequences of several self-trans-
missible plasmids as well as the mobilizable IncQ plasmid, RSF1010
(Lessl et al., 1992a; Waters and Guiney, 1993). Sequence analyses of the
transfer (tra) regions of several conjugative plasmids identified many VirB
and VirD4 homologs (Lessl et al., 1992b; Shirasu and Kado, 1993). Nota-
bly, the tra regions of both pKM101 and R388 were found to encode sub-
units homologous to all 11 VirB subunits and the VirD4 subunit, whereas
the RP4 fra region encodes at least 7 discernible VirB/D4-like subunits
plus several other ancestrally unrelated components. Following the demon-
stration of interkingdom transfer of RSF1010, Hooykaas and colleagues
showed that the VirB and VirD4 proteins mediate transfer of RSF1010
from agrobacterial donor to recipient cells (Beijersbergen et al., 1992).
Ward and colleagues then reported the interesting finding that wild-type A.
tumefaciens cells carrying RSF1010 display attenuated virulence, whereas
the overexpression of three virB genes, virB9, virB10, and virB11, restored
virulence to wild-type levels (Ward et al., 1991). These investigators pro-
posed that RSF1010 and T-DNA compete for available VirB/D4 transfer
machines, with VirB9, VirB10, and VirB11 being rate limiting for ma-
chine assembly. Thus, by the mid-1990’s, it was widely accepted that A.
tumefaciens had appropriated an ancestral conjugation system for the pur-
pose of delivering oncogenic T-DNA to plant cells.

2.2 Renaming the mating pore as a type IV translocation
channel

The next significant conceptual advance in this field derived from a se-
quence analysis of the Bordetella pertussis ptl gene cluster (Shirasu and
Kado, 1993; Weiss et al., 1993). The p#/ genes mediate export of the 6-
subunit pertussis toxin across the outer membrane of B. pertussis, and the
sequence studies identified the p#/ gene products as VirB homologs. The
ptl genes are collinear with the virB genes in the respective operons and
encode homologs for all but the VirB1 and VirB5 proteins. These findings
established for the first time an evolutionary link between a conjugation
system and a dedicated protein secretion machine. Soon afterward, a new
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nomenclature was proposed for macromolecular trafficking systems dis-
playing ancestral relatedness to the 4. tumefaciens VirB/D4 and related
conjugation systems. These systems were designated as type IV secretion
systems (T4SS, or T4S systems) in order to distinguish them from the type
I (T1S; ATP-binding cassette or ABC transporters), type II (T2S; terminal
branch of the general secretory pathway), III (T3S; ancestry-related to bac-
terial flagella) systems, type V (T5S; autotransporter) and, most recently,
type VI (T6S) systems (Economou et al., 2006). The VirB/D4-like systems
are also designated type IVA, as a means of distinguishing this subfamily
from the type IVB systems. The types IVA and IVB components are unre-
lated with the exception of subunits homologous to VirB10, VirB11, and
VirD4 (Christie and Vogel, 2000).

Throughout the last 10 years, many T4S systems have been identified
through genome sequencing projects or screens for virulence factors
(Cascales and Christie, 2003; Christie et al., 2005). In the latter screens,
mutations introduced into T4S machine subunits invariably abolished viru-
lence, establishing the importance of these machines for one or more
stages of infection. Where investigated, these systems have been shown to
translocate effector proteins to the cytosols of eukaryotic cells, leading to
their classification as ‘effector translocation’ systems. Most T4S machines
likely contribute to pathogenesis through delivery of proteins to target eu-
karyotic cells, but recent studies also suggest the T4S machines might
promote infection in various other ways. For example, in Helicobacter
pylori, the CagA T4SS is implicated in translocation of peptidoglycan
fragments to mammalian cells, resulting in induction of a host defense re-
sponse involving the protein Nod1 (Viala et al., 2004). Some T4S systems,
including the VirB/D4 transfer system of A. tumefaciens, the tra system of
the conjugative plasmid RP4, the dot/icm system of Legionella pneumo-
phila, and a T4S system of Bartonella henselae, deliver DNA to various
eukaryotic cells at least in specific laboratory conditions (Beijersbergen
et al., 1992; Bates et al., 1998; Vogel et al., 1998; Kunik et al., 2001;
Waters, 2001 and C. Dehio, personal communication). At this time, the 4.
tumefaciens VirB/D4 system remains the only T4S system for which in-
terkindgom DNA transfer is an essential feature of phytopathogenicity, but
it is intriguing to speculate that other T4S systems also deliver DNA effec-
tor molecules during the course of infection. Finally, the T4S systems
might enhance virulence by mechanisms other than interkingdom effector
translocation. For example, these systems elaborate surface adhesins or ex-
tracellular pili which can aid in colonization and establishment of biofilms
on host tissues (Ghigo, 2001; Reisner et al., 2006). Also, the Cag T4S of
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H. pylori induces IL-8 secretion in mammalian cells even in the absence of
detectable substrate transfer, suggesting that the T4S machine itself trig-
gers this response through binding a host cell surface receptor(s) (Selbach
et al., 2002).

3 A. TUMEFACIENS VIRB/D4 SECRETION
SUBSTRATES

Before discussing the 4. tumefaciens VirB/D4 system in structural and
mechanistic detail, it is necessary to present available information per-
taining to the macromolecular substrates of this transfer system. It is now
widely appreciated that 4. tumefaciens incites Crown Gall disease by
translocating oncogenic T-DNA to susceptible plants cells. In the past 15
years or so, studies also have identified a number of protein substrates
whose translocation to plant cells is necessary for tumor formation. In gen-
eral, these effector proteins are thought to promote transmission of the T-
DNA transfer intermediate through the plant cytoplasm to the nucleus.
However, their specific functions in the plant are beyond the scope of this
Chapter; the reader is referred to chapter 13 for current information. Here,
we will summarize recent progress in our understanding of how the DNA
and protein substrates of the VirB/D4 system are recognized and recruited
to the transfer apparatus.

3.1 T-DNA processing and recruitment to the VirB/D4 channel

The T-DNA is processed from its position on the Ti plasmid into a
translocation-competent substrate through the action of the DNA process-
ing factors acting at T-DNA border repeat sequences (Figure 9-1). The
catalytic subunit, VirD2, is a member of a large family of transesterases
that generate single-stranded nicks at origin-of-transfer (oriT) sequences of
conjugative plasmids (Pansegrau et al., 1993; Scheiffele et al., 1995).
Upon recruitment to ori7-like sequences within the T-DNA borders,
VirD2 nicks both borders, and remains covalently bound to the 5’ end of
the transferred strand (T-strand). Purified VirD2 catalyzes nicking of T-
DNA substrates in vitro, but border cleavage in vivo requires accessory
proteins including VirD1 and the VirC1 and VirC2 proteins (Veluthambi
et al., 1988; De Vos and Zambryski, 1989 Pansegrau, 1993 #687;
Scheiffele et al., 1995). VirC1 binds the overdrive sequence flanking the
right border repeat sequences of octopine-type Ti plasmids (Toro et al.,



Translocation of Oncogenic T-DNA and Effector Proteins to Plant Cells 321

1988; Toro et al., 1989), and this binding reaction stimulates T-DNA proc-
essing (Atmakuri et al., 2007). Interestingly, VirCl1 is related to the ParA
family of ATPases, which mediate partitioning of chromosomes and plas-
mids during cell division (Zhu et al., 2000).

Recent work advanced our understanding of how VirCl and VirC2
contribute to the efficiency of plant transformation (Atmakuri et al., 2007).
First, a quantitative analysis confirmed and extended early studies by
showing that wild-type 4. tumefaciens cells accumulate approximately
12-14 molecules of processed T-strand per Ti plasmid within 24 h of in-
duction of the virulence (vir) genes with the plant phenolic acetosyringone
(AS). Both VirCl and VirC2 were shown to be required to stimulate this
high level of T-strand production, and a mutation in an invariant Lys resi-
due in the Walker A nucleotide triphosphate binding motif of VirCl
(VirC1K15Q) abolished the stimulatory effect indicating the importance of
ATP binding or hydrolysis. Very intriguingly, VirCl, VirC2, and VirD1
localize predominantly at one pole of A. tumefaciens cells, as shown by
immunofluoresence microscopy (Atmakuri et al., 2007). Each of these
processing factors localizes at the cell poles independently of each other as
well as the VirB/D4 T4S machine components (which also localizes at A.
tumefaciens cell poles - see below). VirCl1 polar localization serves to re-
cruit the VirD2 relaxase to the cell membrane as well as to the cell pole,
and again studies of the VirC1K15Q mutant established that ATP binding
or hydrolysis is important for polar recruitment of the relaxase. By adapt-
ing the fluorescence in situ hybridization (FISH) assay for detection of
single-stranded DNA in a cell, Atmakuri and colleagues further showed
that VirCl positions the T-strand at cell poles by an ATP-dependent
mechanism. The results strongly indicate that VirC1 functions to recruit
the processed VirD2-T-strand transfer intermediate to the cell pole.

Adding to the above, Atmakuri and colleagues presented evidence that
VirCl interacts with VirD4, the substrate receptor for the VirB/D4 T4S
translocation system (see below). The data therefore suggest that A. tume-
faciens evolved Par-like proteins for two novel purposes associated with
conjugation: (i) VirCl functions together with VirC2 to stimulate DNA
processing through recruitment of VirD2 to the T-DNA borders and (ii)
VirCl1 recruits the T-complex from a cytosolic pool to coordinate substrate
docking with the polar-localized VirD4 substrate receptor (Atmakuri et al.,
2007). It is important to note that virC mutants can still transform certain
plant species. The novel functions ascribed to VirC1 and VirC2 thus serve
principally to enhance the efficiency of the A. tumefaciens infection proc-
ess and broaden its host range.
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3.2 Processing and recruitment of protein substrates

The VirB/D4 T4S system also translocates multiple protein substrates
(Figure 9-1). Early studies suggested the VirE2 (SSB) associates noncova-
lently with T-strand to form a VirD2-T-strand-VirE2 particle (Christie
et al., 1988). While formation of a VirD2-T-strand-VirE2 particle, termed
the T-complex, is still considered essential for T-DNA transmission to the
plant nucleus, several lines of evidence now argue strongly that the VirD2-
T-strand particle and VirE2 are exported separately across the 4. tumefa-
ciens envelope and assemble within the plant cell (Stahl et al., 1998;
Vergunst et al., 2000; Simone et al., 2001).

Figure 9-1. Processing of substrates for transfer through the 4. tumefaciens VirB/D4 type
IV secretion system. The Dtr processing factors VirCl, VirC2, VirD1, and VirD2 assemble
at the border repeats flanking the T-DNA and VirD2 relaxase generates a nick on the strand
destined for transfer (T-strand). ParA-like VirC1 functions both in VirD2 recruitment to the

T-DNA borders and to the A. tumefaciens cell poles to coordinate substrate docking with

the VirD4 receptor. VirE2 is bound by the VirE1 chaperone and is recruited via a C-
terminal domain to the polar-localized VirD4 receptor. Two oncogenic suppressors, the
RSF1010 transfer intermediate and pSA-encoded Osa, block substrate docking with VirD4.
See text for further details and references.

Most convincingly, Vergunst and colleagues demonstrated that VirE2
fused to the Cre recombinase mediates transfer of Cre to plant cells inde-
pendently of the T-DNA, as assessed by recombinase activity at /ox target
sites (Vergunst et al., 2000). This assay, termed CrAFT, has now been
widely used to screen for effectors of the A. tumefaciens VirB/D4 system
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as well as several other T4S systems. Coupled with this finding, an 4. tu-
mefaciens virE2 mutant will induce tumor formation on transgenic plants
engineered to produce VirE2, establishing the importance of VirE2 for T-
DNA stability or translocation in the plant (Citovsky and Zambryski,
1993). virE?2 is spatially juxtaposed to the upstream virEl, and both genes
must be coexpressed from the native virE promoter to complement a virE2
null mutation suggestive of translational coupling. As expected for prod-
ucts of translationally coupled genes, VirEl and VirE2 form a stable com-
plex in vivo as shown by two-hybrid assays and biochemical screens (Deng
et al., 1999; Sundberg and Ream, 1999; Zhao et al., 2001). VirEl is a
small protein with physical properties resembling secretion chaperones re-
quired for substrate transfer via type III secretion systems (Deng et al.,
1999; Sundberg and Ream, 1999). Consistent with a proposed chaperone
function, VirEl prevents VirE2 from premature self-association (Zhao et
al., 2001; Frenkiel-Krispin et al., 2006), and a very recent study showed
that chaperone binding prevents VirE2 from binding the T-DNA transfer
intermediate in the bacterium (Frenkiel-Krispin et al., 2006). VirEl is not
required for VirE2 docking with the VirB/D4 T4S system (Atmakuri et al.,
2003; Vergunst et al., 2003), consistent with findings that VirE2 carries C-
terminal signals conferring substrate recognition (see below).

As noted above, VirEl is the only identified secretion chaperone in A.
tumefaciens, and it seems specifically adapted for VirE2 export. Other pro-
tein substrates include VirE3, VirF, and VirD5, and these likely are ex-
ported independently of cognate secretion chaperones (Vergunst et al.,
2000; Vergunst et al., 2005). These proteins are not implicated in binding
the T-strand and various physical properties, e.g., folding kinetics, mono-
meric status, and accessibility of secretion signals, might obviate the need
for a secretion chaperone. Recent work also has shown that the VirD2 re-
laxase possesses secretion signals recognizable by the transfer machinery
and, when fused to Cre, mediates transfer of the recombinase to target cells
independently of an association with the T-strand (Vergunst et al., 2005).

Ream et al. discovered a protein termed GALLS that is required for
T-DNA transfer from Agrobacterium rhizogenes to plants. Intriguingly,
expression of the GALLS gene can complement a virE2 mutation in 4. tu-
mefaciens, suggesting that GALLS is translocated to plant cells where it
substitutes for VirE2 function (Hodges et al., 2004). GALLS shows no se-
quence similarities with VirE2, but contains several domains for NTP
binding, nuclear localization in the plant, and T4S secretion (see below).
Recently, Ream et al. confirmed that GALLS indeed is translocated to
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plant cells by use of the CrAFT assay (Hodges et al., 2006). See chapter 10
for updated information on this interesting protein.

In addition to protein effectors substrates that contribute to the infection
process — VirE2, VirE3, VirF, and VirD5 — the A. tumefaciens VirB/D4
T4S system also translocates GALLS, the VirD2 and RSF1010 MobA re-
laxases independently of associated DNA, and Msi059 and Msi061, two
substrates of a related T4S system carried by Mesorhizobium meliloti
(Hubber et al., 2004).

3.3 Secretion signals

What is the nature of the secretion signal conferring substrate recogni-
tion by the VirB/D4 T4S system? A common feature among the above
substrates is the presence of C-terminal clusters of positively-charged
amino acids, e.g., Arg-x-Arg motifs (Vergunst et al., 2005). These residues
are important for transfer, as shown by analyses of various substrate mu-
tants by CrAFT (Vergunst et al., 2005). Further, the C-terminal 11 residues
of GALLS and 10 residues of VirF have been shown to confer weak trans-
fer of Cre, whereas the last 27 residues of both proteins constituted strong
transport signals (Vergunst et al., 2005; Hodges et al., 2006). These are the
smallest sequences identified to date that confer detectable substrate trans-
fer. Consistent with these findings, an A. tumefaciens strain producing a
VirE2 variant deleted of C-terminal residues is avirulent, yet a virE2 mu-
tant strain can nevertheless incite tumor formation on transgenic plants en-
gineered to produce such VirE2 truncation derivatives (Simone et al.,
2001). These findings suggest that the C-terminal residues are required for
translocation but not for VirE2 function in the plant. It was also shown that
as little as 100 C-terminal residues of VirE2 is sufficient for recruitment to
the polar-localized VirD4 receptor (see below), as monitored with a GFP
tag (Atmakuri et al., 2003). With the exception of positive-charge residues,
the putative C-terminal secretion signals do not possess other discernible
sequence signatures. Thus, the VirB/D4 T4S system very likely recognizes
secretion substrates through C-terminal charge-based interactions.

For several T4S systems, there is accumulating evidence that additional
motifs located elsewhere on native protein substrates also are important for
transfer. Such motifs might participate in substrate recognition or serve as
discrimination signals for controlling the relative amounts or the temporal
order of substrate transfer. As described below, VirB9 is postulated to
comprise a distal portion of the secretion channel. By mutational analysis,
it was shown that VirB9 has the capacity to discriminate between different
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DNA substrates (Jakubowski et al., 2005). One class of VirB9 mutations
was identified that selectively block translocation of the VirD2-T-strand
and not RSF1010 transfer intermediate, whereas another class exerted the
opposite effect. Both types of substrate discrimination mutations mapped
predominantly to the N-terminal third of VirB9. Both VirD2 and MobA
carry similar C-terminal Arg clusters, suggesting that this region of VirB9
selectively regulates passage of these two substrates through recognition of
other motifs carried by these relaxases.

Figure 9-2. Topologies and cellular locations of the VirB/D4 T4S subunits at the A. tumefa-
ciens cell envelope. Proteins that are highly conserved and form a stable assembly interme-
diate, are boxed and denoted as a ‘core complex’. All proteins are required for channel
activity, and only the VirB proteins are required for polymerization of the VirB2 pilin as the
extracellular T-pilus. X-ray structures are known for homologs of VirD4, the VirB11 AAA
ATPase, VirB5, and soluble domains of VirB8 and VirB10. An NMR structure has been
developed for a co-complex of a VirB7 ortholog and the C-terminal domain of a VirB9
homolog. IM, inner membrane; OM, outer membrane. See text for details.

3.4 Inhibitors of VirB/D4-mediated substrate translocation

Two factors have been shown to suppress virulence of 4. tumefaciens,
the Osa fertility inhibition factor of IncW plasmid pSa and the MobA-R-
strand transfer intermediate of IncQ plasmid RSF1010 (Ward et al., 1991;
Chen and Kado, 1994; Binns et al., 1995; Chen and Kado, 1996; Lee et al.,
1999). Recently, a combination of biochemical and cytological evidence
was presented indicating that both inhibitors act by blocking VirD4 receptor
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access to both T-DNA and protein substrates (Figure 9-1; see below and
Cascales et al., 2005). RSF1010 is a substrate of this system and, indeed,
processing to form the MobA-R-strand is necessary for the ‘oncogenic
suppression’ (Binns et al., 1995). RS1010 therefore probably competes
with the native substrates of this system. Osa is not a secretion substrate,
but still might exert its inhibitory effect through binding VirD4 at the sub-
strate interface, though other mechanisms are possible.

4 THE VIRB/D4 MACHINE

The processed T-DNA transfer intermediate and effector proteins dis-
cussed above are translocated through the VirB/D4 T4S system to the plant
cell. In the following sections, we will describe this transfer system, be-
ginning with brief descriptions of the VirB/D4 subunits (Figure 9-2). De-
tailed information about these subunits and their homologs in other T4S
systems can be found in several recent reviews (Cascales and Christie,
2003; Christie, 2004; Baron, 2005; Christie et al., 2005; Christie and Cas-
cales, 2005; Schroder and Lanka, 2005).

4.1 Energetic components

Three subunits, VirD4, VirB11, and VirB4, carry conserved Walker A
motifs required for function. All three subunits bind ATP, and VirB11 and
VirD4 or homologs of these subunits also hydrolyze ATP (Christie et al.,
1989; Krause et al., 2000b; Tato et al., 2005). These subunits are postu-
lated to supply the energy required for channel or pilus assembly or deliv-
ery of secretion substrates to the cell surface.

4.1.1 VirD4

VirD4 is a member of a family of ATPases related to the SpollIE and
FtsK DNA translocases (Gomis-Ruth et al., 2004). Farrand et al. con-
structed chimeric T4S systems composed of homologs of VirD4 from one
T4S system and VirB-like components from a second T4S system
(Hamilton et al., 2000). Such chimeric T4S systems were shown to be
functional, and, furthermore, these systems exported substrates characteris-
tically translocated by the system from which the VirD4-like protein was
derived. These findings strongly suggest that VirD4 and its homologs link
the Dtr processing proteins bound at oriT - the relaxosome - to the T4S
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system. Consequently, these proteins have been termed ‘coupling proteins’
or ‘substrate receptors’.

VirD4 homologs have been purified and shown to bind DNA in vitro
(Moncalian et al., 1999; Hormaeche et al., 2002; Schroder et al., 2002;
Schroder and Lanka, 2003). Single-stranded (ss)-DNA is preferred over
double-stranded (ds)-DNA, yet binding is also sequence non-specific, sug-
gesting that these proteins recognize DNA substrates by virtue of interac-
tions with the relaxase or other relaxosomal subunits bound at oriT or the
T-DNA border sequences. VirD4 probably interacts with VirD2, although
as discussed above ParA-like VirC1 mediates this interaction. The role of
VirD4 as a substrate receptor has been confirmed for both T-DNA and
protein substrates (see below).

Structures of soluble domains of two VirD4-like proteins have now
been solved by X-ray crystallography, one of TrwB encoded by plasmid
R388 and one of E. coli FtsK. TrwB presents as six equivalent protomers
assembled as a spherical particle of overall dimensions 110 A in diameter
and 90 A in height. This ring-like structure possesses a central channel of
20 A in diameter, constricted to 8 A at the entrance facing the cytoplasm
(Gomis-Ruth et al., 2001). This channel traverses the structure, possibly
connecting cytoplasm with periplasm. An appendix corresponding to the
N-terminal TM domain was discernible by image averaging of electron
micrographs. This overall structure bears a striking resemblance to the F1-
ATPase o333 heterohexamer, whereas the structure of the soluble domain
closely resembles DNA ring helicases and other proteins, such as FtsK,
that translocate along DNA. The FtsK structure is slightly larger with an
outer diameter of 120 A and a central annulus of 30 A (Massey et al.,
2006). The predicted structure is a dodecamer composed of two hexamers
stacked in a head-to-head arrangement. As shown by electron microscopy
imaging, double-stranded DNA runs through the FtsK annulus, providing a
structural view of a previously described ATP-dependent translocase activ-
ity (Saleh et al., 2004).

Thus, VirD4 functions as a receptor for the T-DNA and protein sub-
strates of the VirB/D4 T4S system, and it might also function as an inner
membrane translocase. Another interesting feature of VirD4 is that it local-
izes at the cell poles of 4. tumefaciens; this will be discussed in more detail
below.

4.1.2 VirB11

VirB11 is a member of a large family of ATPases associated with sys-
tems dedicated to secretion of macromolecules (Krause et al., 2000a;
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Planet et al., 2001). Purified homologs TrbB, TrwC, H. pylori HP0525,
and B. suis VirB11 assemble as homohexameric rings discernible by elec-
tron microscopy, and the last two also by X-ray crystallography (Krause
et al., 2000a; Yeo et al., 2000; Savvides et al., 2003; Hare et al., 2006).
These structures present as double-stacked rings formed by the N- and C-
terminal halves and a central cavity of ~50 A in diameter. A. tumefaciens
VirB11 was modeled on HP0525, but recent evidence suggests it is more
structurally similar to B. suis VirB11 (Hare et al., 2006). The most recent
update to this structural information is that B. suis VirB11 is configured
such that the nucleotide binding site is composed of the N-terminal domain
of one monomer and the C-terminal domain of the next monomer in the
hexamer. This domain swap likely ensures a coordination of ATP utiliza-
tion among the subunits of the hexamer to drive machine assembly or ac-
tivity (Hare et al., 2006). VirB11 associates peripherally but tightly with
the inner membrane of 4. tumefaciens. Mutants of VirB11 bearing Walker
A nucleotide-binding motif substitutions bind the inner membrane more
tightly than the wild-type protein, suggestive of an ATP-regulated mem-
brane interaction (Rashkova et al., 1997; Rashkova et al., 2000). Despite
the accumulation of structure — function data over the past few years, the
role of VirB11 in T4S is still fundamentally unknown.

4.1.3 VirB4

VirB4 subunits are large inner membrane proteins with consensus
Walker A and B nucleoside triphosphate-binding domains (Rabel et al.,
2003). VirB4 homologs are extensively distributed among T4S systems of
Gram-negative and Gram-positive bacteria. A VirB4 topology model was
generated by extensive reporter fusion and protease susceptibility studies;
this model depicts VirB4 as predominantly cytoplasmic with possible pe-
riplasmic loops, one near the N terminus and a second just N-terminal to
the Walker A motif (Dang and Christie, 1997). These experimental find-
ings are consistent with computer-based predictions and results of frac-
tionation studies of the TrbE homolog from RP4 (Rabel et al., 2003).
These findings are also consistent with an in silico analysis of the VirB4
structure, based on observed sequence similarities between the C-terminal
residues 426 to 787 of VirB4 and TrwB of plasmid R388 (see below), that
placed VirB4 at the entrance to the VirB/D4 channel (Middleton et al.,
2005). However, recently, a completely different model based primarily on
yeast two-hybrid interaction data placed VirB4 almost entirely in the pe-
riplasm (Draper et al., 2006). This seems improbable both on grounds of
the reporter fusion protein data and the fact that no other protein with
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conserved nucleotide binding motifs have yet been shown to be located in
the periplasm.

4.2 Inner-membrane translocase components

Several VirB proteins are postulated to assemble with VirD4 to form
the inner membrane translocase.

4.2.1 VirB6

VirB6 is a highly hydrophobic inner membrane proteins with multiple
predicted TMS. A combination of reporter fusion and Cys accessibility
studies of functional substitution mutants support a topology model con-
sisting of a periplasmic N terminus, five TMS, and a cytoplasmic C termi-
nus (Jakubowski et al., 2004). A particularly notable feature of the topol-
ogy model is loop P2, a large central periplasmic loop whose secondary
structure appears important for DNA substrate translocation (see below).
Homologs of VirB6 display relatively low overall sequence similarities
with the exception of a conserved region corresponding to residues ~170 to
205 that includes an invariant Trp residue required for protein function
(Judd et al., 2005c). VirB6 has been shown to stabilize other VirB pro-
teins, notably, VirB3, VirB5, and a VirB7 homodimer species, and it is
also participates in some way in the formation of an outer membrane-
associated VirB7-VirB9 heterodimer (Hapfelmeier et al., 2000; Jakubowski
et al., 2003). Two mutational analyses have begun to define domains and
residues required for VirB6 function (Jakubowski et al., 2004; Judd et al.,
2005c¢). Results of these analyses suggest VirB6 is part of the inner mem-
brane translocation channel.

4.2.2 VirB8

VirB8 is a bitopic inner membrane protein with an N-proximal TMS.
X-ray structures of periplasmic domains of the 4. tumefaciens and B. suis
VirB8 subunits have been solved and both present as a large extended [3-
sheet of four antiparallel strands juxtaposed to five a-helices, giving rise to
an overall globular fold (Terradot et al., 2005; Bailey et al., 2006; Paschos
et al., 2006). Conserved residues important for protein function are buried
in the hydrophobic core, where they are predicted to contribute to VirB8
structural integrity. Other conserved residues are surface exposed and
might mediate contacts with VirB8 partner subunits. VirB8 assembles as a
homodimer, and also interacts with several other VirB subunits, including



330 Krishnamohan Atmakuri and Peter J. Christie

VirB4, VirB5, VirB9, and VirB10 (Kumar and Das, 2001; Ward et al.,
2002).

4.2.3 VirB10

VirB10 also is a bitopic inner membrane protein situated with the bulk
of the protein in the periplasm. After the TMS, most homologs possess a
Pro-rich region, which is predicted to form an extended structure in the pe-
riplasm. A crystal structure is available for a periplasmic fragment corre-
sponding to residues 146 to 376 of the H. pylori ComB10 subunit
(Terradot et al., 2005). The structure presents as an extensively modified
B-barrel with an a-helix projecting off one side and a second, flexible he-
lix-loop-helix of 70 A in length projecting off the top. This structure is
compatible with recent evidence that VirB10 senses ATP energy use by
the inner membrane proteins VirD4 and VirB11 for a dynamic association
with the outer membrane protein VirB9 (Cascales and Christie, 2004a).
Like VirB8, VirB10 establishes multiple contacts with several T4S chan-
nel subunits, including VirD4, VirB4, VirBS8, and VirB9 (Beaupre et al.,
1997; Das and Xie, 2000; Ding et al., 2002; Ward et al., 2002; Llosa et al.,
2003; Atmakuri et al., 2004; Jakubowski et al., 2005).

4.2.4 VirB3

VirB3 is a short polypeptide with one or two predicted transmembrane
domains (TM’s) near the N terminus. An early study reported that the
VirB4 ATPase contributes to the localization of VirB3 at the outer mem-
brane (Jones et al., 1994). However, VirB3 lacks an N-terminal signal se-
quence and, furthermore, a BLAST search identified a phylogenetic clade
in a subset of T4S systems in which VirB3 and VirB4 are fused as a single
polypeptide. (Christie et al., 2005). It is intriguing to speculate that VirB3
interacts with and transduces ATP energy from the cytosolic VirB4 AT-
Pase into the periplasm for some aspect of pilus biogenesis or substrate
transfer.

4.3 Periplasmic/outer-membrane channel components

Several subunits are exported to the periplasm or outer membrane
where they likely form the distal portion of the secretion channel.
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4.3.1 VirB1

VirB1 is a member of a large family of subunits commonly associated
with macromolecular surface structures, including the T2S, T3S, and T4S
systems, type IV pili and flagella, DNA-uptake systems, and bacteriophage
entry systems (Koraimann, 2003). The signature for this protein family is a
lysozyme-like structural fold. In A. tumefaciens, VirB1 is not essential for
T-DNA transfer, though it does augment transfer efficiencies and is also
important for production of the T-pilus (Berger and Christie, 1994; Lai
et al., 2000). The dispensibility of VirB1 for substrate transfer suggests the
VirB/D4 channel can assemble through holes in the peptidoglycan gener-
ated by alternative murein hydrolases or during remodeling of the pepti-
doglycan, presumably during a specific phase of cell growth. Supporting
the former possibility, VirB1 orthologs from Brucella suis and pKM101
complement a virBI null mutation, restoring T-pilus production and T-
DNA transfer to WT levels (Hoppner et al., 2004). Interestingly, VirB1
from the nopaline Ti plasmid appears to be proteolytically processed, and
the C-terminal 73 residues, termed VirB1*, is released to the exterior of
the cell (Llosa et al., 2000). The N- and C-terminal portions of VirB1 were
reported to independently enhance tumorigenesis of strain C58. By con-
trast, VirB1 from the octopine TiA6 plasmid is not proteolytically cleaved
and no processed form of VirB1 is detected in the extracellular fraction
(P. J. Christie, unpublished data). The function of nopaline VirB1* is not
known, nor is the basis for the strain-specificity of the putative VirBl
processing reaction.

4.3.2 VirB5

VirB5 subunits are exported to the periplasm, and they also localize ex-
tracellularly as components of the pilus (Schmidt-Eisenlohr et al., 1999).
An X-ray crystallography structure of one family member, TraC of
pKMI101, presents as a single-domain protein with a mostly o-helical,
elongated structure (Yeo et al., 2003). Evidence from studies of VirB5 and
homologs in other systems suggest the pilus-associated forms of VirB5-
like subunits might contribute to target cell attachment (Schmidt-Eisenlohr
et al., 1999; Schmid et al., 2004). In addition to its extracellular function,
the periplasmic form of VirB5 is required for T-DNA translocation to the
cell surface (see below).
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4.3.3 VirB2

VirB2 is the major pilin subunit of the 4. tumefaciens VirB/D4 T-pilus
and an essential component of the secretion channel (Jones et al., 1996;
Lai and Kado, 1998). VirB2 is a small, hydrophobic subunit with an un-
usually long signal sequence and two hydrophobic stretches. Recent stud-
ies have described two fundamentally important properties of VirB2. First,
both VirB2 and a homolog, TrbC encoded by plasmid RP4, are processed
to form cyclic polypeptides (Eisenbrandt et al., 1999). TrbC is cyclized
through the action of the serine protease TraR, and VirB2 is cyclized by an
unknown chromosomal enzyme (Eisenbrandt et al., 2000). Second, spe-
cific mutations in the VirB11 ATPase (see below) and VirB9 have been
shown to block polymerization of VirB2 pilin monomers to form the ex-
tracellular T-pilus, yet these mutations do not abolish substrate transfer
through the VirB/D4 T4S channel (Zhou and Christie, 1997; Sagulenko
et al., 2001a; Jakubowski et al., 2005). In follow-up studies, it was shown
strains producing the so-called “uncoupling” mutations still require VirB2
for substrate transfer, e.g., these strains do not bypass the requirement for
VirB2 pilin for substrate transfer (Jakubowski et al., 2005). Isolation of
these mutations thus constitute an important line of evidence that VirB2 al-
ternatively polymerizes as the T-pilus and as a component of the secretion
channel (see below).

4.3.4 VirB7

VirB7 is a small lipoprotein required for assembly of the VirB/D4 T4S
system. VirB7 localizes predominantly at the outer membrane, although
both inner-membrane-associated and extracellular forms also have been
detected (Fernandez et al., 1996a). Extracellular VirB7 copurifies with the
T-pilus but is also recovered from the supernatant of pilus-minus cells (Sa-
gulenko, 2001b). VirB7 stabilizes other VirB proteins, in part through
formation of a disulfide bridge with the outer membrane-associated VirB9
subunit (Anderson et al., 1996; Fernandez et al., 1996b; Spudich et al.,
1996; Baron et al., 1997). An NMR structure recently was presented for a
co-complex consisting of homologs of VirB7 and VirB9 from the plasmid
pKM101 (Bayliss et al., 2007). This structure and other experimental find-
ings strongly suggest VirB7 and the C-terminal region of the VirB9 are
situated at the inner leaflet of the outer membrane.
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4.3.5 VirB9

VirB9 is generally hydrophilic and contains a number of predicted [3-
strands. Phylogenetic and mutational analyses supplied evidence that
VirB9 is composed of three functional domains, each approximately 80 to
100 residues (Jakubowski et al., 2005). The above-mentioned NMR struc-
ture shows that VirB9 forms a PB-sandwich around which VirB7 winds
(Bayliss et al., 2007). Also, a 3-stranded B-appendage appears to protrude
extracellularly, as judged by results of Cys accessibility and immunofluo-
rescence microscopy assays. Whether other N-proximal regions of VirB9
also protrude across the outer membrane remains to be tested. Computer
searches have identified sequence similarities between VirB9 and outer
membrane pore-forming proteins termed secretins in the types I and III
secretion systems (Cao and Saier, 2001; Thanassi, 2002; Lawley et al.,
2003). These observations suggest the possiblity that VirB9 oligomerizes
to form ring-shaped pores through which protein substrates or the T-pilus
pass to the cell surface.

5 VIRB/D4 MACHINE ASSEMBLY AND SPATIAL
POSITIONING

Newly-synthesized VirB and VirD4 proteins nucleate to form the se-
cretion channel and T-pilus, and this process is very likely ordered in space
and time. Studies exploring the VirB/D4 assembly pathway have devel-
oped along several lines. 