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Abstract
Recognizing a speaker’s level of commitment to a belief is a
difficult task; humans do not only interpret the meaning of the
words in context, but also understand cues from intonation and
other aspects of the audio signal. Many papers and corpora
in the NLP community have approached the belief prediction
task using text-only approaches. We are the first to frame and
present results on the multimodal belief prediction task. We
use the CB-Prosody corpus (CBP), containing aligned text and
audio with speaker belief annotations. We first report base-
lines and significant features using acoustic-prosodic features
and traditional machine learning methods. We then present text
and audio baselines for the CBP corpus fine-tuning on BERT
and Whisper respectively. Finally, we present our multimodal
architecture which fine-tunes on BERT and Whisper and uses
multiple fusion methods, improving on both modalities alone.
Index Terms: multimodal belief prediction, speech belief pre-
diction, computational paralinguistics

1. Introduction
A critical aspect of both written and spoken conversation is
identifying the extent to which discourse participants commit
themselves to propositions. However, as is frequently observed
in sociolinguistics [1], humans rarely assert commitments ex-
actly and employ all manner of tools to convey this tactfully.
This makes the task of extracting and predicting how commit-
ted speakers are to propositions (i.e., their beliefs) more chal-
lenging than it might first seem, especially if we are given only
written text. Previous work has shown that acoustic-prosodic
speech features can distinguish deception (no commitment to a
belief) and truthfulness (commitment to a belief), or trust and
mistrust [2, 3, 4], which emphasizes the need to jointly model
text and audio features.

Over the last 15 years, the belief prediction task (also
called event factuality prediction) has attracted significant in-
terest from the NLP community, resulting in several corpora
[5, 6, 7, 8, 9, 10, 11]. However, most of this work has only
focused on predicting belief from the text modality. A notable
exception is the CommitmentBank (CB) corpus [10] which an-
notates both text and audio corpora, with 350 utterances com-
ing from Switchboard [12]. However, the annotators only read
the dialog transcription and audio was discarded. Expanding
on CB, the authors present the CB-Prosody (CBP) corpus [13],
which annotates speaker commitment/belief on the same 350
Switchboard examples, but instead annotators only hear the au-
dio. To our knowledge, we are the first to present a multi-
modal belief prediction task and find that incorporating audio

∗Denotes equal contribution to this paper.

signals results in a 12.7% relative reduction in mean absolute
error (MAE) and 6.4% relative increase in Pearson correlation
when compared to text-only approaches.1

Our main contributions are summarized as follows:
1. We are the first to present and report results on the multi-

modal belief prediction task and do so using the CBP corpus.
Furthermore, we contribute missing information to the CBP
corpus (audio start and end times) and will release all data.

2. We perform an acoustic-prosodic analysis of CBP using
openSMILE features [14], and find 25 significant features.
We train the acoustic-prosodic features using a XGBoost-RF
model and are the first to report audio-only results with these
features.

3. We present audio-only and text-only baselines with pre-
trained models, specifically fine-tuning BERT [15] and Whis-
per [16]. We find that Whisper significantly outperforms our
acoustic-prosodic XGBoost-RF baseline.

4. We present a multimodal belief architecture, jointly fine-
tuning BERT and Whisper. We compare our multimodal re-
sults to our text-only and audio-only baselines, and ultimately
find our multimodal architecture provides a significant im-
provement in belief detection. Furthermore, we investigate
early and late fusion methods, finding that late fusion of fea-
tures performs better than early fusion.

The paper is organized as follows. Section 2 describes our
data, specifically the CBP corpus and how it frames the belief
prediction task. In Section 3, we describe our acoustic-prosodic
and neural approaches to the task. Results for all modalities and
experimental settings are reported in Section 4. We conclude
in Section 5 and present ideas for future work in multimodal
belief detection.

2. CB-Prosody Corpus
We use the CB-Prosody corpus (CBP), which annotates on top
of the manually transcribed English Switchboard corpus utter-
ances. Annotators were given speaker utterances, specifically
the content of the complement clause, and asked to evaluate the
level of certainty the speaker appears to have regarding the truth
of the proposition. Specifically, they were asked to rate the level
of commitment on a 7-point Likert scale where explicit labels
were displayed for three classes: the speaker is certain that it is
true, the speaker is not certain whether it is true or false, and
the speaker is certain that it is false. The intermediate values
contained partial commitments (i.e. the speaker is weakly or
strongly possibly certain/not certain). The average among at
least eight annotators’ judgements is then reported as the final
annotation value.

1https://github.com/cogstates/multimodal-belief
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Figure 1: A histogram of the average commitment values among
annotators for all 338 utterances in CB Prosody.

We manually extract the clip start and end times from
Switchboard, convert the files to wav format, and then perform
upsampling to 16kHz on the audio clips. We discard 12 exam-
ples that were either misaligned with the gold Switchboard files
or had significant interruptions (not a continuous utterance from
the speaker) and end up with 338 total examples.

Summary statistics for the audio segments and word counts
in each example are shown in Table 1. All annotations are pro-
vided on a continuous scale. To report dataset statistics, we dis-
cretize the continuous annotations into 28 bins. Figure 1 shows
our bins and the corresponding count for each bin. There is a
clear imbalance in the label distribution with the majority of la-
bels falling in between the bin values [−2,−1]. There are also
two noticeable peaks around bin values 0 and 2. The fewest
label counts are near bin values -3, 1, and 3.

Table 1: CBP summary statistics

Min Max Mean Median Stdv
Duration (s) 1.01 16.44 4.61 4.04 2.73

Words 5.00 47.00 16.49 15.00 7.48

To illustrate the difference between the text-only speaker
commitment annotations on CB and the audio speaker commit-
ment annotations on CBP, we consider the following example
from the corpus: He didn’t think it looked predawn to him.
In this example, annotators are asked to annotate how certain
the speaker is that it looked predawn to him. We note that the
speaker is not the referent of he and him – this corpus does not
annotate the cognitive state of people mentioned in text, only
of the speaker. Here, the text-only CB corpus annotates this as
0.55, suggesting a slight inclination towards non-commitment
(i.e., 0) regarding the statement about it looking predawn. To an
annotator who only sees the text, this leaning towards no com-
mitment is due to the lexical content and syntactic structure of
the sentence, where the negation (He didn’t think) could intro-
duce uncertainty about the speaker’s commitment.

On the other hand, the CBP corpus annotates this as -2.16,
indicating a strong commitment to the falseness of the statement
(i.e., committing to it not looking predawn). In this example’s
audio, there is a heavy emphasis on he didn’t, suggesting that
the speaker trusts the “he”, and this he believes that it doesn’t
look predawn to him, meaning a strong leaning towards com-
mitting to the falseness of the statement.

Table 2: Statistically significant top 11 openSMILE IS09 fea-
tures

Rank Feature Avg r
1-5 MFCC 0.158
6-7 F0 0.124

8-10 MFCC 0.120
11 voiceProb 0.112

3. Our Approaches
We frame belief prediction as a regression task, following previ-
ous literature [9, 17, 18, 19]. Given an utterance and a sequence
of corresponding features S = [f1, f2, ..., fn], we wish to pro-
duce a value ŷ ∈ [−3, 3] that is as close to the annotation value
y as possible.

3.1. Audio Feature Based

For our feature based approach, we extract features from our
audio segments using openSMILE [14]. We hypothesize that
there is an overlap in significant features between our task and
deception detection. Hence, we specifically use the 384 feature
Interspeech 2009 (IS09) emotion challenge set [20], which pre-
vious work on deception detection found to be useful [2, 21].

We also perform a simple feature selection approach and
aim to answer the following question: Are there OpenSmile
features (from the IS09 set) that are correlated with the con-
tinuous CBP annotation values? To answer this, we calcu-
late the Pearson ρ among our features and the belief values and
choose the statistically significant features (any correlation with
p-value < 0.05). We find 25 statistically significant features
and provide a summary of our top 11 features (measured by
p-value) in Table 2. The most represented features are MFCC
measures/coefficients, showing in 8 of our top 11 features. We
also find F0 and voiceProb measures/coefficients as significant
features. Interestingly, our significant features are directly in
line with significant features found in deception detection such
as MFCCs and voiceProb [22], which points to the similarities
between our tasks.

3.2. Fine-tuning

The models we fine-tuned for each modality are as follows:
Text – We use the pre-trained BERT model [15] for our fine-
tuning experiments, specifically bert-base-uncased which con-
tains 110M parameters. We also performed fine-tuning exper-
iments with RoBERTa [23] and got near identical or worse re-
sults which is in line with previous work on CB [18], so we
therefore use BERT instead. We follow a standard fine-tuning
approach and add a regression head to which we feed the final
BERT representations to predict a continuous value.
Audio – We use the pre-trained Whisper model [16] for our
fine-tuning experiments, specifically whisper-base, which con-
tains 72.6M parameters. We note that we also tried experiments
with Hubert [24] , but achieved better performance with Whis-
per. We try both mean and max pooling of our audio features
after fine-tuning and before our regression head, finding that
max pooling slightly outperforms mean pooling. We therefore
perform all experiments with max pooling. Similarly to our text
only experiments, we perform a standard fine-tuning approach,
only adding a regression head to predict a continuous value, to
which we feed the final Whisper representations to.
Multimodal – Our multimodal architecture fine-tunes on both



Figure 2: Block diagram describing the early (above) and late (below) fusion models.

BERT and Whisper. A natural research question that arises for
our task is which multimodal feature fusion method performs
best: early feature fusion or late feature fusion. In the multi-
modal emotion recognition task, which uses similar methods of
jointly fine-tuning of text and audio pre-trained models, it has
been shown that late feature fusion works better than early fea-
ture fusion [25]. A similar result was obtained for multimodal
persuasion prediction [26]. We describe our feature fusion ar-
chitectures in the next subsections.

All of our fine-tuning experiments are run on a single Tesla
V100 or H100 GPU. Each fold took on average about 15 min-
utes to fine-tune, totaling about 75 minutes per experiment con-
figuration.

3.3. Multimodal Early Fusion

Our early fusion model is shown at the top of Figure 2. We first
jointly fine-tune BERT and Whisper on our text and audio in-
puts, respectively. We then pass the final hidden representations
from each modality through a max pooling layer and concate-
nate them. Finally, we pass the concatenated pooled representa-
tions to our regression head consisting of a linear layer, ReLU,
and output a final continuous value. When incorporating openS-
MILE features, they are concatenated after pooling.

3.4. Multimodal Late Fusion

Our late fusion model is shown at the bottom of Figure 2. We
first fine-tune BERT and Whisper on our text and audio inputs,
respectively. We do not concatenate them as we do in our early
fusion model. Rather, we max pool both representations indi-
vidually and then pass them through their individual regression
heads. We then finally concatenate the two representations and
do mean averaging to get our final continuous value. When
using openSMILE features, they are passed through their own
regression head.

4. Experiments and Discussion
4.1. Data

We use all 338 examples of the CBP corpus described in Sec-
tion 2. To address the label imbalance shown in Figure 1, we
perform a stratified five-fold cross validation using a fixed seed

Table 3: XGB-RF results with all IS09 features and correlated
IS09 features.

Features MAE ↓ Pearson ↑
All IS09 Feats 1.25±0.09 0.18±0.10

Correlated Feats 1.22±0.08 0.24±0.04

for all experiments. We do not hold out an established valida-
tion set because of the small size of the corpus, and therefore do
not perform any hyperparameter tuning.

4.2. Training and Evaluation Methods

For our tasks, we either directly perform regression or add a
regression head to our pre-trained models. Our approaches are
as follows:
XGB-RF For our audio only feature based approach with
openSMILE, we train an XGBoost-Random Forest (XGB-RF)
regression model. We perform z-score normalization on all of
our features. We do not perform hyperparameter tuning and use
the standard XGB-RF hyperparameters of scikit-learn [27].
Fine-tuning We fine-tune all models for a fixed 10 epochs and
report the Pearson correlation and mean absolute error at the last
epoch. All experiments use a learning rate of 2e-5 and a batch
size of 1. We do not perform any hyperparameter tuning or hy-
perparameter searches. We use the mean squared error (MSE)
loss function. We note that we tried the Huber loss function
which was used in previous work on text-only belief prediction
[18, 17], but ultimately found that this performed worse com-
pared to MSE. For our BERT experiments, we set the maximum
sequence length to 256. For our Whisper experiments, we pad
all audio clips to 30 seconds and perform normalization.
Evaluation We evaluate on Pearson correlation (ρ) and mean
absolute error (MAE). Previous work on text-only belief pre-
diction found that Pearson ρ is useful in biased test sets since it
assesses how well a model captures variability in the gold data
and MAE captures absolute fit [19]. We report the average Pear-
son ρ and MAE across all five folds and their corresponding
standard deviations. We perform significance testing on both
metrics using paired bootstrap resampling, which has shown to
be notably effective and robust for small test sets [28].



Table 4: Mean MAE and Pearson ρ results for the 5-fold CV
experiments comparing modality and fusion strategies. Signif-
icant (p < 0.05) improvements over the text-only BERT model
are indicated by †.

Text Audio Fusion MAE ↓ Pearson↑
BERT - - 0.71 ±0.08 0.78 ±0.03

- Whisper - 1.02 ±0.14 0.53 ±0.13

- OpenSMILE - 1.22 ±0.08 0.24 ±0.04

- Whisper + OS Early 1.27 ±0.07 0.14 ±0.10

- Whisper + OS Late 1.10 ±0.15 0.41 ±0.19

BERT Whisper Early 0.66†
±0.09 0.81†

±0.04

BERT Whisper Late 0.62†
±0.08 0.83†

±0.04

BERT OpenSMILE Early 1.19 ±0.06 0.37 ±0.06

BERT OpenSMILE Late 0.68 ±0.10 0.80 ±0.04

BERT Whisper + OS Early 0.92 ±0.05 0.62 ±0.10

BERT Whisper + OS Late 0.66†
±0.08 0.79 ±0.03

4.3. Unimodal and Multimodal Models

We first train our XGB-RF regressor for our acoustic-prosodic
feature baseline on all the IS09 features and then only the sig-
nificant IS09 features described in Section 3. Results are shown
in Table 3. We find that using correlated features results in a
2.4% decrease in MAE and a 33.3% increase in Pearson ρ.

The results for all model configurations are shown in Table
4. The best unimodal model is text-only BERT which achieves a
mean MAE of 0.71 and Pearson ρ of 0.78. While the remaining
four audio-only unimodal models tested consistently perform
worse than the text-only model, the multimodal fusion mod-
els decidedly outperform unimodal approaches. Our best result
comes from the late fusion of BERT and Whisper and signifi-
cantly (p < 0.05) improves over unimodal BERT achieving a
mean MAE of 0.62 and Pearson ρ of 0.83. These are 12.7% and
6.4% relative improvements in MAE and Pearson, respectively.
In fact, our three best results come from multimodal fusion ap-
proaches and all result in significant (p < 0.05) improvements
in MAE demonstrating the value of incorporating audio signals
for belief prediction.

4.4. Impact of Fusion Strategy

Theoretical work comparing early and late fusion methods pre-
dicts that, with enough training data, early fusion will perform
best but, in the absence of sufficient data, late fusion will do bet-
ter [29]. Comparing our models by fusion strategy we see that,
as theory predicts given our small dataset, the late fusion mod-
els tend to perform better regardless of the features being in-
corporated. While we do not find significant differences (MAE
p = 0.11, Pearson p = 0.17) between early and late fusion of
BERT and Whisper, we do find significant differences when we
compare all early fusion results with all late fusion results. This
pattern has also been observed for related tasks including per-
suasiveness prediction (n ≈ 205) [26] and emotion recognition
(n ≈ 4, 400) [25]. Our results support existing literature both
theoretically and empirically.

4.5. Comparison of Whisper and openSMILE

It is not entirely clear that the pre-training objective used for
Whisper will produce representations which capture informa-
tion similar to the acoustic-prosodic features from openSMILE.
It is possible that Whisper and openSMILE provide some or-
thogonal information. When comparing late fusion of BERT

and Whisper with the late fusion of BERT and openSMILE we
find that Whisper significantly (p < 0.05) outperforms openS-
MILE as a source of audio features by MAE (though not by
Pearson). When comparing to the late fusion of all three feature
sources, we do not find the increase compared to our BERT text-
only model to be significant for Pearson ρ. However, the MAE
of fusing all three features was lower and significant. This sug-
gests that Whisper is the best source of audio features, though
openSMILE performs competitively and may be preferable in
applications with limited computational resources, or in situa-
tions in which we need to use interpretable features.

Incorporating openSMILE using early fusion performed
much worse than by using late fusion. While this was expected,
as discussed above, it was more substantial than observed with
Whisper. We suspect it is possible to reduce this gap with addi-
tional changes to the architecture or normalization techniques
but leave this to future work as our primary objective is to
demonstrate the importance of audio features for this task.

4.6. Comparison to Other Work

While there are no comparable results on CBP, text-only be-
lief prediction is a well established task in NLP. For the entire
CB corpus, containing 556 utterances, state-of-the-art results
achieve an MAE of 0.56. Given the disparity in training exam-
ples, our best performing model does well with an MAE of 0.62
(and 0.71 text-only). Performance for the text-only task varies
among other belief corpora with state-of-the-art results ranging
from 0.33 MAE on FactBank to 0.73 on UDS-IH2 [9, 17].

Though none of these make use of audio signals, our results
are roughly in line with them which suggests that our approach
achieves strong performance even in this broader framing.

5. Conclusion and Future Work
In this paper, we are the first to present audio-only and mul-
timodal results on the belief detection task. We first analyze
acoustic-prosodic features extracted from openSMILE, and pro-
vide an audio only baseline. We find similarities and over-
laps with the deception detection task. Next, we provide uni-
modal and multimodal baselines fine-tuning pre-trained speech
and text models. For our audio only baseline, we find that
fine-tuning Whisper outperforms our acoustic-prosodic feature-
based approach with openSMILE. We explore early and late fu-
sion techniques, and find both early fusion and late fusion help
compared to text-only. We achieve a new state-of-the-art result
by fine-tuning BERT and Whisper, and using late fusion. Our
state-of-the-art system achieves a 12.7% decrease in MAE and a
6.4% increase in Pearson ρ compared to our text-only baseline.

Our results provide a baseline for the multimodal belief pre-
diction task and show that an audio signal does help text-only
models. With these insights, in future work we intend to apply
multimodal belief models on other corpora such as the Com-
mon Ground corpus [11] which annotates beliefs and common
grounds on the CALLHOME corpus [30]. We intend to do
multi-task learning experiments on belief and deception and see
if they can help each other.
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