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B1. Consider the following Riccati equation

y′ + xy2 +
1

x
y − 1 = 0.

(a) Transform this equation to a second order linear equation by using the substitution y(x) = v′(x)/(x v(x)).

(b) Classify singular points of the second order linear equation on the interval x ∈ [0,+∞).

(c) Find the leading behavior (the controlling factor and a correction term) of two solutions to the second
order linear equation as x → +∞.

(d) Using the larger-valued solution in part (c), approximate the general solution to the Riccati equation
as x → +∞.
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B2. Consider a singular matrix A ∈ Rn×n with rank n − 1. Suppose its left and right singular vectors
corresponding to the zero singular value are un and vn, respectively.

a) (5 points) Suppose s ∈ Rn and t ∈ Rn, where sT vn ̸= 0 and tTun ̸= 0. Show that[
A t
sT 0

]
is nonsingular.

b) (5 points) Show that the solution to [
A un
vTn 0

] [
x
y

]
=

[
b
0

]
is a least squares solution to Ax = b. In addition ∥x∥2 is minimized. (In other words, x is the
pseudoinverse solution to the least squares problem Ax = b).
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B3. Given A ∈ Rm×m and b ∈ Rm\{0}, consider the Arnoldi iteration

AQk = Qk+1H̃k,

where H̃k ∈ R(k+1)×k is upper Hessenberg, and Qk is composed of orthonormal columns with q1 = b/∥b∥.

a) (5 points) Show that if A is skew-symmetric, then H̃k is tridiagonal.

b) (5 points) Show that span{q1, q2, . . . qk} is equal to the Krylov subspace Kk(A, b) = span{b, Ab, . . . , Ak−1b},
given that the dimension of Kk(A, b) is equal to k.
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