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There are 4 problems. You are required to solve them all. Show detailed work for full
credit.
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use, or receive unauthorized aid in this examination.
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1. Let X1, . . . , X3 and Y1, . . . , Y3 be two independent random samples from uniform
distributions on the interval (0, 1). Define V = max(X1, . . . , X3)−max(Y1, . . . , Y3).
Find the probability density function of V , and calculate the expected value E[V ]
and the variance Var(V ).

2. Prove that log of a moment generating function of random variable Z is convex.
That is,

logMZ(λt1 + (1− λ)t2) ≤ λ logMZ(t1) + (1− λ) logMZ(t2).

for any t1, t2, and for any λ such that 0 ≤ λ ≤ 1.

3. Suppose that Y follows a Binomial distribution Binomial(n, θ) and θ follow a beta
distribution with positive parameters α, β, whose density is

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, 0 < θ < 1.

The mean and variance of θ are E(θ) = ξ = α/(α+β) and Var(θ) = ξ(1−ξ)/(γ+1),
where γ = α + β.

(a) Show that the (marginal) mean and variance of Y are E(Y ) = nξ and Var(Y ) =
nτ−1ξ(1− ξ), where τ = (1 + γ)/(n+ γ).

(b) Show that the Bayes estimator of θ unter the squared error loss is

ξ∗ =
y + γξ

n+ γ
.

(c) Show that the conditional distribution of θ given Y = y has variance

ξ∗(1− ξ∗)
n+ γ + 1

.

4. Let X ∼ N(θ1, θ3) and Y ∼ N(θ2, θ3) are independent random variables. Then the
parameter space is Ω = {(θ1, θ2, θ3) : −∞ < θ1 < ∞, −∞ < θ2 < ∞, θ3 > 0}.
Let X1, · · · , Xn and Y1, · · · , Ym denote independent random samples from these
distributions. The hypothesis H0: θ1 = θ2 is to be tested against all alternatives.
Then the parameter space under H0 is ω = {(θ1, θ2, θ3) : −∞ < θ1 = θ2 <∞, θ3 >
0}. Find the maximum likelihood estimators of θ1, θ2 and θ3.
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