Mathematical Statistics Qualifier Examination
 (Part I of the STAT AREA EXAM)
 January 24, 2018; 9:00AM - 11:00AM

Name: \qquad ID: \qquad Signature:
Instruction: There are 4 problems - you are required to solve them all. Please show detailed work for full credit. This is a close book exam from 9 am to 11 am . You need to turn in your exam by 11 am , and subsequently, receive the questions for your applied statistics exam. Please do NOT use calculator or cell phone. Good luck!

1. Let $X_{1}, \cdots, X_{n} \stackrel{\text { i.i.d. }}{\sim} N\left(\mu, \sigma^{2}\right)$ where both parameters are unknown.
(a) Please derive whether the sample mean \bar{X} and the sample variance $S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$ would reach the Cramer-Rao lower bound.
(b) Please derive whether the sample mean and sample variance are UMVUE for (μ, σ^{2}).
2. For a population with finite fourth moments, please derive the asymptotic distribution of the sample variance $S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$.
3. Please derive:
(a) The Bayes estimator with respect to the quadratic loss.
(b) The Bayes estimator with respect to the absolute loss.
(c) The Bayes estimator with respect to the 0-1 loss.
4. Let $X_{1}, X_{2}, \ldots X_{n} \sim N\left(\mu, \sigma^{2}\right)$, where σ^{2} is known
(a) Find the LRT for $H_{0}: \mu \leq \mu_{0}$ vs $H_{a}: \mu>\mu_{0}$
(b) Show that the test in (a) is a UMP test.
*** That's all, folks! ${ }^{* * *}$
