Insights from the interfaces:
Morphological processes as string transductions

A Dissertation Presented
by
Andrija Petrovic
to
The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Doctor of Philosophy
in

Linguistics

Stony Brook University

August 2023

Stony Brook University

The Graduate School

Andrija Petrovic

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Mark Aronoff — Dissertation Advisor
Distinguished Professor, Department of Linguistics

Jeffrey Heinz - Chairperson of Defense
Professor, Department of Linguistics

Thomas Graf
Associate Professor, Department of Linguistics

John Frederick Bailyn
Professor, Department of Linguistics

Adam Jardine
Associate Professor, Department of Linguistics
Rutgers University

This dissertation is accepted by the Graduate School

Celia Marshik
Dean of the Graduate School

il

Abstract of the Dissertation

Insights from the interfaces:
Morphological processes as string transductions

by
Andrija Petrovic
Doctor of Philosophy
in
Linguistics
Stony Brook University

2023

This dissertation brings together theoretical, empirical, and computational approaches to examine
morphology and its interfaces. Processes like morphologically and syntactically conditioned
epenthesis present difficulties for theories of morphology that are either syntax-based or fully
merged with phonological computation; to overcome them, I provide a principled way to discuss
representations and computation across modules using model theory and logical
characterizations. I define morphological processes as string transductions over flattened syntactic
trees, and offer a formalization of the syntax-morphology and the morphology-phonology
interface, all the while bridging the gap between syntax-based and word-and-paradigm-based
approaches to morphology.

Much prior work in morphology has been syntax based, and therefore relied on tree-based
representations, or did not have a formalization of the syntax-morphology interface. On the other
hand, languages of the world abound with paradigms that involve featural and segmental
alternations which cannot be explained using the regular phonology of the language. My
dissertation addresses these observations, uniting them into a representational solution that retains
the computational complexity of morpho(phono)logical mappings, which have been observed to
be at most regular (Johnson, 1972; Karttunen et al., 1992; Chandlee, 2017) — i.e. computations
with a fixed memory. I apply this insight to a number of case studies like Serbo-Croatian
morphological consonant epenthesis, variable morphotactics in Georgian, and total reduplication
in Indonesian. Additionally, I show that the inherently hierarchical nature of the proposed
architecture allows the integration of well-understood grammatical principles such as inflectional
class assignment algorithms and the use of leading forms/principal parts. In the case study of
Serbo-Croatian declensions, I show how such predictable processes can be included in a wider,
algorithmic interpretation of nominal inflection as logical transductions on strings.

I utilize Boolean Monadic Recursive Schemes (BMRS; Bhaskar et al., 2020; Chandlee &
Jardine, 2021), a logical formalism with an intuitive syntax, to provide logical descriptions of

il

phenomena pertaining to the morphological module. BMRSs are appropriate for modeling
morphological processes, as they can intensionally represent morphological substance and
generalizations, much like theories of realizational morphology do, while retaining the
computationally restrictive nature of such processes.

v

Table of Contents

LISt OF TADIES ...ttt ettt sttt e b e b e et ettt et esat e et ebeenbeenareeas vi
LIST OF FIZUIES onvviieiiieeiie ettt ettt e ettt e et e et e e et e e ssbeeessaeesssaeessseeassaeessaeesseesnseeensseennnes vii
ACKNOWIEAZIMENTS ...ttt ettt sttt et st e et e et et esatesateenteebeenaee viil
1 INErOAUCHION ucceverereriicticnecsnnseicssecssncssnsssssssstsssessssssssssssesssssssssssssssssssssssssssssssssesssssssassnses 1
2 Architecture of the system: basic asSUMPLIONS.....cccccerverirercsrecssenssencsencssncsessssssssncsseessnssssssncsns 4
3 Morphological epenthesis: Serbo-Croatianeieiivicsecssnnssencsencssncsessssssssecssessssssssssssecsns 8
3.1 Serbo-Croatian neuter Nnoun iNflECTION.........cueeciiiiciiiiieece e 10
3.1.1 Vowel-final neuter stems as a listed (SUD)CIaSSc.ccevuiivcriieiiiieiieeie e 13
3.1.2 bure-type neuter stems as C-final stems with truncation in the nominative singular...... 14
3.1.3 bure-type neuter stems as C-final stems with CV extenders............ccceevvvvveeiiencieennnens 15

3.2 Morphologically conditioned coronal epenthesis...........cceecveieriiieriiieniiecie e 16
33 ANALYSTS ettt et st s e e ta e e et be e e naeeenaaeetaeensbeeetseeanreeenaeens 20
3.3.1 Boolean Monadic Recursive Schemes (BMRS).........ccccoevciiiiiiiiniiieiiccee e 21
3.3.2 Structure of @ BMRS SYSteIMccviiiiiiiiiiiciie ettt 22
3.3.3 Serbo-Croatian #-epenthesis: A BMRS analysis.........cccceeveiiiiiiiniieeiiieciie e 23

34 CONCIUSION ...ttt ettt et et e s bt e e ate et e eabeenbeenaee 37

4 Morphological epenthesis: Romance ceeessesesntessessnesstssstssssssssssnsassns 38
4.1 [u]-epenthesis N Catalanccoeiiiiiiiiiiii e eeeaee e 38
4.2 [z]-epenthesis in Brazilian POrtUgUESEcccviieiiiiiiiiiieciee e 41
4.3 [s]-epenthesis 1N SPANISHcocciiiiiiiiiie et 43
4.4 CONCIUSION ...ttt ettt s e ettt et e st s ite et e ebeenbeenaee 45

5 Leading forms: cues for inflectional class assigNMent.........ccceeveecruecsenserssencsancsaecssesssancssecens 46
5.1 Class membership assignment in Serbo-Croatianccceeecveeerieenciieecieenrie e e 46
5.2 Serbo-Croatian inflectional ClasSes.........c.eevcviieriieiciieriie et 47
5.3 Leading fOTIMNS ..c..viiiiiieciiie ettt e et e e et e e sb e e esta e e sbeeeareeennreeennes 50
5.4 DEfICIENE NETIES . ..veiteeiiieiieeitee ettt ettt ettt et e bt et e st e et e beenbeenaeesaneeas 51
5.5 Modeling and formaliZationc.coccueeeiiiieiiieciie et e 52
5.6 Vowel fronting in Serbo-Croatianccueeeeiiriciieiiieeieeeeieeereeeeeieeeireesreeeeeeesreeesnee e 67
5.7 DISCUSSION ...ttt ettt e eb e sttt et esb e e eat e e bt e bt e sabeeabeenbeenseenbeesaneens 72

6 Syntax-morphology interface ProCeSSES....ccuiimeicnnresssrisssarcssanesssarcssasssssasesssssssssssssssssssassssasss 74
6.1 FOrmaliZationcocueiiiiiiiiiiieieeeece ettt ettt e be et sare e 74
6.2 Variable MOTPROtACTICSeeiviiiiiiiciiieeiecce et e e eetreessseeeareessbeeennsee e 76
6.3 Total TEdUPIICALIONcccctiiiiieciie ettt et e e et eeessaeessseeenseeensseeennes 81
6.4 Syntactically conditioned segmental PrOCESSESc.uvevcvieriiieriieeiieerieeeiie e ereeesvee e 84

T CONCIUSION..cceeiieiiriiniineiisnicsnncstnsencssisssnessesssssssssesstsssssssssssssssssessssssssssssssssssssssssssssssssssses 94
REFEIEICES ..ueeeuvriuiiiuniiniisninstiisniisticsticssicssensstnsssisssnsssesssssssssssesssssssssssssssssesssssssssssssssssssnsssasssssss 96

List of Tables

Table 1. Inflection of SC zavod ‘institute’ (MAS.) and selo “village’ (NEU.)......ccoeevvreriienvennnnens 10
Table 2. Inflection of SC #ekitc “hammer’ (MAS.) and pode ‘field” (NEU.).......ccecveriieriienieennnne 11
Table 3. Inflection of SC bure ‘barrel” (NEU.)c.uiiiiuiieiiiieeieeeeiee et 12
Table 4. Values of some input predicates for the segments of SC bure ‘barrel..........cccceneee. 26
Table 5. Input and output strings of the dative singular form of SC bure ‘barrel’....................... 27
Table 6. Input and output strings of the instrumental plural form of SC bure ‘barrel’ 31
Table 7. Input and output strings of the instrumental singular form of SC selo ‘village’............ 33
Table 8. Input and output strings of the instrumental plural form of SC pode ‘field’.................. 33
Table 9. Input and output strings of Catalan [gOSUS] ‘dOZS’ccvieriiiriieiiieiieeieeieeeeeee e 40
Table 10. Input and output strings of Portuguese [sofazinu] ‘sofa.DIM’ccccceeeveeriineeniennenne. 42
Table 11. Input and output strings of Spanish [gatito] ‘Cat.DIM’........cccoeverrierienersierieneeieneene 43
Table 12. Input and output strings of Spanish [amorsito] ‘love.DIMccceeveveriierienieeniennene. 44
Table 13. Inflectional classes of Serbo-Croatian NOUNSccceeveerieriinieiienieneee e 48
Table 14. Input and output strings of the genitive singular form of SC zena ‘woman’ 54
Table 15. Input and output strings of the instrumental plural form of zena ‘woman’ 63
Table 16. Input and output strings of the genitive singular form of SC anime ‘anime’............... 66
Table 17. Input (alternative) and output strings of the dative singular form of SC

FOMA “WOITIAIttieiiieeeiiteeeiteeeeiteeeeeteeeateeeateeeatteesatteesasteesaseeeeasbeeesbeeeeaseeesnbeeeanbeeennseesanseesnseesnnseas 67
Table 18. Exponent realization step for the instrumental singular form of SC pode ‘field’ 69
Table 19. Morphophonological processes step for the instrumental singular form of SC pode
IELA ettt 69
Table 20. Present indicative paradigm for some Georgian verb types.........cceecveeviveriieniienieennens 76
Table 21. Input and output structures for the first person singular form of Georgian

DaN TDATNE ... 78
Table 22. Input and output structures for the third person singular form of Georgian

DAN TDATNE ... 78

Table 23. Input and output structures for the first person plural form of Georgian ban ‘bathe’.. 79
Table 24. Input and output structures for the third person plural form of Georgian ban ‘bathe’. 80

Table 25. Input and output structures for the plural form of Indonesian buku ‘book’ 82
Table 26. Input and output structures for Russian u nevo ‘at him’ccccoeieviiiinincnncnnene. &5
Table 27. Input and output structures for Russian u evo brata ‘at his brother’s’...........ccccceueenee. 85
Table 28. Input and output structures for German zum [Su:m] (< zu dem)ccccveevverienieennn. 92

Vi

List of Figures

Figure 1. Architecture of the proposed Mmodel............coccviiiiiiiiiiiiiiiiie e 5
Figure 2. Syntactic tree for Russian u evo brata “at his brother’s’ and its yield...........c.ccoceeeenee. 6
Figure 3. Decision tree for declension assignment of Serbo-Croatian stems...........ccceveevennnnee. 51
Figure 4. Syntactic tree for Russian u evo brata “at his brother’s’ and its yield as input to

MNOTPROIOZY ..ttt et ettt e et e e bt e eab e e st e enbeebeeenbeenbeesnneeneens 75
Figure 5. Syntactic structure of the prepositional phrase in (124).ccccevieeiiieiieniiienienieeens 90

vii

Acknowledgments

Thank you
Mark
Jeff
Thomas John
Adam
Grev
Dunstan
Boban
Doug Michael
Hossep
Dakotah
Sophie
Grace Sandeep
Veronica
Bogdan Ivan
Ana
Mom and Dad
Nina

This would not have been possible without your support and guidance. You have all been
there along the way to advise, suggest, listen, and understand. Thank you for reading, writing,
asking, attending, supporting, sharing, recommending, socializing, playing devil’s advocate,
planning, improvising, optimizing, moving, sticking around.

This was a journey, and I love to travel.

viii

1 Introduction

This dissertation represents a research project focused on better understanding the nature of the
interfaces of morphology with phonology and syntax and the formal nature of the morphological
module more generally. In this work I focus on the fact that a number of processes are that are
usually thought of as falling in the domain of phonology are in fact conditioned by factors related
to morphology and syntax.

In order to account for this, I offer a model that includes morphology as an independent
module, taking syntactic structures as input and producing phonological words as output. In this
model, morphological processes are represented as string-to-string transductions. The model is
based on the observation that morphological mappings can universally, cross-linguistically, be
understood as regular functions. In mathematics, a function is regular if the memory required for
the computation is bounded by a constant, regardless of the size of the input. One contribution of
this dissertation is to show that a morphological system can be generated by a program of only (at
most) regular functions, and that variability in such systems follows the same restrictions.
Additionally, as predictable processes are preferable to listed allomorphy — a generalization that
applies to novel items — I use various case studies to show different processes can be reanalyzed
with morphosyntactic and lexical conditioning.

In Chapter 2 I outline and visualize the overall architecture assumed in the dissertation, and
briefly discus what that choice of underlying structures and representations entails for the analyses
that are presented in the chapters that follow. Chapter 3 focuses on a morphophonological
consonant insertion process in Serbo-Croatian that makes crucial reference to morphological

structure, morphosyntactic features, and inflectional class — and, above all, is not necessarily

phonologically optimizing. The fact that we cannot effectively analyze this process in a single-
level, purely phonological framework that does not allow for a direct interaction with
representations from the morphological module makes it necessary to look deeper into the nature
of the morphology-phonology interface, and the formal properties of morphophonological
processes. The chapter also introduces the formalism, Boolean Monadic Recursive Schemes, used
throughout the dissertation. In Chapter 4 I identify insightful instances of interface processes
(morphologically conditioned epenthesis) in Romance languages, proposing ways they can be
formalized as logical string transductions. The central idea of this work — that different kinds of
morphological processes can be formalized over strings — is further expanded in Chapter 5, which
proposes that the intrinsic hierarchical structure of the formalism enables the incorporation of
familiar grammatical principles, such as algorithms for assigning inflectional classes, and the
utilization of readily available surface forms for different realizations of morphosyntactic features.
Furthermore, the input string to the morphological module is understood to be the yield of a
syntactic tree structure; benefits of such an approach, where input syntactic trees are flattened pre-
morphology, are explored in Chapter 6, where I examine processes from different languages that
have crucial syntactic conditions on the insertion, deletion, and transformation of phonological
material.

Much of the research presented here was originally centered on exploring the specificities
of Serbo-Croatian inflection; however, the broad aims of this dissertation go beyond analyzing
how the Serbo-Croatian morphological system works. The proposed analysis, informed by
empirical generalizations, and computational and mathematical theory, makes predictions about

the treatment of existing and novel words in the systems that were examined. The goal of this work

is to construct a computational account that combines linguistic generalizations and mathematical

concepts, delivering a formal characterization of morphological processes and their nature.

2 Architecture of the system: basic assumptions

This dissertation focuses on the interfaces of morphology with syntax and phonology —
morphological processes can be sensitive to lexical, syntactic, phonological, and purely
morphological representations. In theories like Distributed Morphology (DM; Halle & Marantz,
1993) the morphology-syntax interface is directly addressed, as such models typically operate on
binary trees which are the output of syntax. More specifically, works like Embick (2010), Arregi
& Nevins (2012) and Merchant (2015) examine how syntactic structure affects different
morphological processes, seeking to define the representations and contexts that are necessary to
capture locality constraints on contextual allomorphy, and spell-out more generally (DM’s
Vocabulary Insertion). On the other hand, the nature of the morphosyntax-phonology interface has
been extensively explored in, for instance, in Kiparsky (1982), Inkelas & Zec (1990), Scheer
(2011); more recently, Sande et al. (2020) and Kalin (2020) have been among those that directly
deal with the division of labor between representations and processes, and the order of operations
needed to derive the target forms. The overarching generalizations that stem from this line of work
is that morphology receives its input from the syntax, and that it has to apply before phonology. In
this chapter, I establish the architecture that is assumed throughout this dissertation for the
modeling of different morphological processes.

To the generalizations outlined above, I add a computational one — unlike syntax, and like
phonology (Johnson, 1972; Kaplan & Kay, 1994; Heinz, 2018), morphology has been observed to
be at most REGULAR on the Chomsky hierarchy (Chomsky, 1959; Karttunen et al., 1992; Chandlee,
2017). Historically, this distinction between regular and non-regular grammars is what motivated

the need for a different theory of syntax to that of phonology: formalizations of syntactic processes

need to be able to capture, for instance, center embedding, while phonological processes of that
kind are unattested. Patterns like iterable nested dependencies are unattested in morphology as
well; I thus argue that formalisms like DM, which are defined over binary trees, and in which the
syntax-morphology interface is therefore treated as a tree transducer, are overpowered.

In line with Ermolaeva & Edmiston (2018), I instead propose that morphology be restricted
to operating over strings (cf. Dolatian, 2020, where morphology is formalized over tree structures,
but note that these are not syntactic binary trees). A morphological module conceptualized in this
way correctly predicts that morphological mappings can be modeled with regular string languages,
and the morphological component is thus treated as a regular relation. The architecture assumed
in this dissertation is visualized in Figure 1. I abstract away from the question of cyclicity (i.e.
whether the output of a component can recursively form the input to a derivational component that
has already taken place), but see Dolatian (2020) for how an interactionist or cyclic architecture

can be established in order to handle phenomena on the morphology-phonology interface.

Figure 1. Architecture of the proposed model.

syntax

l trees flattened

morphology

|

phonology

So, as opposed to the assumptions of tree-based frameworks like DM, the flattening of the
derivation is pushed to take place above the morphological module. I further assume that syntactic
structures are Minimalist Grammar trees (MG; Stabler, 1997), which are built by the percolation
and checking of category lexical features by selector lexical features (Merge), and that of licensor
and licensee lexical features (Move). A morphological input string is then the direct yield of a
given syntactic tree, formed by a left-to-right traversal and concatenation of the encountered leaf

nodes. A Russian example (further examined in Chapter 6) is illustrated in Figure 2:

Figure 2. Syntactic tree for Russian u evo brata “at his brother’s’ and its yield

>
<U> :: D+ P-— >
<ON> :: N+ D- <BRAT> :: N-
U
D+ N+
P- D- N-
<U> # <ON> # <BRAT>
U
u evo brata

The input string to the morphological module is thus made up of unrealized syntactic
terminals (<U>, <ON>, and <BRAT> in Figure 2), their corresponding lexical features (P-, D+,
D-, N+ and N- in Figure 2), and boundary symbols (e.g. the word boundary #); in the analyses
that follow I will also use symbols like the stem boundary, morphosyntactic features (like case,

number, and gender), and other diacritics.

So, a string-based account will be developed in this dissertation to capture patterns that
require reference to syntactic information and word-internal structure. The architecture I assume
restricts the morphological component to working on strings (post-flattening), limiting
morphology to regular string languages. In addition, the formalism that is used throughout
(Boolean Monadic Recursive Schemes, introduced in Chapter 3.3) brings in a restriction to
subsequential functions — a strict sub-class of regular functions (Bhaskar et al., 2020) — in terms
of mappings from input to output strings. As shown in Chandlee & Jardine (2021), this formalism
describes exactly the subsequential functions, and correctly excludes patterns unattested in
phonology. The analyses that follow extend this observation to morphology, allowing for the
introduction of further restrictions (e.g. the analysis of variable morphotactics as involving moving
affixes tied to a fixed distance from the stem, in Chapter 6.2).

Ultimately, the purpose of this account is to define the necessary conditions on the
realization of morphological processes, restricted by their computational complexity. The
linguistic contributions include evidence for lexical, syntactic, morphological, and phonological
conditions on processes like non-canonical epenthesis, variable morphotactics, and reduplication;
through formalizations of such processes, I identify new generalizations about exponent realization,
allomorphy, inflectional class membership, and eliminating overreliance on listedness. The
architecture outlined in this chapter, the formalism introduced in the following, and the specific

analyses developed throughout the dissertation, help facilitate stating these generalizations.

3 Morphological epenthesis: Serbo-Croatian

The purpose of this chapter is to show that the stem allomorphs that appear in Serbo-Croatian!
neuter noun inflection are predictable. These neuter noun stem allomorphs reflect morphologically
conditioned consonant insertion, and their distribution is completely predictable from the
phonological shape of the stem and morphosyntactic properties of the lexeme. Specifically, I claim
that a 7 is inserted after e-final stems to create consonant-final stems before attachment of an overt
case suffix. Existing analyses of Serbo-Croatian nominal inflection do not take this insight into
account; the formalization of this process, in the form of a system of logical transductions, is a
novel contribution of Petrovic (2023), on which this chapter is based.

In Serbo-Croatian, nouns belong to one of three inflectional paradigms — Class I consists
of masculine and neuter nouns, Class II comprises feminine (and masculine) nouns that end in -a
in the nominative singular; feminine nouns that do not receive an overt suffix in the nominative
singular belong to Class III. Examples of nouns belonging to each class, with nominative and

genitive singular forms, are given in (1).

(1) Class I: zavod zavod-a
institute.NOM.SG.MAS institute.GEN.SG.MAS
sel-o sel-a
village.NOM.SG.NEU village.GEN.SG.NEU
bure buret-a
barrel.NOM.SG.NEU barrel. GEN.SG.NEU

Class II: 3en-a 3en-e
woman.NOM.SG.FEM woman.GEN.SG.FEM

! The language is here referred to, and treated as, one (pluricentric) language, following the Declaration on the
Common Language (http://jezicinacionalizmi.com/deklaracija/).

Class III: reff reff-i
word.NOM.SG.FEM word.GEN.SG.FEM

The forms of interest here are those like buret-a ‘barrel. GEN.SG.NEU’ above, where the
nominative singular ends in e. The claim of this chapter is that this is an effect of morphologically
conditioned consonant insertion — as most noun stems in the language are consonant-final, vowel-
final stems are repaired by inserting a consonant, namely 7. The present approach avoids stipulating
listed stems (pairs of e-final and #-final stem allomorphs for each relevant neuter stem), offering
instead an account of the pattern as a result of a predictable process. Assuming unpredictable stem
allomorphs — one with 7, the other without — would reduce the phenomenon to an accident.

I demonstrate that this is an algorithmic process, part of a wider algorithmic process of
noun inflection. Using Boolean Monadic Recursive Schemes (BMRSs; Bhaskar et al., 2020;
Chandlee & Jardine, 2021), Serbo-Croatian nominal inflection is analyzed as a system of logical
transductions on strings. Given a stem (which has a phonological form) and a set of
morphosyntactic features (which do not) as an input string, the system produces output strings of
segments that are fully inflected words. This is achieved through a hierarchical ordering of more
specific and less specific blocking and licensing structures, much akin to realization rules that are
intrinsically ordered by Panini’s principle (= Elsewhere Condition) in works like Stump (2001).
In this way, the process of nominal inflection and the pertinent generalizations are expressed
explicitly. With BMRSs, the data can be formally accounted for in a direct and parsimonious way,
capturing both intensional (linguistically significant) and extensional (computational)
generalizations.

The chapter is organized as follows. Section 3.1 introduces the relevant Serbo-Croatian

data and proposes a novel understanding of the morphological structure of inflected neuter nouns

in the language. Other existing approaches are briefly discussed in subsections 3.1.1-3.1.3. In
section 3.2 I outline the approach adopted in this work, which is then formalized in section 3.3.
Subsection 3.3.1 introduces the BMRS framework, with more details regarding the structure of a

BMRS system provided in 3.3.2; finally, the analysis is provided in 3.3.3.

3.1 Serbo-Croatian neuter noun inflection

Within the Serbo-Croatian (SC) nominal system, a noun paradigm comprises inflected variants of
one noun in two numbers and seven cases. In Noun Class I (i.e. masculine and neuter nouns),
vowel-initial case endings are added onto consonant-final stems. The inflectional paradigms of
two such nouns are given in Table 1. Animacy distinctions are omitted for the sake of simplicity;
here I default to the inanimate pattern, where the accusative singular is syncretic with the

nominative singular, and the neuter paradigm plural forms are not ineffable.

Table 1. Inflection of SC zavod ‘institute’ (MAS.) and selo ‘village’ (NEU.)

MASCULINE NEUTER

SG. PL. SG. PL.
NOM. zavod zavod-1 sel-o sel-a
GEN. zavod-a zavod-aa sel-a sel-aa
DAT.-LOC. | zavod-u zavod-ima sel-u sel-ima
ACC. zavod zavod-e sel-o sel-a
VOC. zavod-e zavod-1 sel-o sel-a
INS. zavod-om | zavod-ima sel-om | sel-ima

As Table 1 shows, neuter nouns inflect similarly to masculine nouns. Their stems receive

a lot of the same case endings (represented in shaded cells) — the difference being the nominative

10

suffix in both singular and plural, and the accusative and vocative, which are syncretic with the
nominative for neuter nouns. As the inflectional paradigms of feminine stems greatly differ from
this pattern, masculine and neuter stems are usually seen as belonging to the same inflectional
class (Bari¢ et al., 1997; Klajn, 2005).

The inflection of masculine and neuter nominals is affected by the final consonant of the
stem: posterior coronal consonants j, 4, 1, ¥, ds, t, dz, /, 3, and the dental affricate #, in this position
yield suffix-initial e instead of 0. These coronal consonants trigger fronting of the suffix-initial
vowel, and I will henceforth refer to this class of consonants as FRONTING CONSONANTS (FC).?

Table 2 shows the declension of nouns with FC-final stems, exemplified by the nouns #ekite
‘hammer’ (MAS.) and pode ‘field’ (NEU.), with respective case endings added to the stems in order
to form different inflected forms. The shaded cells contain the forms with the fronted suffix-initial

vowel.

Table 2. Inflection of SC #ekite ‘hammer’ (MAS.) and pode ‘field’ (NEU.)

MASCULINE NEUTER

SG. PL. SG. PL.
NOM. fekite ekite-i po4-e po4-a
GEN. fekitc-a fekitc-aa po4-a po4k-aa
DAT.-LOC. | fekite-u ekitc-ima pok-u poA-ima
ACC. fekite fekite-e pok-e pok-a
VOC. tlekite-e® | fekite-i pok-e pok-a
INS. fekitc-em | fekite-ima pok-em | poA-ima

2 These consonants are termed palatal in all traditional Serbo-Croatian literature (e.g. Stevanovi¢, 1969), even though
they do not all have a strictly palatal place of articulation. I assume that, in terms of the morphophonological effect of
fronting, the category of posterior coronal consonants expands to include all affricates in the language; in other words,
ts patterns with all other affricates, which are C[cor, -ant] (#, &, &, &), and triggers vowel fronting in o-initial suffixes.
3 The attested form is gekite-u, but this is disregarded for the purposes of the present work. The vocative singular
suffix allomorphy could be captured in the analysis that follows (as backing and raising of e after most stem-final FCs,
a pattern that is extended to some non-FC-final stems, too — or simply as listed allomorphy), but the phenomenon is
not sufficiently well-understood to be accounted for it in an insightful manner.

11

However, a significant number of neuter nouns inflect by a different pattern; the
nominative singular receives no suffix, and there is an additional voiceless dental stop between the
stem and the suffix in the cases that are not syncretic with the nominative singular. This is
presented in Table 3: the cells in which this sort of consonant insertion occurs are shaded. The
inflectional paradigm of bure ‘barrel’ is illustrated below, as this is a noun that allows for the
default plural forms to surface (along with nouns like tutse ‘dozen’, dugme ‘button’, putse ‘berry’,
srtse ‘heart’, to name a few). Most nouns of this type use suppletive, collective forms to express
plurality — I consider this to be an override of the default pattern laid out in Table 3, and disregard

the suppletive plural for the purposes of this work.*

Table 3. Inflection of SC bure ‘barrel’ (NEU.)

SG. PL.
NOM. bure buret-a
GEN. buret-a buret-aa
DAT.-LOC. | buret-u buret-ima
ACC. bure buret-a
VOC. bure buret-a
INS. buret-om | buret-ima

Serbo-Croatian noun stems are predominantly consonant-final in all inflectional classes, as
Tables 1 and 2 show for masculine and neuter (= Class I) stems. The same holds for Class II (2)
and Class III (3) stems — both classes of mostly feminine stems, although Class II allows masculine

entries as well.

* Collective forms are in competition with the regular plurals, and most often win in such a way that regular plurals
rarely appear as output forms. The formalization of this process is outside the bounds of this chapter; the regular neuter
plurals are modeled as they apply to the wider group of neuter nouns in Serbo-Croatian.

12

(2) 3en-a 3en-e 3en-i etc.

woman.NOM.SG woman.GEN.SG woman.DAT.SG
3) reff reff-i reff-i etc.
word.NOM.SG word.GEN.SG word.DAT.SG

In the literature, neuter stems such as the ones in Table 3 have variously been proposed to
be: (a) vowel-final stems with consonant insertion, forming a listed subclass of neuter nouns on
their own (Bari¢ et al., 1997; Klajn, 2005); (b) consonant-final stems with truncation in the
nominative singular (Brozovié, 2006); (c) consonant-final stems with CV stem extenders (Sljivié-
Simsié, 1984). I claim that bure-type neuter stems are actually vowel-final (as they are in the
nominative/accusative/vocative singular), and that these aberrant stems are repaired by consonant

insertion between the stem-final vowel and the vowel of the inflectional suffix.

3.1.1 Vowel-final neuter stems as a listed (sub)class

When discussing Serbo-Croatian noun inflectional classes, most linguists and grammarians refer
back to Stevanovi¢ (1969), who described four distinct classes of stems: consonant-final masculine
and neuter stems (such as those in Tables 1 and 2), vowel-final neuter stems (such as those in Table
3), feminine stems that receive -a in the nominative singular (like the example in (2)), and feminine
stems that do not receive an overt case suffix in the nominative singular (like the example in (3)).
More recent works, like Bari¢ et al. (1997) or Klajn (2005), continue this tradition, but note that,
with the exception of the nominative singular, the case suffixes are the same for all neuter stems.

This is why Bari¢ and colleagues, as well as Klajn, resort to positing a separate, lexically listed

13

subclass, and define it as consisting of stems that receive an additional consonant in the oblique
cases, before the case suffixes are attached.

While the rationale for such a division of lexemes is close to what the present chapter
argues for, a broad generalization is thus missed — the stem allomorphy in question is predictable
given the phonological form of the underlying stem. In other words, Bari¢ and colleagues, and
Klajn, like Stevanovi¢ before them, attribute the difference between the paradigms of selo (Table
1) and bure (Table 3) to the stems being lexically listed as belonging to a certain (sub)class. The
difference between the treatments may appear to be minor. However, resorting to listedness should
be avoided if the paradigm complexity can be described as resulting from predictable stem

allomorphy, which is a central aim of this chapter.’

3.1.2 bure-type neuter stems as C-final stems with truncation in the nominative singular

Brozovi¢ (2006, p. 120), arguing for a greater degree of morphological regularity, proposes an
analysis under which the additional ¢ that appears in Table 3 is to be regarded as part of the stem.
These stems would therefore be regular consonant-final stems, where the final consonant is deleted
in the nominative singular (and the syncretic accusative and vocative).

Looking at the paradigm (Table 3) in isolation, Brozovi¢’s approach would make sense —

final consonant deletion would be a way of avoiding codas in the nominative singular of neuters,

3 The problem is avoided altogether if class membership assignment in Serbo-Croatian is understood to be a
predictable process, rather than lexically listed information. This is the claim in Petrovic (under review), and is
discussed in Chapter 5.

14

whereas the stem-final consonant in the oblique cases would be resyllabified as the onset of the
following syllable, case suffixes being vowel-initial.

The problem of this approach is that it requires restricting consonant deletion only to the
pertinent individual lexemes. Under this analysis, refefo ‘sieve.NOM.SG’ (paradigm in Table 1) and
bure ‘barrel. NOM.SG’ (paradigm in Table 3) would both have #-final stems: refet and buret,
respectively. In the latter only, the final -z would have to be deleted in the nominative singular.
The only way to avoid illicit nominative singular forms like *refe (¢-deletion) or *bureto (neuter
nominative singular suffix -0) would, again, be to lexically list these stems as belonging to separate
inflectional classes. The approach outlined in this work avoids this issue and treats all neuter stems

in a uniform way.

3.1.3 bure-type neuter stems as C-final stems with CV extenders

Sljivié-Simsi¢ (1984) divides the lexical items quite differently. In her account, all neuter stems
are consonant-final, and they take either -o or -e in the nominative singular. Therefore, the stem
of selo is sel- (Table 1), the stem of pode is pod- (Table 2), and the stem of bure is bur- (Table 3).
Stems like bur- then receive a “stem extender” morpheme before the case suffixes are attached,
while other stems do not.

It is unclear how the distribution of the “stem extenders” can be predicted. Sljivi¢-Simsi¢
argues that this morpheme is added only if a non-FC-final® stem takes -e in the nominative singular

— that is to say, nouns like bur-e (Table 3) — otherwise, nouns keep the same, non-extended stem

6ie. notj, 4 pn, f, &, te, s, /, 3, or s-final; see section 2.1.

15

throughout the paradigm. This would assume that the oblique case paradigm is determined based
on the inflected form of the nominative singular, not that paradigm membership can be inferred
based on the properties of the stem.

Relying on a leading form like the nominative singular is not necessarily problematic in
itself (see Petrovic, under review, and Chapter 5 below); under Sljivié-Simsié’s analysis, however,
we would have no way of predicting the distribution of the nominative singular allomorphs (-0 or
-e), as the choice would no longer depend on the final consonant of the stem. Here I show that o-
initial suffixes surface faithfully if the stem-final consonant is not a FC, and that suffix-initial o
fronts to e after stem-final FCs.

Finally, Sljivi¢-Sim3i¢ assumes that nouns like sirtce ‘vinegar’, jagne ‘lamb’ or jaje ‘egg’
would be exceptions, given that they have a FC+e sequence in the nominative singular, and yet
still extend their stems in the oblique cases (i.e. they follow the pattern in Table 3). These nouns

do not present a problem for the present work, as they are analyzed as having vowel-final stems.

3.2 Morphologically conditioned coronal epenthesis

The analysis that follows assumes that z-insertion in Table 3 is a case of morphologically
conditioned coronal epenthesis (Aronoff & Repetti, 2022), also referred to as non-canonical

epenthesis (Moradi, 2017).” As opposed to canonical epenthesis, these terms denote processes of

7 Historically, this ¢ in Serbo-Croatian is derived from an underlying #; in Proto-Slavic, the # was present in an entire
inflectional paradigm of neuter nouns (denoting young beings, like tele ‘calf’), including the nominative singular
(Matasovi¢, 2008: 206). Therefore, morphological f-epenthesis in modern Serbo-Croatian is a case of diachronic rule
inversion (Vennemann, 1972) and generalization to a wider class of nouns (all neuter e-final stems, with no reference
to the semantic criterion).

16

insertion of phonological material determined by factors outside of phonology (I specifically focus
on morphological/morphosyntactic conditions here). What works like Moradi (2017) and Aronoff
& Repetti (2022) show is that a number of different languages exhibit conditioned epenthesis
patterns in specific morphological environments, while at the same time having separate strategies
for repairing illicit phonological structures more generally. In San Marino, [1] is the default
epenthetic vowel, but [&] is used at the end of 3 person verb forms in both numbers (Aronoff &
Repetti, 2022, p. 374). In Brazilian Portuguese, [z] repairs vowel hiatus that is a result of adding
an affix (Bachrach & Wagner, 2007, p. 8) — vowel hiatus is otherwise repaired with a [j] or tolerated.
The distinction between the two types of processes is also made by Staroverov (2014), who defines
(phonological) epenthesis as a result of Splitting (an operation that draws a correspondence
between one input segment and multiple output segments), and opposes it to morphologically
restricted consonant-zero alternations. What directly follows from these assumptions is the
observation that the identity of (canonically) epenthetic segments is predictable and restricted
(sharing features with the input segments they correspond to), while that of morphologically
conditioned ones is not necessarily so (with historical or other motivations, external to the
morphological or phonological system).

In Serbo-Croatian, f-insertion occurs when an affix is added to an e-final stem, but ¢ is not
generally used to repair phonologically illicit structures. Vowel hiatus, which can be a result of
adding suffixes to vowel-final stems (Table 3), is normally tolerated (4), unless one of the vowels

is a front high vowel (5), in which case an epenthetic j is found (Markovi¢, 2013, pp. 75-76).

4) /zaova/ [zaova] ‘sister-in-law’
/beograd/ [beograd] ‘Belgrade’

/pirueta/ [pirueta] ‘pirouette’

17

(5) /violina/ [vijolina] ‘violin’
/sirius/ [sirijus] ‘Sirius’

/naivan/ [najivan] ‘naive’

Given that all case suffixes are vowel-initial, as could be seen in Tables 1-3, one could
expect tz-insertion to be a case of syllable structure-driven epenthesis in this language. Note,
however, that the language has derivational suffixes that are consonant-initial; the epenthetic ¢ is
inserted before any suffix (inflectional or derivational), and the C-initial suffixes in (6) show that

Serbo-Croatian t-insertion is not a phonotactically-triggered process.

(6) /sirtee + ni/ [sirteetni] VS. /plod + ni/ [plodni]
vinegar + ADJ ‘acetic’ fruit + ADJ ‘fertile’
/tele + ji/ [teletei] Vs. /koz + ji/ [kozji]
calf + ADJ ‘calf-like’ goat + ADJ ‘goat-like’

No other phonologically illicit sequence is observed in the context of #-insertion. The
process is actually not phonologically optimizing at all: ¢ is epenthesized only in a certain
morphological context — to repair vowel-final stems. The analysis thus assumes that Serbo-
Croatian noun stems must be consonant-final at the point of suffix attachment, as most stems in
the language are underlyingly consonant-final. Crucially, however, no consonant insertion occurs
if there is no overt suffix attached to the stem, i.e. if the right edge of the stem is the right edge of
the word itself.

Serbo-Croatian is not unique in this conditioned behavior: multiple languages are known

to exhibit similar processes. A classic, often cited example is #-insertion in Ajyininka Apurucayali

18

(also pejoratively known as Axininka Campa), which is morphologically restricted: it takes place
only in suffixation processes. Consider the examples in (7). #-insertion is also found in Odawa,

where it takes place at a personal prefix and stem boundary (8).

(7) Ajyininka Apurucayali
/i-N-koma-i/ [inkomati] ‘he will paddle’
/i-N-koma-aa-i/ [inkomataati] ‘he will paddle again’

(Payne, 1981, p. 108; Lombardi, 2002, p. 239)

(8) Odawa
/ki-akat-i/ [kitakafi] ‘you are shy’
/ni-ompass/ [nito:mpass] ‘you.PL oversleep’

(Piggott, 1980; Zygis, 2010)

It is unclear from these data whether #-epenthesis is syllable structure-driven; what is clear,
however, is that these are cases of morphologically conditioned epenthesis, as this process only
applies in a specific morphological context.

Broselow (1984) argues that Amharic epenthesizes ¢ to fill the last C-position in a template
in roots like the one in (9a).® This explains the difference from the roots like (9b), which are
triconsonantal roots with underlying identical second and third consonants — behaving like the

classic triconsonantal roots in (9c¢).

8 Broselow (1984) observes similar phenomena in Hebrew, Temiar, Cree, French, and Maori. In all of these languages,
t is inserted as a default, unmarked consonant, to repair specific morphological structures.

19

9) Ambharic

a. /fj/ ‘consume’ b. /wdd/ ‘like’ c. /lbs/ “dress’
fajja waddada labbésd PERF
fdjto wiaddo labso GER
méfjat mawdad mélbis INF

(Broselow, 1984; Lombardi, 2002)

However, ¢ is not generally used for epenthetic purposes in Amharic: depending on the
situation, vowels are deleted or glides are inserted in vowel hiatus, and there is optional word-
initial [?]-epenthesis (Leslau, 1997). This phenomenon in Amharic is therefore even more similar
to the Serbo-Croatian case: ¢ is epenthesized to repair a certain morphological context, while the
language employs other epenthetic strategies elsewhere.

I conclude that ¢ is epenthesized in Serbo-Croatian neuter noun inflection solely for the
purpose of repairing aberrant stems. In the following section, I provide a computational analysis

of this morphologically conditioned consonant epenthesis process.

3.3 Analysis

The formalism used here is known as Boolean Monadic Recursive Schemes (BMRS); it was
introduced by Bhaskar et al. (2020) and Chandlee and Jardine (2021) as a framework that captures
both linguistic and computational generalizations, mainly about phonology. To my knowledge,

BMRS has not yet been applied to morphological processes, but its structure and complexity bound

20

make this formalism appropriate for analyses of phenomena like the one I focus on in this

dissertation.

3.3.1 Boolean Monadic Recursive Schemes (BMRS)

Using BMRSs allows for an incorporation of the observation that phonology is formally at most
REGULAR on the Chomsky hierarchy (Chomsky, 1959; Johnson, 1972; Kaplan & Kay, 1994; Heinz,
2018) —i.e., that phonological processes are computations with a fixed memory. The formal nature
of phonology is thus crucially different than that of syntax, which has been observed to be more
expressive — at least CONTEXT-FREE on the Chomsky hierarchy. From this point of view, a good
linguistic theory should be appropriately restrictive, so that it characterizes the kinds of processes
that are attested in natural languages, while ruling out the kinds of processes deemed
grammatically impossible.

Just like phonology, morphology has also been shown to be largely regular (Karttunen et
al., 1992), most often subregular (Chandlee, 2017).° Since the expressivity of BMRSs is
appropriately limited to at most regular functions — more specifically, to a strict sub-class called
SUBSEQUENTIAL functions (Bhaskar et al., 2020) — we can therefore expect BMRSs to reliably
characterize morphological processes.

A generative theory of phonology or morphology has another important goal: to capture

linguistically significant generalizations. Extensionally capturing regular patterns can easily be

? The only exception is normally considered to be total reduplication — finite memory is insufficient to model a
productive process which assumes copying material of unbounded size. For an account of total reduplication of
morphological (unrealized) material, see Chapter 6.3; for a modeling of reduplication with 2-way finite-state
transducers, see Dolatian & Heinz (2020).

21

done with FINITE-STATE TRANSDUCERS (FSTs); these, however, do not intensionally represent
linguistic generalizations in the way linguistic theory usually does (Karttunen, 2003). In other
words, with finite-state analyses, we can correctly compute the desired output, but not necessarily
without losing some of the advantages of theoretical frameworks (such as Panini’s Principle,
discussed in the following section). Logical descriptions, on the other hand, can capture the same

generalizations on computational complexity with representations that are common in linguistics

(Chandlee & Jardine 2021).

3.3.2 Structure of a BMRS system

With BMRSs, morphological processes can be formalized as logical transductions on strings,
which are understood to be made up of segments, as well as additional lexical, morphological, and
syntactic information. Logical transductions describe functional transformations from input to
output strings, where the output is defined by taking a fixed number of copies of the input structure
(Filiot, 2015). BMRSs are based on the concept of recursive program schemes (in the sense of
Moschovakis, 2018): schemes that recursively define functions that take string indices as input,
and return a boolean value. The output value of a segment can then be defined on the basis of
predicates that refer to the input and output structures local to that segment (Chandlee & Jardine
2021).

Discussing finite-state implementations of realizational morphology, which are more
common in computational morphology, Karttunen (2003) notes that, despite the availability of

such accounts, they are not evidently endowed with the advantages of a theoretical, inferential-

22

realizational morphological framework (such as Stump, 2001). For instance, a crucial notion like
Panini’s Principle (= Elsewhere condition) can be implemented in a finite-state account, but it must
be stipulated as an additional mechanism in order to capture do X unless Y generalizations. With
the “if... then... else...” structures of BMRSs, on the other hand, elsewhere condition effects directly
fall out from how the grammar is evaluated. Panini’s Principle has been argued to be crucial in
multiple morphological and phonological theories (Network Morphology, Paradigm Function
Morphology, Distributed Morphology, Optimality Theory; see Kiparsky, 1973; Aronoff, 1976;
Zwicky, 1986; Anderson, 1992; etc.).

b

Relying on the ‘if... then... else...” syntax, BMRSs therefore effectively implement a
ranking of predicates that identify particular structures in either the input or output. These
structures may act like /icensing or blocking structures, depending on how they affect the output,
and how they fit into the overall BMRS template. Furthermore, this ranking is hierarchical: this
has been described as similar to constraint ranking in OT (Chandlee & Jardine 2021), but can be
used to model competition, inheritance, and defaults (normal-case, exceptional-case) in

morphology. The analysis below thus makes crucial reference to more specific and less specific

conditions on inflectional exponence.

3.3.3 Serbo-Croatian z-epenthesis: A BMRS analysis

As argued in section 2.1, t-epenthesis in Serbo-Croatian is predictable, and as such should not be

analyzed by means of listed stem allomorphy.

23

The primitives of BMRSs, as the name suggests, are the boolean values T and L (True and
False), the predecessor and successor function p and s, and a finite set of monadic predicates P(t)
— predicates that take a single argument ¢, and return T or L.

The alphabet 2 is a finite set of symbols; it is the union of sets A, which contains the
consonant and vowel segments of Serbo-Croatian, and M, which is the set of morphosyntactic
features like case and number. X is the union of 2 and all necessary boundary symbols — which,

for the purposes of this account, is just the stem boundary symbol +.

(10) A={a,b, 5 1,t5,d, & &% e, f,9,%x,3,k 1,4 mn,no,prs,[,tunv,z 3}

M = {[nom], [gen], [dat], [acc], [voc], [ins], [loc], [sgl, [pl],

[mas], [neul}
2=AUM
Zu=2U {+}

In the present analysis, set A is made up of segments, which is an adequate representation
for the points being made in the present work. One could, of course, assume a representation of
segments as feature bundles, which would be more appropriate for a phonological analysis; a
formalization of Serbo-Croatian [j]-epenthesis, illustrated in (5), would benefit from that, as that
is a case of homorganic glide epenthesis. Here I abstract away from further details, but see
Chandlee & Jardine (2021) for how phonological features can be used instead of segments in a

BMRS system.

For all symbols in 2, there is a set I of input predicates (marked with a subscript 7), and
a set O of output predicates (marked with a subscript o, and a superscript output copy number) for
each copy of the output string. Multiple output copies are needed to capture processes that involve

24

outputting multiple characters in a position occupied by a single character in the input string. As
the longest exponent in Serbo-Croatian Noun Class I is three segments long, we will need three
copies of the output string for the present analysis; this is further explained and illustrated later in

the section, when the copy set C is introduced in (21).

(1) I={aix), ..., 3i(x), [nomli(x), ..., [P11i(x), +i(x)}
O' = {a,!(x), ..., 20'(x), [nom]o!(x), ..., [P11o'(x), +o'(x)}
@2 = {a,%(x), ..., 30°(x), [nom] o2(x), ..., [PLl]oX(x), +o°(x)}
@ = {2’ (%), ..., 30°(x), [nom] o (%), ..., [P1]o(x), +o°(x)}

The argument x ranges over domain elements. Strings in 2 are identified with structures
of the form in (12), where the domain D is the set of indices, and each character o € 2w has g, as
the unary relation g, € D selecting the indices that that segment occupies. p(x) is a term referring

to the predecessor of x, and s(x) is a term referring to the successor of x.

(12) S=<D;ai,o0,...,00,p, 5>

To illustrate how input predicates are evaluated, I use the vowel-final stem of bure ‘barrel’
in Table 4. Note that, in a given analysis, all BMRS predicates are evaluated in parallel (rather
than sequentially), much akin to how rewrite rules are applied in two-level morphology
(Koskenniemi, 1983). Some example input predicates are given in Table 4, with various terms as

arguments. These are listed with their truth values for each segment in the word.

25

Table 4. Values of some input predicates for the segments of SC bure ‘barrel’

1 2 3 4 5
[neu] [neu] [neu] [neu]
b u r e +
[neuli(x) T T T T 1
ei(x) 1 1 1 T 1
+i(x) 1 1 1 1 T
ri(p(x)) 1 1 1 T 1
ri(s(s(x))) T 1 1L 1L 1L

I assume that all Serbo-Croatian stems come lexically marked with a gender feature; as
Table 4 shows, every segment of the stem bure is associated with the neuter gender feature
[neu]. The predicate [neu]i(x) therefore evaluates to true for positions 1-4, which are occupied
by the stem segments, but not position 5, which is occupied by the stem boundary symbol +.

Moving down Table 4, we can see that ej(x) is true for the input position occupied by the
stem-final vowel of bure (position 4), and no other position. +i(x) evaluates to true only in
position 5 — the position marking the morpheme boundary directly following the stem. The last
two predicates have arguments that refer to successors and predecessors. ri(p(x)) is true for e in
position 4, as ri(p(x)) can be understood as “r is the predecessor of x”. Similarly, ri(s(s(x))) is
true for b in position 1, as the interpretation is “r is the successor of the successor of x”.

Consider now the realization of the dative (and locative) singular form of bure ‘barrel’ in
Table 5. The input string consists of the stem bure+, directly followed by the dative case feature

[dat], and the singular number feature [sg].!°

9 The input structures are assumed to come from the syntax; this is further explained in Chapters 5 and 6.

26

Table 5. Input and output strings of the dative singular form of SC bure ‘barrel’

input
1 2 3 4 5 6 7
[neu] [neu] [neu] [neu]
b u r e + [dat] [sg]
output
Copy 1: b u r e t u

In order to get the desired output string buretu as the dative singular form of hure ‘barrel’,
while ensuring that the locative singular output form is the same, we need to define the dative-
locative syncretism, as well as the dative-locative singular feature bundle. Given that the dative
and locative are always syncretic, I define the predicate [dat/loc]i(x) in (13) to have it return
T for any instance of the dative [dat] or locative [1loc] feature in the input.

The conditions under which an input case feature will be marked as the dative-locative
syncretism are laid out using an ‘if... then... else...” statement. Let us examine the definition of
[dat/loc]i(x) in (13): if, for a given input position x, the predicate [dat]i(x) evaluates to T,
[dat/loc]i(x) will also return T; if the predicate [dat]i(x) returns L, the predicate [1oc]i(x)

is evaluated, and the boolean value it returns will be the evaluation of [dat/loc]i(x).

(13) [dat/locli(x)=if [dat]i(x)then T else [1loc]i(x)

The predicate [nom/acc/voc]i(x) is similarly defined in (14), with two ‘if... then...
else...” statements: the predicate returns T for any instance of [nom], [acc] or [voc] in the

input structure, as the nominative, accusative and vocative are syncretic for neuter nouns.

(14) [nom/acc/voc]li(x)=if [nom]i(x) then T else
if [acc]i(x)then T else [voc]i(x)

27

The necessary feature bundles are defined in (15). I start with [dat/loc sg]li(x), which is
needed for the realization of the u suffix invoked in Table 5. The predicate [dat/loc sgli(x)
evaluates to T iff the user-defined input predicate [dat/loc]i(x) returns T in the same position,
and the position that directly succeeds is associated with the input number feature [sg] (the “else
1” clause is implied, and is left out for clarity). Similarly, other necessary combinations of case

and number features available for neuter nouns are defined below.!!

(15) [dat/loc sgli(x)=if [dat/loc]i(x)then [sg]li(s(x))
[nom/acc/voc sgli(x)=if [nom/acc/voc]i(x)then [sgli(s(x))
[ins sg]li(x)=if [ins]i(x) then [sg]i(s(x))
[nom/acc/voc pllix)=if [nom/acc/voc]i(x)then [pl]i(s(x))
[gen pllix)=if [gen]i(x)then [pl]i(s(x))
[dat/loc pllix)=if [dat/loc]i(x)then [pl]i(s(x))

[ins plli(x)=if [ins]i(x)then [pl]i(s(x))

Feature bundles can also be defined so as to capture syncretic patterns at the same time:
consider the definition of [dat/loc/ins pl]li(x) in (16), which is responsible for ensuring
that the dative, locative and instrumental plural suffixes of neuter nouns in Serbo-Croatian will be

realized by one exponent. Similarly, [gen/ nom/acc/voc pl]i(x) will evaluate to T if a

11 Standard logical conjunction could also be used (i.e., [dat/loc sgli(x) A [sgli(s(x))), as it is equally expressive
(Chandlee and Jardine 2021, Moschovakis 2018); here I choose to follow the ‘if... then... else...” syntax consistently.

28

position is associated with the genitive input feature [gen] (regardless of number), or the

nominative-accusative-vocative plural feature bundle [nom/acc/voc pl].

(16) [dat/loc/ins pllix)=if [dat/loc plli(x)then Telse [ins pl]i(x)

[gen/ nom/acc/voc pllix)=1if [gen]i(x)then T else [nom/acc/voc plli(x)

Let us now turn to output forms: the predicates in (17-18) define the conditions under
which elements in the output alphabet appear in the first copy of the output structure. The predicate
in (17) models inflectional exponence: as illustrated in Table 5, the phonological realization of the
dative (and locative) singular is u. If the input position under consideration does not return true
for the dative-locative singular predicate [dat/loc sg]li(x), u can only be output faithfully as

a counterpart of an input u.

(17) wo'(x)=if [dat/loc sgli(x)then T else ui(x)

The definition of a,'(x) in (18) states that a is the exponent of the genitive case (in both
singular and plural), as well as the nominative, accusative and vocative plural. If this condition for
a is not met, the only other way to get an a in the output is for it to be a realization of an input a.
Similarly, 1 can be the (first segment of the) instrumental plural exponent, or a faithful output of

an input 1 — otherwise it does not appear in the (first copy of the) output string.

(18) ao'(x)=if [gen/ nom/acc/voc plli(x)then T else ai(x)

io!(x)=1if [ins pl]i(x) then T else ii(x)

29

Turning back to the example in Table 5, in which the input string bure+ [dat] [sg] gets
output as buretu, we can see that, under certain conditions (e-final stem followed by an overt
suffix), the stem boundary symbol + can be output as t. In order to adequately capture that, in (19)
I first define the predicate outseg(x), which returns T for all instances of segments realized in the

first copy of the output string:

(19) outseg(x) = if ao'(x)then T else
if bo!(x) then T else

()
if zo'(x) then T else z,'(x)

This user-defined predicate is then referred to in the definition of t,!(x) in (20), which specifies
that the stem boundary symbol + will be output as t iff e (the only stem-final vowel in the native
lexicon) directly precedes, and there is an output segment directly following the stem boundary

(as shown in Table 5). Otherwise, t will only be output as a faithful counterpart of an input t.

(20) to'(x) =if +i(x) then
if ei(p(x)) then outseg(s(x))
else ti(x)

This predicate effectively models morphological #-epenthesis. A few details remain to be
ironed out, most notably the treatment of exponents longer than a single segment. Consider the
example in Table 6, which shows the input and output strings of the instrumental plural form of

bure ‘barrel’.

30

Table 6. Input and output strings of the instrumental plural form of SC bure ‘barrel’

input
1 2 3 4 5 6 7
[neu] [neu] [neu] [neu]
b u r e + [ins] [pl]
output
Copy 1: b u r e t i
Copy 2:
Copy 3: a

As shown in Tables 1-3, the Serbo-Croatian noun inflection system consists of case-
number exponents; these feature bundles (and syncretisms) are defined in (13-16), and they occupy
the same position as the case feature (position 6 in Table 6). For any exponent longer than one
segment, all output segments must still occupy the same position; in order to make that possible,
we can define a larger COPY SET of output structures. As the longest case-number exponent in our
system is three segments long (-ima, dative-locative-instrumental plural), a copy set of size 3 will

suffice (21):

21) C=1{1,2,3}

For the purpose of retaining the desired computational complexity of the system, the order
of the output copies is fixed: it is derived from the order on C (21), and the order on the indices in
S (12). This means that segments are output in a top-to-bottom, left-to-right fashion: given an
input string of length n, for any single index i, output copy 1 is ordered first, directly followed by
copies 2 and 3, respectively, for the same index. These are then followed by the respective output
copies of the immediately following indices im+1, im+2, ..., in, for all output characters whose

functions return T at each string index. This ensures order preservation; for a more formal

31

definition, refer to Bhaskar et al. (2020). For more about the relation between order-preserving
logical transductions and one-tape finite-state transducers, see Filiot (2015).

Output copy 2 and copy 3 predicates can now be defined. As shown in Tables 1-3, m is the
second segment of the instrumental singular exponent, or it can surface as the second output
segment of the dative-locative-instrumental plural syncretism (exemplified in Table 6); otherwise,

m does not appear in Copy 2 of the output. This is captured in the definition of mo*(x) in (22).

(22) m(x)=if [ins sgli(x) then T else [dat/loc/ins pl]i(x)

As per the definition of a.*(x) in (23), a surfaces in output Copy 2 as the second segment
of the genitive plural exponent, essentially realizing the -aa suffix (see Tables 1 and 2 in Section

2). If this condition is not met, a does not surface as a Copy 2 output segment.

(23) asi(x)= [gen pllix)

Finally, only one output Copy 3 predicate is needed — for the realization of the final

segment of the dative-locative-instrumental plural suffix -ima (Table 6). This is defined in (24):

(24) ao’(x)= [dat/loc/ins plli(x)

At this point, the only exponents laid out in Section 2 that have not yet been defined are o-
and e-initial suffixes. Remember that the examples in Table 2 illustrate the effect of stem-final
fronting consonants (FC) on the choice of surface form of certain inflectional suffixes: specifically,

neuter FC-final stems additionally take -e as the nominative-accusative-vocative singular suffix

32

(which is otherwise -o for neuter nouns), while all FC-final Class I stems take -em in the
instrumental singular (-om elsewhere). Consider the input and output structures of the instrumental

singular forms of selo ‘village’ in Table 7, and those of pode ‘field’ in Table 8.

Table 7. Input and output strings of the instrumental singular form of SC selo ‘village’

input
1 2 3 4 5 6
[neu] [neu] [neu]
S e 1 + [ins] [sqg]
output
Copy 1: S e 1 o
Copy 2: m

Table 8. Input and output strings of the instrumental plural form of SC pode ‘field’

input
1 2 3 4 5 6
[neu] [neu] [neu]
P o) A + [ins] [sqg]
output
Copy 1: P o A e
Copy 2: m

In order to capture the pattern illustrated in Tables 7 and 8, I utilize the user-defined input
predicate FCi(x) (25), as well as output Copy 1 predicates e,'(x) (26) and o0.'(x) (27). Let us first

look at FCi(x): it returns T for all members of the set of fronting consonants, which was defined in

Section 2.!2

12 The terms in (25) can be reordered in any way; this is equally expressive as standard logical disjunction.

33

(25) FCi(x) =if tsi(x) then T else
if tfi(x) then T else
if tei(x) then T else
if &i(x) then T else
if dzi(x) then T else
if Ji(x) then T else
if Ai(x) then T else
if ni(x) then T else
if [i(x) then T else zi(x)

Then, in (26), the definition of e,!(x) states that e is output in Copy 1 as the instrumental
singular exponent after an FC-final stem (line 1). For cases other than the instrumental singular,
the gender feature of the stem needs to be checked; a stem bearing the neuter gender feature [neu]
(line 2) can have e following in output Copy 1 as a realization of the nominative-accusative-
vocative singular syncretism, provided that the stem is FC-final (line 3). If [neu]i(p(p(x))) in line
3 returns 1, however, the ‘else’ part of that statement is evaluated (line 4). Given that Inflectional
Class I in Serbo-Croatian consists only of masculine and neuter nouns, the statements in lines 5
and 6 describe e’s as suffixes attaching to masculine stems — specifically as the vocative singular
exponent, or the accusative plural exponent (regardless of the identity of the stem-final consonant).
Finally, if none of the conditions above hold, e can only surface as a faithful output of an input e

(line 6).

(26) eo'(x)=if [ins sg]i(x) then FCi(p(p(x))) else
if [neuli(p(p(x))) then
if [nom/acc/voc sgli(x) then FCi(p(p(x)))
else
if [voc sgli(x)then T else
if [acc plli(x)then T else ei(x)

34

In (27), the definition of o,!(x) states that o is the exponent of the instrumental singular
(line 1), provided that the conditions that would produce an e in the same position in output Copy
1 do not hold (line 2). This makes o the default exponent of the instrumental singular in Class I —
it gets output in the absence of more specific conditions. o is also the default realization of the
nominative-accusative-vocative singular syncretism for neuter nouns (lines 4-5), subject to two
blocking structures: the stem cannot be e-final (line 6), and, once again, the conditions that would
give rise to an e in the same position in output Copy 1 must not hold (line 7). Note how the
structure of the definition of o,'(x) (the hierarchical order of predicates) is parallel to that of e,'(x):
this captures the generalization that, in this inflectional class, suffix-initial default o is overwritten

by e in a specific context (after FC-final stems).!?

(27) oo'(x)=1if [ins sg]i(x) then
if eo'(x) then L else T
else
if [neuli(p(p(x))) then
if [nom/acc/voc sgli(x) then

if ei(p(p(x))) then L else
if eo'(x) then L else T

else oi(x)

Finally, in (28) I list the identity functions over the remainder of the members of the set A
of segments; in output Copy 1, these are all output faithfully, without further stipulations. No

equivalent predicates are defined for output Copies 2 and 3.

13 In an alternative approach, the initial vowel of the [ins sg] and the [nom/acc/voc sg] suffixes is always
o, which then gets fronted to e after FCs. I develop that account in Chapter 5.

35

(28) ro'(x) = ri(x)

mo ! (x) = mi(x)

bo'(x) = bi(x)
t50!(x) = ti(x)
o' (¥) = Hi(x)
60 (x) = tai(x)

(etc., for {d, &, &, £,9,%,3,k, 1,4 n,np s, [,z 3})

No other output predicate needs to be defined; characters that are not defined by output
predicates will not appear in any of the output copies. This includes non-segmental characters
(morphosyntactic features, feature bundles, boundary symbols), as well as null case endings (e.g.
masculine nominative singular).

The analysis above accounts for t-epenthesis as rewriting of an input stem boundary
symbol with an output consonant. This is not in itself a practice that is unheard of — see Bhaskar
et al. (2020) for an example of word-final consonant insertion (where the right word boundary
input symbol X is similarly output as the desired consonant), and Koskenniemi (1983) for how,
more generally, strings are padded out with special symbols in two-level morphology (given that
it fundamentally relies on equal length relations). The approach in this chapter specifically captures
the understanding that the Serbo-Croatian #-insertion process occurs at a morphologically salient
position, while being sensitive to the phonological form of the stem, and the presence of a suffix

that follows.

36

3.4 Conclusion

This chapter provided an analysis of morphologically conditioned consonant insertion in Serbo-
Croatian; as shown in section 2.1, native stems in this language are required to be consonant-final
on the surface. Those that are not end up with an epenthesized ¢ at the end, whenever an overt
suffix is attached to a stem — and that happens regardless of whether that suffix is vowel- or
consonant-initial. In other words, while sensitive to the phonological form of the stem, the insertion
process is not triggered by a need for resyllabification, or to break up vowel hiatus.

The BMRS analysis illustrated how Boolean Monadic Recursive Schemes can directly
capture morphological and phonological generalizations, retaining the computationally restrictive
nature of such processes. This formalism can therefore easily account for morphologically
conditioned epenthesis, which is sensitive both to phonological form and morphological properties.
Based on the generalization that morphological and phonological phenomena, unlike syntactic
ones, are restricted in much the same way in terms of computational complexity and locality, the
morphological module can be characterized more generally, formalizing the insights of both

morpheme-based and paradigm-based approaches.

37

4 Morphological epenthesis: Romance

In this chapter I turn to allomorphy found in several Romance languages. I demonstrate that these
processes are predictable, and lie on the morphology-phonology interface. The allomorphs under
consideration reflect morphologically conditioned consonant insertion, and their distribution is
completely predictable from the phonological shape of the stem and morphosyntactic properties
of the lexeme.

It would be reasonable to assume that insertion processes such as the one outlined in the
previous chapter should not be limited to coronal stops, or even consonants; this is indeed what
we find in a number of different languages. Epenthesis is usually thought of as a purely
phonological process that improves marked structures; however, the phenomena presented here
cannot be accounted for in exclusively phonological terms, and are morphosyntactically
conditioned. In this chapter I examine more instances of morphological epenthesis, and conclude
that a morphological module that operates over strings correctly predicts the existence of such

processes and properly handles them.

4.1 [u]-epenthesis in Catalan

In Catalan, [e] is used as the default epenthetic vowel to syllabify an illicit sequence of consonants
(29) Error! Reference source not found.. However, within the nominal domain, [u] is
epenthesized to repair syllable structure if the masculine gender is involved. Specifically,

masculine adjective stems ending in /s/ are realized with an [o] before the plural suffix /s/ (30a)

38

Error! Reference source not found.. In the same context, with a feminine stem, [o]-insertion is
not triggered (30b). The same generalization applies to noun stems (30c). Finally, if there is no

disallowed */ss/ sequence, no epenthesis occurs (30d).

(29) [espilber] ‘Spielberg (name)’

(30) a. /felis + s/ — [felisus] ‘happy.MAS.PL’
b. /felis + s/ - [felises] ‘happy.FEM.PL’
c. /gos + s/ — [gosus] ‘dog.MAS.PL’
d. /gat + s/ — [gats] ‘cat.FEM.PL’

The Catalan data are analyzed by Zimmermann (2019) as involving a ghost segment /u/;
in this analysis, masculine nominal stems underlyingly contain a latent segment that only surfaces
to avoid a marked structure. The generalization that masculine stems trigger [u]-epenthesis is thus
lost — a ghost segment will surface to repair a marked structure, and masculine nominal lexical
entries just happen to have them. Catalan [u]-epenthesis is analyzed by others as morphologically
conditioned epenthesis (Loporcaro, 1997; Artés Cuenca, 2016; Moradi, 2017; Aronoff & Repetti,
2022); this is the approach I pursue here.!*

Consider the input and output strings of [gosus] ‘dogs’ in Table 9:

14 Loporcaro (1997) suggests that these alternations in Catalan constitute an example of a suffix (masculine gender
marker) that was reanalyzed as epenthetic. Similarly to Serbo-Croatian [t], this would then be a case of diachronic
rule inversion (Vennemann, 1972).

39

Table 9. Input and output strings of Catalan [gosus] ‘dogs’

1Input
1 2 3 4 5
[m] [m] [m] [pl]
g o) S + S
output

The insertion of [u] in Catalan /gos + s/ — [gosus] ‘dogs’ can be formalized by specifying
the conditions under which the morpheme boundary symbol + can be rewritten as u. Assuming
that every segment of /gos/ is associated with the masculine gender feature [m], in the definition
of uo(x) in (31) I provide the conditions under which u appears in the output structure. If the
position under consideration is occupied by a morpheme boundary + (line 1), the position that
directly precedes needs to contain a segment that is marked for masculine gender (line 2), and what
needs to follow is a suffix bearing the plural number diacritic [p1] (line 3). The statement in line
4 is a formalization of the */ss/ constraint: if all of the conditions in lines 1-3 evaluate to T, there
must also be an s in the input structure directly preceding the morpheme boundary +, and an
input s directly following it. Finally, if the position under consideration is not occupied by a
morpheme boundary + in the input, the only condition that can trigger an occurrence of an output

u is the presence of an input u in the same position (line 5).

(B1) uo'(x) = if +i(x) then
if [m]i(p(x)) then
if [p17]i(s(x)) then
if si(p(x)) then si(s(x))

else ui(x)

40

The faithful output of any input u is thus ensured, and this is the most general, default

condition on any such output symbol — parallel to low-ranked Ident constraints in OT, for instance.

4.2 [z]-epenthesis in Brazilian Portuguese

Aronoff and Repetti (2022) discuss a case in Brazilian Portuguese in which the choice between
two epenthetic segments to repair a phonological violation is made on the basis of morphological
structure: [j] is the default epenthetic segment used to repair hiatus (32). However, if the hiatus is

formed between morphemes, [z] is used instead (32a-c) (Garcia, 2017; Bachrach & Wagner, 2007).

(32) [koseje] ‘Correa/Corréa/Correia (name)’
(33) a /sofa +ipu/ — [sofazipu] ‘sofa.DIM’
b. /kafe + aw/ — [kafezaw] ‘coffee grove’
c. /kafe + ejru/ — [kafezejru] ‘coffee producer’

No allomorphic solution can express the fact that Brazilian Portuguese epenthesizes [z] rather than
[j] only between morphemes. A conditioned epenthesis account is fairly straightforward, however:
as the morpheme boundary symbol + can only appear at morpheme edges, we can use that

representation to define the locus of morphological epenthesis.

41

Table 10. Input and output strings of Portuguese [sofazinu] ‘sofa.DIM’

input
1 2 3 45 6 7 8
s o f a + i n u
output

Copyl: s o £ a z 1 n u

The morpheme boundary symbol + gets rewritten as z only if a certain condition is met —
there needs to be a vowel directly on each side of the morpheme boundary. The predicate VOWj(x)
(34) is thus defined to return T for all the members of the Brazilian Portuguese vowel inventory.

[z]-insertion is then modeled by z,!(x) in (35).

(34) VOW;(x)=1if ai(x) then T else
if 1i(x) then T else

(...)
if oi(x) then T else ui(x)

(35) zo'(x) =if +i(x) then
if VOWi(p(x)) then VOWi(s(x))
else zi(x)

Morphological epenthesis in Brazilian Portuguese is therefore indeed phonologically
optimizing — z appears in the output to satisfy a markedness constraint, encoded as “if VOWi(p(x))
then VOWi(s(x))” in (35). However, the process is crucially restricted to a morphological context
(it can only happen at a morpheme juncture), and the strategy used to resolve hiatus in that specific
context differs from how the structure is repaired more generally in the language (via glide

insertion).

42

4.3 [s]-epenthesis in Spanish

In Spanish, diminutives are formed by removing the masculine gender marker -o or the feminine
gender marker -a (if present) from the base form, and then adding the diminutive suffix -ito/-ita
(36a) (Crowhurst, 1992; Norrmann-Vigil, 2012). As seen in (36b), vowel hiatus contexts created
through this process are not resolved. [s] is inserted between the stem and the diminutive suffix if

the base form ends in a vowel that is not the -o/-a gender marker (36¢-d), [n] (36e) or [c] (36f).

(36) a. /gato +ito/ — [gatito] ‘cat.DIM’
b. /bakalao + ito/ — [bakalaito] ‘cod.DIM’
c. /kable + ito/ — [kablesito] ‘cable.DIM’
d. /sofa +ito/ — [sofasito] ‘sofa.DIM’
e. /kamjon + ito/ — [kamjonsito] ‘truck.DIM’
f. /amor + ito/ — [amorsito] ‘love.DIM’

I therefore assume the input strings to have a “base form + diminutive suffix” structure,
where each segment of the suffix ito bears a diminutive feature [dim]. This is illustrated in

Tables 11 and 12 below.

Table 11. Input and output strings of Spanish [gatito] ‘cat.DIM’

input
1 2 3 4 5 6 7 8
[dim] [dim] [dim]
g a t o + i t o)

43

output
Copyl: g a t i t o
Table 12. Input and output strings of Spanish [amorsito] ‘love.DIM’

input
1 2 3 4 5 6 7 8
[dim] [dim] [dim]
a m o ¢ + i t o

output
Copyl: a m o ¢ s i t o

Once again, we can think about morphologically conditioned epenthesis as rewriting of the
morpheme boundary symbol +; in Spanish diminutives, it is output as s unless the base form ends
in an (unstressed) o or a (gender marker), or any consonant other than n or c. Therefore, a user-
defined predicate such as CONS-n,ri(x) — which returns T for all Spanish consonants except for n
and r -- needs to be defined (37), and referred to in the definition of s,'(x) (38). Additionally, the
o/a gender marker needs to be dropped from the output; this is reflected in the definitions of 0,'(x)

and a,'(x) in (39) and (40), respectively.

(37) CONS-n,ri(x) = if bi(x) then T else
if ci(x) then T else ...
(etc., for all Spanish consonants except for n and r)

(38) so'(x) =if +i(x) then
if [dim]i(s(x)) then
if oi(p(x)) then L else
if ai(p(x)) then L else
if CONS-n,ri(x) then Lelse T
else si(x)

(39) 0o'(x) =if 0i(x) then
if +i(s(x)) then L else T

44

(40) ao'(x) =if ai(x) then
if +i(s(x)) then L else T

4.4 Conclusion

The focus of this chapter has been the generalization that insertion of phonological material can
be governed by morphological criteria alongside or independently of phonological ones, and that
insertion processes such as those outlined in this section are not necessarily phonologically
optimizing. A system formalized in this way is not directly dependent on naturalness or
phonological substance — its purpose is rather to define the necessary conditions on the realization
of processes, restricted by their computational complexity. The motivations behind such processes
can be varied, but are crucially external to the system that generates them, not central to
formalizing them. With BMRSs, we can model processes like canonical and non-canonical
epenthesis with no additional impositions on the input structure (like abstract segments or listed
allomorphs), other than assuming representations like morpheme boundaries and morphosyntactic

features as part of the input string.

45

5 Leading forms: cues for inflectional class assignment

As can be seen from the analysis offered in the previous chapters, the ‘if... then... else...” syntax of
BMRS necessarily imposes a hierarchical structure of predicates. This ordering of licensing
structures and blocking structures can be crucial for the analysis of morphological systems,
characterized by phenomena like inheritance or Panini’s principle. Recursive schemes are an
abstract way of studying algorithms (Moschovakis, 2018), and algorithms are crucial to linguistic
theory; this chapter focuses precisely on the algorithms that play a major role in the inflectional
system of Serbo-Croatian. Petrovic (under review) analyzes the inflectional system of Serbo-
Croatian nouns in its entirety, investigating how inflectional class membership can be
characterized as a result of a predictable process, rather than lexically listed information; this

chapter is based on that work.

5.1 Class membership assignment in Serbo-Croatian

Deciding what declension class a Serbo-Croatian noun belongs to is a relatively complex task; the
phonological form of the stem and the morphosyntactic properties (specifically, gender
information), which we suppose are listed in the lexical entry, are not enough to place a stem into
the correct paradigm of case endings (inflectional class). In fact, multiple inflectional classes take

consonant-final stems, and the identity of the stem-final consonant is irrelevant; moreover, nouns

46

of different genders can belong to the same class. Cross-linguistically, inflectional class
membership is often listed information (Aronoff, 1994, p. 65), but an analysis that characterizes it
as a result of a predictable process is always preferable, if available. Furthermore, in the specific
case of Serbo-Croatian, such an analysis would also account for how new words (loanwords, nonce
words) get assigned to a declension class.

The approach that I adopt takes into account a leading form (Wurzel, 1990; McCarthy,
2005), also referred to as base (Albright, 2008b), for every lexical entry, in addition to the lexical
stem. I argue that Serbo-Croatian is sensitive to the nominative singular as the leading form, as it
provides sufficient information for correct declension placement, in combination with the lexically
listed gender and stem properties. This notion is here incorporated into an algorithmic
interpretation of nominal inflection as logical transductions on strings, using Boolean Monadic
Recursive Schemes (BMRSs; Chandlee & Jardine, 2021).

The chapter is organized as follows. In section 5.2, I provide an overview of the noun
inflection paradigms in Serbo-Croatian, outlining the patterns that the analysis is meant to capture.
In section 5.3 I argue for the status of leading forms as part of lexical entries, and introduce the
inflectional class assignment algorithm. Section 5.4 discusses some additional implications of the

algorithm, and Section 5.5 offers a BMRS analysis.

5.2 Serbo-Croatian inflectional classes

Chapter 3 was mainly devoted to the inflection of neuter nouns in Serbo-Croatian; here I will

expand and update the paradigm of noun inflection in this language. Serbo-Croatian nouns can fall

47

into one of the three inflectional paradigms — Class I consists of masculine and neuter nouns, Class
II comprises feminine and masculine nouns that end in -a in the nominative singular; feminine
nouns that do not receive an overt suffix in the nominative singular belong to Class III. The (still

slightly simplified) noun inflectional paradigms with example stems are shown in Table 13.

Table 13. Inflectional classes of Serbo-Croatian nouns

Crass 1 CrLASSIT | CLAss ITT
masculine | neuter, neuter, feminine, | feminine
masculine | masculine masculine
e-final

zavod- sel- bure- 3en- reff-

‘institute’ | ‘village’ ‘barrel’ ‘woman’ | ‘word’

SG. | PL. SG. | PL. SG. PL. SG. | PL. SG. | PL.
NOM. 0) 1 0 a 0) ta a e 0) 1
GEN. a aa a aa ta taa e aa 1 1
DAT.-LOC. | u ima |u ima | tu tima |1 ama |1 ima
ACC. QP |e 0 a) ta u e o i
VOC. e 1 0 a [0) ta 0 e 1 1
INS. om |[ima |om |ima |tom |tima |om |ama |1i ima

Neuter nouns are considered to belong in Class I together with masculine nouns because
they inflect very similarly: zavod-type stems, sel-type stems and bure-type stems receive largely
the same case endings, the only difference being the nominative suffixes in both numbers, and the
cases patterning after them. Additionally, masculine nouns can follow any of the patterns grouped
under the CLASS I label, including those that are canonically considered neuter — auto ‘car’ and
marko ‘Marko (proper name)’ inflect like selo ‘village’, mare ‘Mare (proper name, nickname)’
inflects like bure ‘barrel’. e-final stems receive an additional # before a suffix is added — this is not
an exponent of a morphosyntactic feature (or feature bundle), but rather a case of morphologically

conditioned consonant insertion (cf. Chapter 3). As will be shown in sections 4.3-4.5, all of these

48

patterns are directly derived with reference to the leading form and the phonological form of the
stem.

Not represented in Table 13 is an alternation that affects the entirety of Class I: in this
inflectional class, every suffix-initial o fronts to e if the stem-final consonant is a posterior coronal
or an affricate, i.e. {5, &, &, 1, d&s, /, 5, 11, J, 4}. This set of segments has been introduced in Chapter
3 as the set of fronting consonants (FC). The surface form of the nominative singular suffix for the
neuter stem pod- ‘field’ is therefore e, not o (as could be deduced from Table 13; but see Table 2).
In addition to the identity of the stem-final consonant, there are other conditions that affect the
choice of suffix-initial vowel (o or e), such as the identity of the stem-final vowel or the status of
the lexeme as native or borrowed. Right now I will abstract away from these conditions, but see
Section 5.5 for a more detailed analysis of the phenomenon.

For the purposes of this work, I disregard a few additional generalizations that can be made
about the inflectional paradigms of nouns in Serbo-Croatian. First, borrowed feminine nouns
whose nominative singular does not end in -a (proper names like karen ‘Karen’ or beti ‘Betty’)
are indeclinable. Second, as discussed in Chapter 3, most bure-type nouns do not follow the default
plural pattern presented in Tables 3 and 14, and use collective forms to express plurality. Finally,
for a subset of e-final neuter stems that end in me, the consonant that is added between the stem
and the case ending is n, not ¢. The first two generalizations are robust and can easily be integrated
into the analysis that follows; they are omitted for reasons of simplicity and straightforwardness
of presentation. As for the third, the issue of non-z-stem extenders is debated (cf. Sljivi¢-Simsié,
1984; Brozovi¢, 2006, pp. 119—121), and it is not clear to which extent it can be characterized as

a predictable process, which is why it is not discussed here.

49

5.3 Leading forms

Which paradigm a lexeme belongs to is determined by three factors: the form of the stem (e-final
or non-e-final), gender information (masculine, feminine or neuter), and the leading form itself (a-
final or non-a-final). If the only available information were the form of the stem and the
morphosyntactic property of gender, we would not be able to know whether feminine stems (all
consonant-final) would belong to Class II or Class III. On the other hand, if we only had the leading
form to work with, we could not differentiate between pode ‘field’, which contains the nominative
singular suffix -e (given that its stem pod- ends in a fronting consonant), and uze ‘rope’, which
takes no overt suffix in the nominative singular, and has #-insertion in the oblique cases.

There are good reasons why the nominative singular is to be taken as the leading form: it
is the most frequent form, given that it is the subject case, and it ranks highest in the Case Hierarchy
(Blake, 2001). Even though there may be more informative forms (e.g. genitive singular), they
would neither rank as well in the Hierarchy, nor be as frequent in use. Crucially, however,
loanwords (especially from non-inflecting languages) do not have an oblique form one could refer
to, but they are still regularly incorporated into the declension system on the basis of their input
form — which is borrowed as nominative singular. All nouns whose nominative singular ends in -
a (both native and borrowed, regardless of gender) belong to Class II; all non-a-final feminine
nouns are assigned to Class III. Finally, all other nouns end up in Class I (broadly construed,
including the canonically masculine and neuter patterns), which is the default declension for non-

gendered loanwords. The declension class assignment algorithm is shown in Figure 3 below.

50

Figure 3. Decision tree for declension assignment of Serbo-Croatian stems
leading form
a-final non-a-final
Clasle.s_ll gerlder
feminine = non-feminine

| |
Class III Class [

stem form

e-final non-e-final

leading form

o-final non-o-final

Animacy distinctions are omitted from Figure 3, as it is understood that they apply across
the board in Class I. In this work I abstract away from accounting for the animate syncretic pattern
(genitive singular-accusative singular) and default to the non-animate syncretisms for Class I
(nominative singular-accusative singular, as shown in Figure 3); however, assuming [+animate]

features would allow for capturing both.

5.4 Deficient entries

51

An implication of the algorithm in Figure 3 is that it works with a deficient lexical entry. A
complete lexical entry consists of a stem, a leading form, and morphosyntactic gender information;
however, not all lexical entries — especially ones corresponding to loanwords — will be complete.
We can assume that most loanwords are incorporated into the system only with a leading
form, i.e. they are neither semantically prespecified for gender, nor do they have a predetermined,
listed stem form. Entries like these fall under the “non-feminine” gender and “non-e-final” stem
form labels in Figure 3. Thus, consonant-final borrowed words (e.g. kompjuter ‘computer’) inflect
like native masculine nouns, and a-final borrowed words (e.g. opera ‘opera’) inflect like native
feminine nouns. Crucially, Figure 3 correctly predicts that o-final loanwords, like forpedo ‘torpedo’
or kino ‘cinema’ will inflect like native o-final nouns (a category that includes “fronted o-final”
nouns, i.e. leading forms ending in an FC+e sequence), and that non-o-final loanwords (e.g. su/i
‘sushi’, anime ‘anime’) will inflect like native masculine nouns — e-final loanwords do not follow
the pattern of e-final native neuter nouns (i.e. they inflect like zavod in Table 13, not like bure).
In addition, the existence of different patterns for certain nouns — such as, for instance, jaje
‘egg’, whose genitive singular form can be jajeta or jaja — straightforwardly comes out of the
assumption that nominative singulars as leading forms have a special status. As explained in
Chapter 3 (Section 3.1.3), a leading form like jaje can plausibly be analyzed by the speaker or
learner of the language as a j-final stem followed by the nominative singular suffix (given that
stems ending in a fronting consonant take -e instead of -0), or a leading form consisting of an e-

final stem with no overt case suffix. Both patterns are available and attested.

52

5.5 Modeling and formalization

The decision tree in Figure 3 can easily be understood as a schematic representation of the
evaluation of ‘if... then... else...” statements, which necessarily impose a hierarchical structure of
predicates. This ordering of structures can be crucial for the analysis of morphological systems,
characterized by phenomena like inheritance or Panini’s principle. This chapter demonstrates that
they can be used to account for the complete inflectional system of Serbo-Croatian, including a
process of assigning nominal lexical entries to inflectional classes.

Recursive schemes are an abstract way of studying algorithms (Moschovakis, 2018), which
are crucial to linguistic theory. Capturing the generalizations on computational complexity of
morphological and phonological processes is an important aspect that BMRSs successfully fulfill.
As pointed out in Chapter 3, the expressivity of BMRSs is appropriately limited to subsequential
functions (Bhaskar et al., 2020), while at the same time it easily expresses linguistically significant
generalizations, featuring a direct capture of Panini’s Principle (i.e. Elsewhere condition).

For the purposes of the analysis presented in this chapter, [update the alphabet 2 for Serbo-
Croatian, initially presented in (10). Once again, I assume a set A of (phonological) segments (like
a or 3;(41)) and a set M of morphosyntactic features (like [mas] for the masculine gender, [nom]
for the nominative case, or [sg] for the singular number; (42)), and I add a set L of symbols
denoting the leading form categories relevant for the target inflectional patterns ({a} for a-final,
{o} for o-final, {e} for e-final; (43)). The alphabet 2 represents the union of these sets (44), while
2 1s the union of 2 with the set of necessary boundary symbols (45) — here we need the morpheme

boundary symbol + and the inferred stem marker *.

53

(41) A:{a7b’ts7 ﬂ)tsa d7d57dz7 e’ f’ g’ X’ i’jﬁki lBAJmi n’n’ O’p’ r’ S’ _I-J t’ u’ U’ Z’ 3}

(42) M = {[mas], [fem], [neu], [nom], [gen], [dat], [acc], [voc], [ins],

[loc], [sgl, [pl]}

43) L={{a}, {o}, {e}}

(44) X=AUMUL

(45) 2Zu=2U{+, *}

I once again define predicates that identify particular structures in either the input or output.
I assume that leading form categories, like gender features, are lexical information marked on
every segment of the stem.

To take a concrete example, I represent the input and output strings of sene ‘woman.GEN.SG’
in Table 14. The input string begins with the stem, where each segment occupies a single position
in the string. Each is also marked with the feminine gender feature [fem], and a symbol denoting
the final segment of the leading form (nominative singular), which for sena ‘woman’ is {a}. In
position 4 we find the morpheme boundary symbol +. Finally, in positions 5 and 6 respectively,

we have the case marker [gen] (genitive), and the number marker [sg] (singular).

Table 14. Input and output strings of the genitive singular form of SC zena ‘woman’

input

54

1 2 3 4 5 6

{a} {a} {a}
[fem] [fem] [fem]

3 e n + [gen] [sg]
output
Copy 1: 3 e n e

With these representations in place, we can proceed to the formalization of the Serbo-
Croatian noun inflection class assignment algorithm. To do this, three user-defined input-oriented
predicates will suffice. As outlined in section 4.2, any lexical entry containing an a-final leading
form will automatically be assigned to Inflectional Class II. Therefore, the predicate ILi(x) (46)
adds a Class II diacritic to every morpheme boundary + that is directly preceded by the {a } leading

form marker in the input structure.

(46) IIi(x) = if +i(x) then {a }i(p(x))

Similarly, the predicate IIIi(x) (47) also targets the morpheme boundary +. Two additional
conditions are imposed: the morpheme boundary + cannot be associated with the Class II diacritic,

and its precedent in the input string must bear the feminine gender feature [fem].

(47) Ii(x) = if +i(x) then
if IIi(x) then L else [fem]i(p(x))

Finally, Class I is the default inflectional class — if the leading form of a lexical entry is not
a-final, or if it does not bear the feminine gender feature, that lexical entry will follow the Class I
pattern in inflection. This is modeled in (48): the predicate Ii(x) will return T for any morpheme

boundary + not associated with the Class II or Class III diacritic.

55

(48) ILi(x) = if +i(x) then
if IIi(x) then L else
if ITi(x) then L else T

The rest of the conditions laid out in Figure 3, as well as the patterns shown in Table 13,
can be captured by predicates defining exponent realization. Predicates that capture syncretic
patterns in the inflectional paradigms have already been defined in (13) and (14) — I repeat them
below as (49) and (50). Therefore, given that the dative and locative are always syncretic, the
predicate [dat/loc]i(x) (49) returns T for any instance of the dative [dat] or locative [1oc]
feature in the input. Similarly, [nom/acc/voc] (50) returns T for any instance of [nom], [acc]
or [voc] in the input structure, given that the nominative, accusative and vocative are syncretic

in some of the paradigms (neuters, Class II plural forms, Class III plural forms).

(49) [dat/locli(x)=if [dat]i(x)then T else [1oc]i(x)

(50) [nom/acc/vocli(x)=if [nom]i(x)then T else
if [acc]i(x)then T else [voc]i(x)

Some of the necessary feature bundles — combinations of case and number — have already
been modeled in (15) and (16); I repeat them below, and define the additional input predicates
needed to capture all of the patterns in Table 13. In each of these, two conditions must hold for the
predicate to return T: the position under evaluation must be occupied by a certain case feature, and

its direct successor must be a specific number feature.

56

(51) [nom sgli(x)=if [nom]i(x) then [sg]i(s(x))

(52) [gen sgli(x)=if [gen]i(x) then [sg]i(s(x))

(53) [acc sglix)=if [acc]i(x) then [sg]i(s(x))

(54) [ins sgli(x)=if [ins]i(x) then [sg]i(s(x))

(55) [voc sgli(x)=if [voc]i(x) then [sg]i(s(x))

(56) [dat/loc sgli(x)=if [dat/loc]i(x)then [sgli(s(x))

(57) [nom/acc/voc sgli(x)=if [nom/acc/voc]i(x)then [sg]i(s(x))

(58) [nom plli(x)=if [nom]i(x) then [pl]i(s(x))

(59) [gen pllix)=if [gen]i(x) then [sg]i(s(x))

(60) [acc pllix)=if [acc]i(x)then [pl]i(s(x))

(61) [voc pllix)=if [voc]i(x)then [pl]i(s(x))

(62) [gen sgli(x)=if [gen]i(x) then [sg]i(s(x))

57

(63) [nom/acc/voc pllix)=if [nom/acc/voc]i(x)then [sg]i(s(x))

The definition of a feature bundle predicate can also be written to capture the syncretic
patterns that exist in the paradigm. As can be seen in Table 13, instrumental plural forms and
dative-locative plural forms are always syncretic, regardless of the inflectional class. This is
captured in (64), where [ins pl]i(x) returns T whenever the instrumental feature [ins] is
directly followed by the plural feature [pl], or when the dative-locative feature [dat/loc] is

directly followed by the plural feature [pl1].

(64) [ins plli(x)=if [ins]i(x) then [pl]i(s(x)) else
if [dat/loc]i(x)then [pl]i(s(x))

The predicates that follow model exponent realization. These are output-oriented
predicates, and represent redefined versions of their counterparts in Chapter 3 — they are here
updated to capture Serbo-Croatian inflectional processes beyond Inflectional Class I.

The definition of a,'(x) in (65) is interpreted as follows. If a position on the input string is
directly preceded by the Class I diacritic (line 1 in (65)), the position under evaluation will have
an a in (the first copy of) the output string provided that (a) it is occupied by the genitive case
feature [gen] in the input (line 2), or (b) it is occupied by the [nom/acc/voc pl] feature
bundle, on an input string that also contains the neuter gender feature [neu] two positions to the
left (line 3). On the other hand, if the position under evaluation is directly preceded by the Class

IT diacritic (line 5 in (33)), it must also be associated with the [nom sg] feature bundle (line 6),

58

or the [gen pl] feature bundle, or the [ins pl] feature bundle (line 7). Finally, if none of

these conditions hold, a will be output only if there is an input a in the same position (line 8).

(65) ao!(x) =if Li(p(x)) then
if [gen]i(x) then T else
if [nom/acc/voc plli(x)then [neuli(p(p(x)))
else
if ILi(p(x)) then
if[nom sgli(x)then T else
if [gen pllix)then Telse [ins pl]i(x)
else ai(x)

In (66), the definition of i,!(x) states that, if the position under consideration is occupied
by the instrumental plural [ins pl] feature bundle in the input structure (line 1), i will surface
in Copy 1 of the output string provided that [ins p1l] is not preceded by the Class II diacritic in
the input (line 2). If [ins pl]i(x) returns L, however, the evaluation moves on to line 4, which
houses the condition that the position under consideration must be directly preceded by the Class
I diacritic. This condition, if it holds, allows for the evaluation of line 5, which states that i will
be output in Copy 1 if the input string contains the masculine gender feature [mas] two positions
to the left, and the position under evaluation is occupied by either the nominative plural feature
bundle [nom pl], or the vocative plural feature bundle [voc p1l]. If the condition in line 4
does not hold, line 7 is considered: this condition states that the position must be occupied by the
[dat/loc sg] feature bundle, and directly preceded by the Class II diacritic. If that condition

evaluates to L, the predicate considers whether the position on the input string is directly preceded

by the Class III diacritic (line 8). If it is, i,'(x) will return T provided that the position is not

59

occupied by the nominative singular feature bundle [nom sg] (line 9), or the accusative singular
feature bundle [acc sg] (line 10). Finally, if the condition in line 8 does not hold, the only thing
that could trigger an occurrence of an output i is the evaluation of ii(x) — i.e. the presence of an

input 1 in the same position (line 11).

(66) io'(x)=if [ins pl]i(x) then
if Ili(p(x)) then L else T
else
if Ii(p(x)) then
if[mas]i(p(p(x))) then [nom plli(x)else [voc plli(x)
else
if Ili(p(x)) then [dat/loc sgli(x) else
if IILi(p(x)) then
if [nom sgli(x)then L else
if [acc sgli(x)then L else T
else 1i(x)

Table 13 shows that e is an exponent found in Classes I and II, but not in Class III; the
evaluation of the output predicate eo!(x) will therefore depend on conditions that reflect that.
Furthermore, as explained in Chapter 3, Class I stems that end in a fronting consonant (FC) take
e-initial instead of o-initial suffixes. The definition of e,!(x) will have to capture that, too; to make

that possible, I reuse the input predicate FCi(x), first defined in (25), and repeated below in (67).

(67) FCi(x) =if tsi(x) then T else
if tei(x) then T else
if dzi(x) then T else
if tfi(x) then T else
if &i(x) then T else
if [i(x) then T else
if zi(x) then T else
if ni(x) then T else
if §i(x) then T else £i(x)

60

We can now move on to the definition of e,!(x) in (68). If the position under consideration
is directly preceded by the Class I diacritic in the input (line 1), and there is a masculine gender
feature symbol [mas] two positions to the left (line 2), the corresponding output Copy 1 position
will contain an e as the surface form of either the vocative singular feature bundle [voc sg]
(line 3), or the accusative plural [acc pl] (line 4), or the instrumental singular suffix [ins sg]
that follows a stem-final fronting consonant (FC, two positions to the left; line 5). If the position
under consideration does not contain a masculine gender feature symbol [mas] two positions to
the left (line 6), the evaluation moves on to line 7: in this case, a (non-masculine) lexical entry
with an FC-final stem will receive an e-initial instrumental singular suffix (line 8), and an e-final
leading form (meaning that there is an {e} diacritic two positions to the left) will have e as the
exponent of the nominative-accusative-vocative singular syncretism (line 9).

If none of the above holds (line 10), and what directly precedes the position under
evaluation in the input is rather the Class II diacritic (line 11), then the feature bundle that occupies
the input position must be either the genitive singular [gen sg], or the nominative-accusative-
vocative plural syncretism [nom/acc/voc pl] (line 12), in order to yield an e in output Copy
1. If neither Ii(p(x)) nor IIi(p(x)) return T, the default condition is once again the presence of the

segment in the input; the fully faithful output of an input e is thus ensured in line 13 of (68).

(68) eo'(x) =if li(p(x)) then
if [mas]i(p(p(x))) then
if[voc sgli(x)then T else
if [acc plli(x)then T else
if FCi(p(p(x))) then [ins sg]li(x)
else

if FCi(p(p(x))) then

61

if [ins sgli(x) then T else
if {e}i(p(p(x))) then [nom/acc/voc sgli(x)
else
if ILi(p(x)) then
if [gen sgli(x) then T else [nom/acc/voc plli(x)
else ei(x)

In the definition of 0,'(x) in (69), we can now define the generalization that o is the first
segment of the output realization of the instrumental singular feature bundle [ins sg] (line 1),
provided that the lexical entry has been assigned to Class I (line 2), and that [ins sg] cannot
be output as e in that position (line 3). Outside of Class I, [ins sg] surfaces as o in output Copy
1 as long as the Class III diacritic does not occupy the position that directly precedes (line 5).

o is also the vocative singular suffix in Class II (line 7), and it is also the exponent of the
nominative, accusative and vocative singular for all lexical entries which contain an o-final leading
form (line 8). As in all Copy 1 predicates, if none of the more specific conditions hold, the most

general, default condition on an output segment is the presence of the corresponding input segment

in the same position (oi(x) in the final line of (69)).

(69) o0o'(x)=if [ins sg]i(x) then

if Ii(p(x)) then
if eo'(x) then 1 else T

else
if [ILi(p(x)) then L else T

else
if Ili(p(x)) then [voc sgli(x) else
if {o}i(p(p(x))) then [nom/acc/voc sgli(x) else oi(x)

The predicate u,'(x) is defined in (70). u will be output as the dative-locative singular

exponent for Class I lexemes (line 1), or as the accusative singular exponent for entries assigned

62

to Class II (line 2). If none of these conditions are met, u can be found in the first copy of the

output string only as a faithful surface counterpart of an input u in the same position.

(70) uo'(x) =if li(p(x)) then [dat/loc sgli(x)else
if Ili(p(x)) then [acc sgli(x) else ui(x)

Like in Chapter 3, a copy set of size 3 (71) suffices to output the rest of the segmental
content of the instrumental singular suffix, or any other exponent longer than a single character.
The instrumental plural form of sena ‘woman’ is illustrated as an example in Table 15. The order

of the output copies remains fixed as before.

(71) C=1{1,2,3}

Table 15. Input and output strings of the instrumental plural form of zena ‘woman’

input
1 2 3 4 5 6
{a} {a} {a}
[fem] [fem] [fem]
3 e n + [ins] [sg]

output

Copy 1: 3 e n a

Copy 2: m

Copy 3: a

The necessary Copy 2 output predicates are (re)defined in (72)-(74). As can be seen in
Table 13, m shows up as the second segment in all instrumental plural and dative-locative plural
suffixes, as well as the instrumental singular suffix in all inflectional classes but Class III. This is

expressed in (72); remembering that we have already captured the instrumental plural and dative-

63

locative plural syncretism in (64), we do not need to specify again the presence of [dat/loc

pl] in the input for m to surface in Copy 2 of the output.

(72) mo*(x)=1if [ins pl]i(x) then T else
if [ins sgli(x) then
if [lLi(p(x)) then L else T

An 1 or an a in Copy 2 of the output string can only surface to ensure vowel length in the
genitive plural exponent (see Table 13): 1 only shows up in Class III, and a everywhere else. This

is modeled in (73) and (74), respectively.

(73) ioX(x)=if [gen pl]i(x) then Ii(p(x))

(74) ai(x)=if [gen pl]i(x) then
if [ILi(p(x)) then L else T

Finally, the Copy 3 output predicate we need to derive senama in Table 15 — and any other
instrumental plural form — is defined in (75). The instrumental plural exponents in Table 13 are
the only ones requiring a Copy 3 output predicate, and they all end in a, which makes the definition
of a,’(x) straightforward: the only condition that needs to be met is that there is an [ins pl]

feature in this position in the input.

(75) as’(x)= [ins pl]li(x)

64

These are all the predicates that are needed to model the exponent realization patterns that
are laid out in Table 13. Finally, as the morphologically conditioned #-insertion process, on which

I focused in Chapter 3 (/bure + a/ — [bureta] ‘barrel. GEN.SG.NEU’), only occurs in Inflectional

Class 1, the definition of t,!(x) is slightly updated in (77): this predicate now ensures that -
insertion will only apply at a morpheme boundary (i.e. between a stem and a suffix), and
specifically one that bears a Class I diacritic (line 1 in (77)). Again, for the process to be triggered,
the last segment of the stem (directly preceding the morpheme boundary) must be e, and at the
same time there must be an output segment in the position directly following on the output string
(line 2 in (77)). The latter condition is captured by the user-defined predicate outseg(x), defined in

(19) and repeated below in (78), which returns T for any segment realized in output Copy 1.

(77) to'(x) = if Ii(x) then
if e(p(x)) then outseg(s(x))
else ti(x)

(78) outseg(x) = if ao'(x)then T else
if bo!(x) then T else

()
if zo'(x) then T else z,'(x)

The only thing left to ensure at this point is that #-insertion does not kick in with e-final
loanwords. As discussed in section 4.4, nouns like anime ‘anime’ inflect like native masculine
nouns, i.e. following the pattern of zavod in Table 13. The assumption here is that such borrowings
do not come with a lexically listed stem form (or listed gender information) — case endings, if
applicable, are added to the leading form taken in its entirety. Therefore, to capture the fact that

these lexical entries contain an inferred stem rather than a listed one, I use an additional boundary

65

symbol, the inferred stem marker *. Inferred stems end in *, which blocks #-insertion, as well as
vowel fronting after such FC-final stems (Petrovic, 2022). The condition in line 2 of the predicate

to!(x) in (77) is therefore not satisfied, as the predicate e(p(x)) does not return T.

Table 16. Input and output strings of the genitive singular form of SC anime ‘anime’

input
1 2 3 4 5 6 7 8 9
{e} {e} (e} {e} (e}
a n i m e * + [gen] [sg]
output
Copy l: a n i m e a

Finally, all other output segments are defined by Copy 1 output predicates such as those in
(79)-(81). They contain no further conditions other than the requirement for the presence of the

corresponding segment in the input, which will be output faithfully.

(79) bo'(x) = bi(x)
(80) ts,'(x) = bi(x)
(81) do'(x) = di(x)

(etc., for {Jg, tG, (B, dZ, f, g, X, j, k, l, A: n,nprs, _fa t’ v, Z, 5})

Nothing that was not defined by output predicates will appear in the output structure. This
includes -@ case endings, as well as the undefined output counterparts of the many non-segmental

input predicates. This system of logical string transductions, as defined in this section, derives the

66

Serbo-Croatian inflectional paradigms outlined in Table 13, incorporating the inflectional class

assignment process illustrated in Figure 3.

5.6 Vowel fronting in Serbo-Croatian

The work presented here conceptualizes morphology as an independent module of transductions
on strings that lies between syntax and (pure) phonology. The input to the morphological module,
therefore, is understood to be the yield of a (syntactic) tree structure, while the output is a
(phonological) string. For instance, in all Serbo-Croatian examples I assume the input string to
have a “stem — case — number” structure, which is what these components get rearranged to prior
to tree flattening. Furthermore, the morphosyntactic features map to a single exponent in the
analysis above, but could each have an exponent of their own. Alternatively, morphosyntactic
features could also be treated like phonological features, in which case multiple features (i.e. input
predicates) could occupy (i.e. return T for) the same input position. Such a representation is

illustrated in Table 17, which is an alternative version of what was shown in Table 14:

Table 17. Input (alternative) and output strings of the dative singular form of SC zena ‘woman’

input
1 2 3 4 5
{a} {a} {a}
[fem] [fem] [fem] [sg]
3 e n + [gen]
output
Copy 1: 3 e n e

67

Here I will not make any claims as to whether it would be optimal to treat morphosyntactic
features as sets (unordered) or strings (ordered); I simply acknowledge that both worldviews can
be accommodated. Regardless of the motivation behind the choice of the structure of the input
string, however, this approach brings closer together approaches like DM to those like Paradigm
Function Morphology (PFM). Works like Karttunen (2003) and Roark & Sproat (2007) cover the
topic of extensional, computational equivalence of the two kinds of frameworks; however, the
theories have had different intensional, theoretical assumptions and foci. With a model such as the
one outlined in this chapter, the interface with syntax is overtly addressed — operations that occur
over trees, pre-flattening, result in the necessary arrangement of morphosyntactic items, which will
yield the input string for the morphological module of string transductions. On the other hand,
BMRS can be used as a formalism for describing functions like those that lie in the core of PFM,
where rules of exponence are taken to be functions from pairings of strings (stems) and
morphosyntactic property sets to output strings. Proponents of PFM have argued that such an
approach is particularly suitable for accounting for phenomena that are not concatenative, one-to-
one mappings between input representations and surface realizations (Stump, 2001, pp. 3—12;
Bonami & Stump, 2016). These insights are directly translatable into a BMRS formalization as
post-flattening processes over strings.

Furthermore, the architecture of the morphological module can be expanded on, compared
to what was presented in the previous sections, by assuming that the realization of a word form
occurs in a step-wise fashion, within the morphological module. Such an approach makes it
possible to straightforwardly model phenomena like contextual stem and affix allomorphy, as well

as phonological processes that are dependent on morphological information.

68

Consider once again the process of suffix-initial vowel fronting in Serbo-Croatian,
illustrated in Tables 7 and 8, and modeled by the predicates eo'(X) and 0o'(x) in (26-27) and their
updated versions in (68-69). With these, the realization of the initial vowel of certain suffixes
(instrumental singular, neuter nominative-accusative-vocative singular syncretism) is defined as
[e] if a specific condition holds (the stem is FC-final), otherwise the suffix-initial vowel surfaces
as [0]. One might want to define the process differently — all suffix-initial [0]’s (in Inflectional
Class I) front to [e] after FC-final stems. In other words, the instrumental singular suffix and the
neuter nominative-accusative-vocative singular syncretism are realized as -om and -o, respectively,
in what we could call the exponent realization step, while fronting of the mid back vowel happens
subsequently, in the morphophonological processes step, taking as input the output of exponent

realization. I illustrate below in Tables 18 and 19:

Table 18. Exponent realization step for the instrumental singular form of SC pode ‘field’

input
1 2 3 4 5
{o} {o} {o}
[neu] [neu] [neu] 1
P o} A + [ins sg]
output
{o} {o} {o}
[neu] [neu] [neu] [ins sg]
Copy 1: P o A + o
[ins sg]
Copy 2: m

Table 19. Morphophonological processes step for the instrumental singular form of
SC pode ‘field’

input

1 2 3 4 5 6
{o} {o} {o}

[neu] [neu] [neu] 1 [ins sg] [ins sg]

69

output
Copy 1: P o A e m

The process is thus altered in several ways compared to what was outlined in the previous
sections. Therefore, in comparison to 0,'(x) in (69), the predicate ogo'(x) in (82) is simplified — it
now surfaces as the (first segment of the) exponent of [ins sg] in all inflectional classes but
Class III (lines 1-2), as the [voc sg] exponent in Class II (line 4), and as the [nom/acc/voc
sg] exponent for all lexical entries that bear the {o} leading form diacritic (line 5).!° For clarity,

the exponent realization output predicates are henceforth marked with a subscript E.

(82) oro'(x)=if [ins sg]li(x) then
if [ILi(p(x)) then L else T
else
if Ili(p(x)) then [voc sgli(x) else
if {o}i(p(p(x))) then [nom/acc/voc sgli(x) else oi(x)

Similarly, compared to e,'(x) in (68), ego'(x) is defined more succinctly in (83): e can now
only be realized as the exponent of either the [voc sg] orthe [acc pl] feature bundle in
Class I (lines 1-3), or as the surface form of an underlying [voc sg] or [acc pl] feature

bundle after Class II stems (lines 4-6).

(83) ero!(x) =if Ii(p(x)) then
if [mas]i(p(p(x))) then
if[voc sgli(x)then T else [acc plli(x)
else
if ILi(p(x)) then
if [gen sgli(x)then T else [nom/acc/voc plli(x)

5 As foreshadowed in section 4.4, “fronted o-final” leading forms like pode ‘field.NOM.SG’ — i.e. leading forms
ending in an FC+e sequence — are included in the category of o-final leading forms, denoted by {o}.

70

else ei(x)

Additionally, output predicates for boundary symbols, morphosyntactic features and
feature bundles also need to be defined — this information needs to be retained in the output of the
exponent realization step, so that predicates in the morphophonological processes step can refer to

it as present in the input structure. Listing identity functions like the ones in (84) will suffice:

(84) +Eo'(x) = +i(x)
Ieo' (x) = Ti(x)
[neulro!(x) = [neuli(x)
{o}Eo'(¥) = {0}i(x)
[ins sgle'(x)= [ins sgli(x)
[ins sgle’(x)= [ins sgli(x)

(etc., for all morphosyntactic features and feature bundles)

This consequently means that, in the stem selection and exponent realization steps, multiple
output predicates can return T for a position x in the same output copy (e.g., both ogo'(x) and [ins
sg]Eo'(x) evaluate to T for position 5 in Table 18). Such transductions by themselves do not fall
under the definition of well-defined transductions (Bhaskar et al., 2020, p. 163). However, the
output of the exponent realization step serves as input to the morphophonological processes step,
which consists solely of well-defined transductions — this means that, in the final output, only one
output predicate can evaluate to T for a position x in the same output copy, i.e. exactly one

character per output copy position will get printed in the end. Furthermore, as Bhaskar et al.

71

confirm, non-well-defined transductions do not increase the computational complexity of the
system.

Finally, in the morphophonological processes step, new predicates (now marked with a
subscript M) are defined. To capture the process illustrated in Table 19, I define emo(x) in (85):
the predicate targets input o’s (line 1) that are directly preceded by the stem boundary +, and have
a fronting consonant two positions to the left (line 2). Mid back vowel fronting after FC-final stems
is thus modeled; if these conditions are not met, e’s are only output faithfully (line 3). No special
conditions are imposed on owmo'(x) other than the presence of an o in the input position (86), and

the definition of FCj(x) is the one given in (25) and (67).

(85) ewmo'(x) = if oi(x) then
if +i(p(x)) then FCi(p(p(x)))

else ei(x)

(86) omo!(x) = oi(x)
Predicates like the one in (86) are defined for all other characters that we want to be output
by the system (i.e. vowels and consonants); nothing else can appear in the output structure (i.e.

non-segmental characters, -@ case endings). Any other morphophonological process would be

defined via predicates similar to the ones in (85) and (86).

5.7 Discussion

72

The purpose of this chapter was to show that inflectional class membership does not have
to be listed information, and can be a result of a predictable process. In Serbo-Croatian noun
inflection, a crucial concept that makes such a process possible is that of a leading form. As leading
forms have been proposed to play an important role in other languages (Albright, 2008a), the
approach adopted in this chapter can be extended to, and tested on, those data, further probing the
hierarchical, algorithmic nature of inflectional systems. Additionally, further work on class
membership assignment will focus on how such generalizations can be learned; learning such
systems would involve adding and re(de)fining parameters, evaluating productivity at every step
using the Tolerance Principle (as in Belth et al., 2021).

The “if... then... else...” syntax of BMRS makes a class assignment algorithm like the one
presented in this chapter easy to embed in a wider system of nominal inflection. BMRSs are
intuitive, implementable, and translatable to extensionally equivalent finite-state accounts. They
are also easily extendable to a wide range of observed phenomena (Dolatian, 2022; Jardine &
Oakden, 2022; Oakden, 2020).

More generally, this research project aims to bring theories like Distributed Morphology
closer to Word-and-Paradigm approaches. Following Ermolaecva & Edmiston (2018), and
compatible with the work presented here, morphological processes can be defined as string
transductions over flattened binary trees. With rule ordering, this allows for a more direct
comparison between different frameworks, and opens doors for taking the best of both worlds. It
is then possible to abstract away from specific frameworks that are traditionally used, which gives

us an opportunity to directly consider what representations are necessary and sufficient.

73

6 Syntax-morphology interface processes

In Chapter 3 and throughout the dissertation I have discussed the observation that morphological
mappings are computationally at most regular (Karttunen et al., 1992) — and normally below
(Chandlee, 2017) — i.e., that they are computations with a fixed memory, not requiring unbounded
counting. However, in linguistic theory, mainstream formalisms like Distributed Morphology (DM;
Halle & Marantz, 1993) operate over binary trees, assuming structures parallel to what one finds
in syntax. Given that the strong generative capacity of such a system is at least context-free, and
that such a system predicts patterns which are unattested in morphology (e.g. center embedding),
the goal of this work is to outline an alternative: a model of morphology that operates over strings,
featuring a transparent interface with both syntax and phonology (receiving input from the former,
and feeding the latter). In this chapter, I extend the approach to model processes on the syntax-
morphology interface, such as variable morphotactics, syntactically conditioned segment insertion
and deletion processes, as well as total reduplication, which is often cited as a major exception to

the generalization that morphological and phonological mappings are regular.

74

6.1 Formalization

As highlighted in section 4.6, this work conceptualizes morphology as an independent module of
transductions on strings that lies between syntax and (pure) phonology. Following Ermolaeva &
Edmiston (2018), I propose that the flattening of syntactic tree structure happens above the
morphological module, not post-morphology as normally assumed in frameworks like DM (cf.
Embick, 2010 on linearization and Vocabulary Insertion). I assume that structures in the syntactic
module are trees such as those featured in Minimalist Grammars (MG; Stabler, 1997), where
lexical features (selector/category, licensor/licensee) drive structure building operations (like
Merge and Move). The flattening of a given syntactic derivation for the morphological module
therefore yields a string formed by concatenation of the terminal symbols labeling the tree’s leaf
nodes, as encountered in a left-to-right traversal. Like in the analyses presented so far, multi-
character symbols are allowed in these strings, as are diacritics indicating features. An example

tree and its yield serving as input to the morphological module are shown in Figure 4:

Figure 4. Syntactic tree for Russian u evo brata “at his brother’s’ and its yield as input to

morphology
>
<U> :: D+ P- >
<ON> :: N+ D- <BRAT> :: N-
(]
D+ N+
P- D- N-

75

<U> # <ON> # <BRAT>

The input string is thus made up of syntactic terminals (which have not been spelled out
yet), as well as boundary symbols (morpheme boundaries are denoted by +, word boundaries by
#), lexical features (structure-building, MG features) and morphosyntactic features (gender,
number, etc.). The output of the morphological module is a phonological string. Like deterministic
finite-state transducers (FSTs), BMRSs can be expected to reliably characterize morphological
processes, without overgenerating; unlike finite-state methods, however, a logical description can
capture generalizations with representations that are common in linguistics (Chandlee & Jardine,

2021).

6.2 Variable morphotactics

Syntactic terminals have no phonological form in syntax — they are spelled out in the
morphological component. In a canonical morphological system, there is a constant, one-to-one
mapping between a morpheme and its realization (Brown et al., 2012). More often than not,
however, realizational processes are conditioned by their context; contextual allomorphy, stem
formation, and variable morphotactics are just some of them. In this section I focus on modeling
variable morphotactics — the phenomenon of variable surface order of morphs, resulting from a

fixed order of underlying elements in the input structure.

76

Let us take Georgian verb inflection as an example: in this language, for a certain class of
verbal stems, person and number features can surface as prefixes, or suffixes, or a combination of

both. This is illustrated in Table 20:

Table 20. Present indicative paradigm for some Georgian verb types
(Harris & Samuel, 2021: 151)

SINGULAR PLURAL
1 y-stem y-stem-¢
2 stem stem-¢
3 stem-s stem-en

In this paradigm, first person is marked with the prefix v- in both numbers, third person
singular is marked with the suffix -s, in the first and second person plural the number exponent is
a suffixal -#, and in the third person plural the stem takes a single suffix, -en. Second person is not
overtly marked, and the second person singular form takes no affix (Harris & Samuel, 2021). These
variable surface patterns are presumably derived from a uniform order in the underlying structure;
I assume that the input string to the Georgian morphological module has a structure like “number
— person — stem” (with the morpheme boundary symbol present on both sides of the stem),
following the syntactic analysis proposed in McGinnis (2013). The input and output strings for

different inflected forms of Georgian ban ‘bathe’ are laid out in (87).

(87) Georgian input:output pairs for present indicative forms of ban ‘bathe’
[sg] [1]+<BAN>+ — vban
[sg] [2] +<BAN>+ — Dban
[sg] [3]+<BAN>+ — bans

[pl] [1]+<BAN>+ — vbant

77

[pl] [2]+<BAN>+ — bant

[pl] [3]+<BAN>+ - banen

Consider now what the input-output correspondences look like in the realization of the first
person and third person forms of Georgian ban ‘bathe’ in Tables 21 and 22. The multi-character
symbol <BAN> represents the present indicative stem for the Georgian verb ‘bathe’, which gets

spelled out as ban (Harris & Samuel, 2021: 164).

Table 21. Input and output structures for the first person singular form of Georgian ban ‘bathe’

input
1 2 3 4 5
[sg] [1] + <BAN> +
output
Copy 1: \% b
Copy 2: a
Copy 3: n

Table 22. Input and output structures for the third person singular form of Georgian ban ‘bathe’

input
1 2 3 4 5
[sg] [3] + <BAN> +
output
Copy 1: b
Copy 2: a s
Copy 3: n

The necessary output predicates are defined below. As shown in Table 20, the first person
feature is invariably realized as the prefix v-; this is defined in (93). BMRS predicates are defined
using ‘if... then... else...” clauses, which directly capture the linguistic intuition that output forms

are produced via a set of hierarchically ordered, embedded, violable conditions.

78

(93) vo'(x)=if [171i(x) then T else L

Given that the person features and the stem node occupy constant positions in the input
string, defining the transductions for variable morphotactic processes can be done with finite
counting, by resorting to the predecessor and successor functions. So, in order to model the
realization of third person and singular number as a single suffix, -s, I first define the third person
singular feature bundle [3sg] with the input predicate in (94). [3sg]i(x) returns T if the position
under evaluation is occupied by the stem boundary symbol + in the input, and there is a third
person feature [3] three positions to the left on the input string, and a singular number feature

[sg] four positions to the left.

(94) [3sg]li(x) =if +i(x) then
if [31i(p(p(p(x)))) then [sg]i(p(p(p(p(x)))))

The output copy 2 predicate so%(x) is then defined in (95): s will be consistently output as
the exponent of the third person singular feature bundle [3sg] in the second copy of the output

string.

(95) soi(x)= [3sg]i(x)

Referring to Table 20 once again, we can see that the second person normally remains

unrealized. The plural feature [pl], on the other hand, is realized as a suffixal -z, except in the

79

third person plural form, where the suffix is -en. I illustrate the input and output strings for the first

and third person plural forms of ban ‘bathe’ in Tables 23 and 24 below.

Table 23. Input and output structures for the first person plural form of Georgian ban ‘bathe’

mput
1 2 3 4 5
[pl] [1] + <BAN> +
output
Copy 1: v b
Copy 2: a t
Copy 3: n

Table 24. Input and output structures for the third person plural form of Georgian ban ‘bathe’

input
1 2 3 4 5
[pl] [3] + <BAN> +
output
Copy 1: b
Copy 2: a e
Copy 3: n n

I assume that the plural feature surfaces as a suffixal t whenever possible — i.e. whenever
the [3] symbol is not directly preceded by [p1] in the input string, in which case an e is output
in the target position (directly following the stem). I first define the third person plural bundle
predicate [3pl]i(x) in (96), similarly to [3sg]i(x) in (94). The definition of e,*(x) in (97) then
states that e surfaces in the second copy of the output string if a string index is occupied by the

third person plural feature bundle [3p1] in the input.

(96) [3plli(x) =if +i(x) then
if [31i(p(p(p(x)))) then [p11i(p(p(p(p(x)))))

80

(97) edl(x)= [3plli(x)

The target position for to*(x) (98) is the same (stem boundary symbol + with a plural
feature [p1l] four positions to the left in the input); this predicate can only return T if e,%(x) does

not evaluate to T for the same index.

(98) toi(x) = if +i(x) then

if [p11i(p(p(p(p(x))))) then
if eo’(x) then Lelse T

Finally, I define the segments that comprise the realization of <BAN> in (13), (14), and

(15). Note in the definition of n,*(x) in (101) that n can surface in output copy 3 as part of the

[3pl] feature bundle, as well as a part of the present indicative stem ban ‘bathe’.

(99) Dbo!(x) = <BAN>i(x)

(100) ao’(x) = <BAN>i(x)

(101) no’(x) =if <BAN>i(x) then T else [3pl]i(x)

Here 1 do not show the intermediate stages (in which the boundary symbols and

morphosyntactic features are retained) between inputs consisting of syntactic terminals and

phonological outputs. As established in section 4.6, however, any morphophonological process

81

that applies over strings generated in the exponent realization step would be sensitive to such

elements, and therefore the corresponding output predicates would need to be defined.

6.3 Total reduplication

Total reduplication is normally understood to be a major exception to the generalization that
morphology is computationally at most regular (cf. Dolatian & Heinz, 2020). This stems from the
observation that, if we are dealing with strings (of segments) of arbitrary length, the copying
involved is unbounded. However, assuming an input structure that is made up of unrealized
morphemes (such that they occupy a single position each in the input string) is a way to model
total reduplication as a (sub)regular pattern — such copying does not exceed the observed
computational complexity of morphological processes. I illustrate this with an example from

Indonesian, where plurality is marked by total reduplication (Cohn, 1989):

Table 25. Input and output structures for the plural form of Indonesian buku ‘book’

input

1 2 3

<BUKU> + [pl]

output
Copy 1: b b
Copy 2: u u
Copy 3: k k
Copy 4: u u

Note that this account predicts that unbounded reduplication can only involve a finitely

bounded number of syntactic terminals. In addition, while the copying of a stem, as illustrated in

82

Table 25 (i.e. identifying the input structure <BUKU>+[pl] as <BUKU>+<BUKU>), is not
unbounded copying, unbounded phonological exponence cannot be captured in a BMRS analysis.
The assumption here is that the maximum number of output copies is determined by the longest
word in the (by definition, finite) lexicon. Any addition of a longer word would mean updating the
lexicon, which would entail updating the size of the copy set — as such, this is a learning question,
and falls outside of the scope of the present work. Furthermore, assuming finitely many copies
rules out unbounded total reduplication of forms with morphological recursion (like, for instance,
great great great (...) grandfather — great great great (...) grandfather great great great (...)
grandfather), which is unattested.

The pattern is captured with the input predicate <BUKU>i(x) in (102): it is defined to return
T for any position occupied by the plural feature [pl] in the input string, which also contains the

stem <BUKU> two positions to the left.

(102) <BUKU>i(x) = if [pl]i(x) then <BUKU>(p(p(x)))

The segment output predicates in (103—106) then ensure that all the segments of buku ‘book’

are output in the correct order, for each index that evaluates to T for <BUKU>(x).

(103) Dbo'(x) = <BUKU>i(x)

(104) uo’(x) = <BUKU>i(x)

(105) ko’(x) = <BUKU>i(x)

83

(106) uo*(x) = <BUKU>i(x)

Similar predicates can then be defined for any lexical entry that derives its plural form via
total reduplication. Specifically, we would need predicates like <BUKU>i(x) (102) for every
member of the fixed collection of Indonesian stems. So, given a finite set of lexical stems S in
(107), containing entries like buku ‘book’, wanita ‘woman’, masyarakat ‘society’, hak ‘right’, kera

‘monkey’ etc., we can combine all elements of S via the logical conjunction operator A (108):

(107) S = {<BUKU>, <WANITA>, < MASYARAKAT>, <HAK>, <KERA>, ...}

(108) [\ (o) = i [p11,Gx) then g (p(p())

qes

Additional length and/or structure constraints may also be placed on the reduplicant in
order to model partial reduplication (Moravesik, 1978), or reduplication with fixed segmentism
(Alderete et al., 1999). In a system that relies on an alphabet of phonological features rather than
segments, capturing ablaut reduplication (Minkova, 2002) would also be straightforward. For a
BMRS analysis that uses phonological features instead of segments, see Chandlee & Jardine

(2021).

6.4 Syntactically conditioned segmental processes

84

Processes involving segment insertion or deletion can be even further constrained by syntactic
conditions. Consider Russian, where 7 is inserted before third person possessive pronouns, but not

third person personal pronouns (Philippova, 2018):

(109) (a) uevo— umnevo ‘athim’ vs. (b) u evo brata ‘at his brother’s’

In both cases, evo is a third person pronoun, the genitive form of on ‘he’; in (109a), however,
evo does not take a nominal complement, whereas in (109b) it necessarily modifies a noun. In
cases like (109b), the syntactic terminal <ON> is thus assumed to bear a lexical selector feature
N+, which checks the succeeding noun’s category feature N- in the syntax, resulting in the
structure building operation Merge. The hierarchical (constituent) structure is lost after
linearization, but the selector/category features are retained, and can be referred to. The input and
output structures of strings in (109a) and (109b) are illustrated in Tables 26 and 27, respectively.
In Russian, the preposition u ‘at’ assigns genitive case to its complement; evo ‘him/his’ and brata

‘brother’s’ therefore bear the genitive feature [gen].

Table 26. Input and output structures for Russian u nevo ‘at him’

input
1 2 3
D_
D+ [3]
P- [gen]
<U> # <ON>
output
Copy 1: u n e
Copy 2: v
Copy 3: o

Table 27. Input and output structures for Russian u evo brata ‘at his brother’s’

85

1 2 3 4 5
N+
D_
D+ [3] N-
P- [gen] [gen]
<U> # <ON> # <BRAT>
output
Copy 1: u e b
Copy 2: v r
Copy 3: o a
Copy 4: t
Copy 5: a

The conditions under which an n is epenthesized in Table 26 (and not in Table 27) are
captured in (110): n-insertion occurs only at a word boundary (#; line 1), directly following a
preposition (P-; line 2) in a prepositional phrase (i.e. the preceding preposition also selects a D
element; line 3). The position that immediately follows needs to be occupied by a pronoun in the
input (D-; line 4), specifically a third person pronoun ([3]; line 5). Crucially, the third person
pronoun cannot be one that takes an N complement (line 6) — n-insertion fails in that case,

otherwise it occurs (provided that all the other conditions are met).

(110) no'(x) = if #i(x) then
if P=i(p(x)) then
if D+i(p(x)) then
if D—i(s(x)) then
if [37i(s(x)) then
if N+i(s(x)) then L else T

Given the high degree of embedding, one might prefer to define n,!(x) with the binary

logical conjunction operator A, as in (110"). The two definitions are equivalent:

86

(110") no'(x) =if #i(x) A P=i(p(x)) A D+i(p(x)) A D-i(s(x)) A [3]i(s(x)) then
if N+i(s(x)) then L else T

The form evo is the genitive form of the third person singular masculine pronoun on ‘he’

in Russian; the realization of <ON> thus relies on the presence of the [gen] feature, as shown in

(111-113) below:

(111) eo!(x) = if <ON>i(x) then [gen]i(x)

(112) vo(x) = if <ON>i(x) then [gen]i(x)

(113) 0o’(x) = if <ON>i(x) then [gen]i(x)

Similarly, brata is the genitive form of Russian brat ‘brother’; the predicates in (114-117)

therefore model the realization of the nominal stem for this lexeme, whereas ao’(x) in (118) defines

its exponent of the genitive case. Finally, Russian <U> is always output as u (119).

(114) Dbo'(x) = <BRAT>i(x)

(115) 1ro’(x) = <BRAT>i(x)

(116) ao’(x) = <BRAT>i(x)

(117) to*(x) = <BRAT>i(x)

87

(118) ao’(x) =if <BRAT>i(x) then [gen]i(x)

(119) uo'(x) = <U>i(x)

A different syntactically conditioned process occurs in German: the preposition zu [tu:]
and the dative singular masculine determiner dem [dem], when adjacent, can be contracted to zum
[tsu:m] if dem is in the complement of zu.'¢ Consider the examples below (Thomas Graf, personal

communication):

(120) Ich ging [pp zu [pr dem Bahnhof]]
I walked to the. DAT.SG.MASC train-station.DAT.SG.MASC
‘I went to the train station.’

(120") Ich ging zum Bahnhof

Both (120) and (120") are grammatical. In (120), the dative case is assigned to the DP by

the preposition zu. Interestingly, there is a possessive construction in German in which the
possessor also carries dative case: the form in (121) reflects a masculine possessor, and the

possessee inflects for whatever case it is assigned from beyond the DP.

(121) [pp [pp dem NP] [p sein(@/e/er/em/en) NP]]
the.DAT.SG.MASC his

16 Article contraction in German is optional; I disregard this for the purposes of the present work, and model the
process with BMRS, which are equivalent to subsequential transductions, and are thus deterministic. Depending on
the nature of the optionality, variability in the output would be generated by different speaker grammars (inter-speaker
variability), or a special marker in a single system that would distinguish the representations which trigger contraction
from those which do not (intra-speaker variability).

88

So, zu and dem can surface as adjacent words in different syntactic structures — while dem
is the head of the complement of zu in (120), it is the head of the specifier of the complement of

zu in (122). Contraction is possible in both cases:

(122) Ich ging [pp zu [pp [pr dem Kiinstler] [p seiner Bildergalerie]]]
I walked to the.DAT.SG.MASC artist.DAT.SG.MASC his.DAT.SG gallery.DAT.SG
‘I went to the artist’s gallery.’

(122") Ich ging zum Kiinstler seiner Bildergalerie

Even bigger structures can be constructed recursively. Consider the examples in (123-124);

the structure of the PP in the example in (124) is illustrated in Figure 5.

(123) Ichging zu dem Kiinstler seiner Freundin ihrer Bildergalerie
I walked to the artist his girlfriend her gallery
‘I went to the artist's girlfriend's gallery’

(123") Ich ging zum Kiinstler seiner Freundin ihrer Bildergalerie

(124) Ich ging zu dem Kiinstler seiner Freundin ihrer Bildergalerie ihrer Vordertiir
I walked to the artist his girlfriend her gallery.FEM her front-door
‘I went to the artist's girlfriend's gallery's front door’

(124") Ich ging zum Kiinstler seiner Freundin ihrer Bildergalerie ihrer Vordertiir

&9

Figure 5. Syntactic structure of the prepositional phrase in (124).

PP
zu DP
DP D’

/\
ihrer NP
DP D’

/\ /\ Vordertiir
NP

P hy ihrer
|

~TON TN Bildergalerie
dem NP seiner NP

Kiinstler Freundin

Motivating and modeling German zum contraction to apply over syntactic trees would be

difficult; as shown in the examples above, this can prove to be an extremely non-local process.

90

After linearization, however, zu and dem are always adjacent.!” Note that knowing the syntactic
category of zu is crucial — contraction to zum is impossible with homophonous words. This is
illustrated in (125) with the verb zugeben ‘admit’, which is made up of geben ‘give’ and the verbal

particle zu. Here, (125") is ungrammatical:

(125) Ich gab zu dem Verbrecher geholfen zu haben
I gavezu the.DAT.SG criminal.DAT.SG helped to have
‘I admitted that I had helped the criminal’

(125") *Ich gab zum Verbrecher geholfen zu haben

Therefore, zu needs to be a P-head for contraction to occur. Similarly, dem can be used as
both an article and a demonstrative: the process is not triggered by the latter. This is shown in (126)

and (126"):

(126) Ichging zu dem.
I walked to DEM
‘I went to that one.’

(126") *Ich ging zum.

With this in mind, we can formalize the process using representations illustrated in Table

28. The lexical item <ZU>, being a preposition, bears the category feature P-, as well as a selector

7 This is, technically, a simplification — if empty functional heads are retained after linearization (which would be
required for syntactically conditioned processes more generally), there would be a C-head or T-head intervening in
(125) below, for instance. In a model that requires this, these syntactic heads would be blocking the contraction process
instead of the features on lexical items. For the purposes of this chapter, the simplified analysis is adequate.

91

feature D+, as it forms prepositional phrases with DP complements. Similarly, the article <DEM>
bears the category feature D—, and the selector feature N+. Additionally, to distinguish it from the
demonstrative (which would be marked with a [Dem] feature), I assume the article also has an

[Art] lexical feature.

Table 28. Input and output structures for German zum [tsu:m] (< zu dem)

input
1 2 3
N+
D+ D-
p- [Art]
<zZU> # <DEM>
output
Copy 1: s
Copy 2: u:
Copy 3: m

Article contraction is formalized here as non-realization of the two initial segments of dem
under the conditions outlined above. Those conditions are captured in the definition of do'(x) in
(127): a d surfaces in output copy 1 if the position under evaluation is occupied by the lexical item
<DEM> in the input (line 1), which also bears the article feature [Art] (line 2). At the same time,
the preceding word — two positions to the left — must be a preposition (bearing the lexical feature
P-; line 3) that selects a D element (D+; line 4). These are blocking conditions: if they all hold, a

d will not be output — otherwise it will (lines 4-6).

(127) do'(x) = if <DEM>i(x) then

92

if [Art]i(x) then
if P-i(p(p(x))) then
if D+i(p(p(x))) then L else T
else T
else T

The vowel e appears in output copy 2 as part of the realization of <DEM> only if a d is

output in the same position in output copy 1 (128). Therefore, the same conditions hold as in (127).

(128) eo(x) = if <DEM>i(x) then do'(x)

An m, on the other hand, always surfaces in output copy 3 for an input <DEM> (129),
regardless of whether zu and dem are contracted or not. Similarly, ts (130) and u: (131) are

constant realizations of the lexical item <ZU>, as illustrated in Table 28.

(129) mo’(x) = <DEM>i(x)

(130) 0! (x) = <ZU>i(x)

(131) u:o*(x) = <ZU>i(x)

In this way, syntactically conditioned morpho(phono)logical processes can be formalized

as logical transductions on strings, which are understood to be augmented with additional lexical,

morphological, and syntactic information. This work treats such computations as transformations

between syntactic structures and phonological material, determining what is necessary and

93

sufficient for their modeling under various conditions, and formalizing the relevant theoretical and
empirical generalizations. I show that phenomena like variable morphotactics, total reduplication,
syntactically conditioned segment insertion and article contraction are (a) sensitive to lexical and

syntactic information, and (b) definable as operating over strings, involving only bounded counting.

7 Conclusion

The work presented in this dissertation is mainly about asking what is necessary and sufficient for
modeling different morphological processes under various conditions, addressing the implications
of different assumptions, and providing adequate accounts. My intention was to show that
examining processes on the interfaces of morphology with phonology and syntax can be
understood as a formal study of computations. Therefore, the broad objective of this dissertation
was to examine the relationships between structures and representations in morphosyntax and
morphophonology, with a focus on formalizing the interfaces.

Previous work in computational linguistics has demonstrated that a vast majority of
morphological and phonological phenomena are restricted in a way that is dependent on the
notions of computational complexity and locality. I apply this insight to a case study of Serbo-
Croatian morphological consonant epenthesis, and use the findings as a point of departure to
characterize the morphological module more generally, as well as to detect related phenomena in

different languages. Additionally, I show that the inherently hierarchical nature of the proposed

94

architecture allows the integration of well-understood grammatical principles such as inflectional
class assignment algorithms and the use of leading forms.

The formal relationship between representations and computation sheds light on the nature
of morphological processes on the interfaces. As exhibited in the dissertation, “non-canonical”
processes like morphologically and syntactically conditioned epenthesis present difficulties to
theories of morphology that are either syntax-based or fully merged with phonological
computation, resulting in the morphological interfaces lacking unified formal integration. I have
worked to remedy this by providing a principled way to discuss representations and computation
across modules using model theory and logical characterizations. In this way, my work derives the
observation that morphophonology is not necessarily phonologically optimizing, and that it has to
apply before phonology. Syntactically conditioned processes are similarly handled with the
representational capacities of the morphological module that I explore, meaning morphology is

sensitive to syntactic, phonological, and purely morphological representations.

95

References

Albright, A. (2008a). Explaining universal tendencies and language particulars in analogical
change. Linguistic Universals and Language Change, 144—181.

Albright, A. (2008b). Inflectional paradigms have bases too: Arguments from Yiddish. In A.
Bachrach & A. Nevins (Eds.), Inflectional Identity (pp. 271-312). Oxford University
Press.

Alderete, J., Beckman, J., Benua, L., Gnanadesikan, A., McCarthy, J., & Urbanczyk, S. (1999).
Reduplication with fixed segmentism. Linguistic Inquiry, 30(3), 327-364.

Anderson, S. R. (1992). A-morphous morphology (Issue 62). Cambridge University Press.
Aronoff, M. (1976). Word formation in generative grammar. MIT Press.

Aronoff, M. (1994). Morphology by itself: Stems and inflectional classes (Vol. 22). MIT Press.
http://mitpress.mit.edu/9780262510721/

Aronoff, M., & Repetti, L. (2022). Conditioned epenthesis in Romance. In A. Ledgeway, J. C.
Smith, & N. Vincent (Eds.), Periphrasis and Inflexion in Diachrony: A View from
Romance (pp. 362—-380). Oxford University Press.
https://doi.org/10.1093/0s0/9780198870807.003.0014

96

Arregi, K., & Nevins, A. (2012). Morphotactics: Basque auxiliaries and the structure of spellout
(Vol. 86). Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-007-
3889-8

Artés Cuenca, E. (2016). The influence of phonology on inflection: The interplay between
syllabification and lexical insertion in Pallarese Catalan [PhD dissertation, Universitat
Autonoma de Barcelona]. https://ddd.uab.cat/record/167840

Bachrach, A., & Wagner, M. (2007). Syntactically driven cyclicity vs. OQutput-output
correspondence: The case of adjunction in diminutive morphology.
https://ling.auf.net/lingbuzz/000383/v1.pdf

Bari¢, E., Loncari¢, M., Mali¢, D., Pavesi¢, S., Peti, M., ZeCevi¢, V., & Znika, M. (1997).
Hrvatska gramatika. Skolska knjiga.

Belth, C. A., Payne, S. R., Beser, D., Kodner, J., & Yang, C. (2021). The Greedy and Recursive
Search for Morphological Productivity. Proceedings of the Annual Meeting of the
Cognitive Science Society, 43, 2869-2875.

Bhaskar, S., Chandlee, J., Jardine, A., & Oakden, C. (2020). Boolean Monadic Recursive
Schemes as a Logical Characterization of the Subsequential Functions. In A. Leporati, C.
Martin-Vide, D. Shapira, & C. Zandron (Eds.), Language and Automata Theory and
Applications (pp. 157-169). Springer International Publishing.

Blake, B. J. (2001). Case. Cambridge University Press.

Bonami, O., & Stump, G. T. (2016). Paradigm Function Morphology. In A. Hippisley & G. T.
Stump (Eds.), Cambridge Handbook of Morphology (pp. 449—481). Cambridge
University Press. https://shs.hal.science/halshs-01428292

Broselow, E. (1984). Default consonants in Amharic morphology. MIT Working Papers in
Linguistics, 7, 15-31.

Brown, D., Chumakina, M., & Corbett, G. G. (Eds.). (2012). Canonical Morphology and Syntax.
Oxford University Press. https://doi.org/10.1093/acprof:0s0/9780199604326.001.0001

Brozovié, D. (2006). Neka bitna pitanja hrvatskoga jezicnog standarda. Skolska knjiga.

Chandlee, J. (2017). Computational locality in morphological maps. Morphology, 27(4), 599—
641.

Chandlee, J., & Jardine, A. (2021). Computational universals in linguistic theory: Using
recursive programs for phonological analysis. Language, 97(3), 485-519.

Chomsky, N. (1959). On certain formal properties of grammars. Information and Control, 2(2),
137-167.

97

Cohn, A. C. (1989). Stress in Indonesian and bracketing paradoxes. Natural Language &
Linguistic Theory, 7(2), 167-216.

Crowhurst, M. J. (1992). Diminutives and augmentatives in Mexican Spanish: A prosodic
analysis. Phonology, 9(2), 221-253.

Dolatian, H. (2020). Computational locality of cyclic phonology in Armenian [PhD dissertation,
Stony Brook University].
https://you.stonybrook.edu/deovlet/files/2020/09/Dissertation.pdf

Dolatian, H. (2022, September 22). Implementing logic-based approaches to phonology.
Workshop on Model Theoretic Representations in Phonology, Stony Brook University.
https://www jeffreyheinz.net/events/ WMTRPprogram.html

Dolatian, H., & Heinz, J. (2020). Computing and classifying reduplication with 2-way finite-state
transducers. Journal of Language Modelling, 8(1), 179-250.

Embick, D. (2010). Localism versus globalism in morphology and phonology (Vol. 60). MIT
Press.

Ermolaeva, M., & Edmiston, D. (2018). Distributed morphology as a regular relation.
Proceedings of the Society for Computation in Linguistics, 1(1), 178—181.

Filiot, E. (2015). Logic-automata connections for transformations. Indian Conference on Logic
and Its Applications, 30-57.

Garcia, G. (2017). Weight gradience and stress in Portuguese. Phonology, 34, 41-79.

Halle, M., & Marantz, A. (1993). Distributed morphology and the pieces of inflection. In The
view from building 20 (pp. 111-176). The MIT Press.

Harris, A. C., & Samuel, A. G. (2021). The suffixing preference. In S. Moradi, M. Haag, J. Rees-
Miller, & A. Petrovic (Eds.), All Things Morphology: Its independence and its interfaces
(Vol. 353, pp. 147-168). John Benjamins Publishing Company.
https://doi.org/10.1075/cilt.353.09har

Heinz, J. (2018). The computational nature of phonological generalizations. In L. M. Hyman &
F. Plank (Eds.), Phonological Typology (pp. 126—-195).

Inkelas, S., & Zec, D. (1990). The phonology-syntax connection. University of Chicago Press.

Jardine, A., & Oakden, C. (2022). Process-specific constraint effects in BMRS [Unpublished
manuscript]. https://adamjardine.net/files/jardineoakdenBMRSPSC.pdf

Johnson, C. D. (1972). Formal aspects of phonological description. Mouton.

Kaplan, R. M., & Kay, M. (1994). Regular models of phonological rule systems. Computational
Linguistics, 20(3), 331-378.

98

Karttunen, L. (2003). Computing with realizational morphology. 203-214.

Karttunen, L., Kaplan, R. M., & Zaenen, A. (1992). Two-level morphology with composition.
Proceedings of COLING 1992: The 15th International Conference on Computational
Linguistics, 1, 141-148.

Kiparsky, P. (1982). Lexical morphology and phonology. In L.-S. Yang (Ed.), Linguistics in the
morning calm: Selected papers from SICOL-1981 (pp. 3-91). Hansin.

Kiparsky, R. P. V. (1973). “Elsewhere” in phonology. In S. R. Anderson & P. Kiparsky (Eds.), 4
Festschrift for Morris Halle (pp. 93—106). Holt, Rinehart, and Winston.

Klajn, I. (2005). Gramatika srpskog jezika. Zavod za udZzbenike i nastavna sredstva.

Koskenniemi, K. (1983). Two-level morphology: A general computational model for word-form
recognition and production [PhD dissertation, University of Helsinki].
http://www.ling.helsinki.fi/~koskenni/doc/Two-LevelMorphology.pdf

Leslau, W. (1997). Ethiopic documents: Argobba: Grammar and dictionary (Vol. 47). Otto
Harrassowitz Verlag.

Lombardi, L. (2002). Coronal epenthesis and markedness. Phonology, 219-251.

Loporcaro, M. (1997). On vowel epenthesis in Alguer Catalan. In P. M. Bertinetto, L. Gaeta, G.
Jetchev, & D. Michaels (Eds.), Certamen Phonologicum II1: Papers from the Third
Cortona Phonology Meeting (pp. 205-227). Rosenberg and Sellier.

Markovié, 1. (2013). Hrvatska morfonologija. Disput.
Matasovi¢, R. (2008). Poredbenopovijesna gramatika hrvatskoga jezika. Matica hrvatska.

McCarthy, J. J. (2005). Optimal paradigms. In L. J. Downing, T. A. Hall, & R. Raffelsiefen
(Eds.), Paradigms in Phonological Theory (pp. 170-210).

McGinnis, M. (2013). Agree and Fission in Georgian Plurals. In O. Matushansky & A. Marantz
(Eds.), Distributed Morphology Today: Morphemes for Morris Halle (pp. 39-58). The
MIT Press. https://doi.org/10.7551/mitpress/9780262019675.003.0003

Merchant, J. (2015). How much context is enough? Two cases of span-conditioned stem
allomorphy. Linguistic Inquiry, 46(2), 273-303. https://doi.org/10.1162/LING_a 00182

Minkova, D. (2002). Ablaut reduplication in English: The criss-crossing of prosody and verbal
art. English Language & Linguistics, 6(1), 133—169.

Moradi, S. (2017). Non-canonical Epenthesis: Epenthetic quality and the role of morphonology
[Unpublished manuscript].
https://www.academia.edu/100511567/Non_canonical Epenthesis Epenthetic_quality a
nd the role of morphonology

99

Moravcsik, E. A. (1978). Reduplicative constructions. In J. H. Greenberg (Ed.), Universals of
Human Language (Vol. 1, pp. 297-334). Stanford University Press.

Moschovakis, Y. N. (2018). Abstract recursion and intrinsic complexity (Vol. 48). Cambridge
University Press.

Norrmann-Vigil, I. (2012). Accounting for variation of diminutive formation in Portefio Spanish.
Mester, 41(1). https://doi.org/10.5070/M3411011449

Oakden, C. (2020). The Ticuna nominalizer tone circle and input strict-locality [Unpublished
manuscript]. https://chrisoakden.com/files/ticuna_manuscript.pdf

Payne, D. L. (1981). Phonology and morphology of Axininca Campa. Summer Institute of
Linguistics and the University of Texas at Arlington.
https://peru.sil.org/resources/archives/8521

Petrovic, A. (2022). Vowel fronting in Serbian noun inflection. In A. Aitha, S. Castro, & B.
Wilson (Eds.), Proceedings of the Fifty-seventh Annual Meeting of the Chicago
Linguistic Society (CLS 57). The Chicago Linguistic Society.
http://chicagolinguisticsociety.org/public/cls57-toc.pdf

Petrovic, A. (2023). A formal account of morphological epenthesis in Serbo-Croatian.
Morphology, 33(3). https://doi.org/10.1007/s11525-023-09412-9

Petrovic, A. (under review). Where do they belong: Serbo-Croatian noun stems need leading
forms. Journal of Slavic Linguistics (FASL 31 Extra Issue).

Philippova, T. (2018). Prepositional repercussions in Russian: Pronouns, comparatives and
ellipsis [Doctoral dissertation, Ben-Gurion University of the Negev].
https://ling.auf.net/lingbuzz/004016/current.pdf

Piggott, G. L. (1980). Aspects of Odawa morphophonemics. Garland.

Roark, B., & Sproat, R. (2007). Computational approaches to morphology and syntax (Vol. 4).
OUP Oxford.

Scheer, T. (2011). A guide to morphosyntax-phonology interface theories: How extra-
phonological information is treated in phonology since Trubetzkoy’s Grenzsignale.
Mouton de Gruyter.

Sljivié-Simsi¢, B. (1984). Neuter nouns in -@ or neuter nouns in -¢ with extended stems in
Standard Serbo-Croatian. Folia Slavica, 6(3), 372-388.

Stabler, E. (1997). Derivational Minimalism. Logical Aspects of Computational Linguistics:

First International Conference, LACL 96, Nancy, France, September 23-25, 1996.
Selected Papers, 1328, 68.

100

Staroverov, P. (2014). Splitting theory and consonant epenthesis [Rutgers, The State University
of New Jersey].
https://www.proquest.com/openview/76a6537dfac768cbbcOea645a83605dc/

Stevanovi¢, M. (1969). Savremeni srpskohrvatski jezik: Gramaticki sistemi i knjizevnojezicka
norma (Vol. 1). Nau¢na knjiga.

Stump, G. T. (2001). Inflectional morphology: A theory of paradigm structure (Vol. 93).
Cambridge University Press.

Vennemann, T. (1972). Rule inversion. Lingua, 29(3—4), 209-242.

Wurzel, W. U. (1990). The Mechanism of Inflection: Lexicon Representations, Rules, and
Irregularities. In W. U. Dressler, H. C. Luschiitzky, O. E. Pfeiffer, & J. R. Rennison
(Eds.), Contemporary morphology (pp. 203-216). Mouton de Gruyter.

Zimmermann, E. (2019). Gradient Symbolic Representations and the Typology of Ghost
Segments. Proceedings of the Annual Meetings on Phonology, 6.

Zwicky, A. M. (1986). The general case: Basic form versus default form. Proceedings of the
Annual Meeting of the Berkeley Linguistics Society, 12, 305-314.

Zygis, M. (2010). Typology of consonantal insertions. ZAS Papers in Linguistics, 52, 111-140.

101

ProQuest Number: 30637200

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality
and completeness of the copy made available to ProQuest.

Pro(Quest.
/ \

Distributed by ProQuest LLC (2023).
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata
associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106 - 1346 USA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

